УДК 576.8(28)

О МИКРОФЛОРЕ ВОД ОДНОГО ИЗ ПОДЗЕМНЫХ ИСТОЧНИКОВ КАРАКАЛПАКИИ

Н. С. САГИДУЛЛАЕВ

(Қомплексный институт естественных наук Қаракалпакского филиала АН УзССР, Нукус)

Интенсивное развитие сельского хозяйства, особенно орошаемого земледелия, в том числе хлопководства и рисоводства, способствовало большому расходу воды р. Амударьи и в связи с этим сокращению общей площади связанных с ней водоемов. Ряд озер и систем высохли или находятся на стадии высыхания, в других — от недостатка питающей их воды ухудшился гидрологический режим. Все это делает актуальной проблему восстановления водного баланса водоемов Каракалпакии.

Один из путей к этому — использование подземных вод. В настоящее время в республике извлекаются миллионы кубометров подземных вод путем введения в производство буровых скважин и коллекторных сетей. Химический состав их разнообразен, в ряде случаев они приближаются к озерной воде, что дает возможность использовать их как новый естественный резерв водного фонда.

С расширением и увеличением сети подземных источников вод, особенно артезианских скважин, образуются новые своеобразные водоемы лиманного характера, которые в дальнейшем могут иметь определенное значение для сельского хозяйства в земледельческом, рыбохозяйственном и животноводческом аспектах.

В то же время подземные воды с микробиологической точки зрения оказываются не изученными, если не считать некоторых упоминаний о видовой принадлежности обнаруженных в них сапрофитных бактерий [5].

Задачей настоящей работы было исследование микрофлоры воды одного из подземных источников Каракалпакии и формирующегося от него лимана.

Пробы воды отбирали летом и осенью 1971 г. на трех типичных участках: непосредственно у подземного источника, на южном и северном берегах формирующегося от него лимана. Обработку и дальнейшие физико-химические и микробиологические анализы выполняли по описанной методике [1. 3, 4]. Сапрофитные термофилы выращивали на МПА при 40° С.

Таблица 1
Некоторые физико-химические сведения о подземном источнике и образующемся
от него лимане

Место отбора проб	Прозрачность, to		рН	Содержание кис лорода, мг/л
	И	юнь	<u>-</u> .	
Подземный источник	1	40	7,0	5,2
Южный берег лимана	0,4	28	7,0	6,3
Северный берег лимана	0,2	26	7,2	6,0
		Октябрь	•	•
Подземный источник	1 1	38	7,0	6,4
Южный берег лимана	0,5	22	7,0	7,2
Северный берег лимана	0,2	20	7,2	7,4

Изучаемый источник расположен в 25—30 км южнее Аральского моря. Сбрасывая воду сильным потоком через приподнятую на 1,5— 2 м над землей трубу, он образует своеобразный водоем лиманного типа, несколько вытянутый с севера на юг (общая площадь 2,0-2,5 га, протяженность около 1,6 км, ширина в среднем 150 м, максимальная глубина 1,0-1,2 м, прозрачность воды 1,0 м в центральной части и 0,2-0,5 м в прибрежье). Водоем зарос водно-болотной растительностью, водное зеркало сплошь покрыто зарослями рогозовой ассоциации. Прибрежную растительность составляют в основном пальчатка (ажырек) — С. dactylon, реже кога (клубнекамыш) — В. maritimus, янтак — A. pseudalhasi, угнетенная форма тростника — Ph. communis.

Вода здесь прозрачна, бесцветна, без запаха, со слегка сладковатым привкусом. Реакция среды нейтральная или слабощелочная, ее колебания в зависимости от места и времени отбора проб невелики

(табл. 1).

Термический, газовый и солевой режимы благоприятны для биологической жизни. В то же время отмечены большие колебания величин прозрачности, температуры и содержания растворенного кислорода, а именно — от источника к лиману температура воды и прозрачность снижаются, содержание растворенного кислорода — возрастает (см.

Ниже приведены данные по ионному составу исследованных вод (табл. 2).

Общее число бактерий в них колебалось от 1,2 до 8,2 млн. кл/мл, количество сапрофитов, произрастающих на МПА — от 2,0 до 11,2 тыс. $\kappa A/MA$ (табл. 3), споровые формы — показатель содержания органического вещества трудноусвояемого типа [2] — не обнаружены. При этом в прибрежье лимана общая численность бактерий превышала таковую непосредственно в подземном источнике в 1,5-2,0 раза, что свидетельствует о загрязнении воды по мере ее продвижения к лиману, по-видимому, связанном с наличием здесь густых зарослей водно-болотной растительности, а также с размывом почв и органических частиц с поверхности земли.

Таблица 2

Ионный состав вод подземного источника и лимана								
Размерность			so ₄ ²⁺	Ca ²⁺	Mg ²⁺	Na + + K +	Общая	
	нсо3	CI_					минерали- зация	жесткость
			Подземн	ый исто	чник			
мг/л	274,2	184,8	216,5	32,0	7,3	299,25	1013,0	2,2
мг-экв/л	4,49	5,17	4,51	1,6	0,6	11,97		2,2
%-экв/л	15,8	18,2	16,0	5,6	2,1	42,30		
			Л	иман				
мг/л	305,4	219,8	182,5	38,0	7,42	312.00	1065,1	
мг-экв/л	5,00	6,19	3,80	1,90	0,61	12,48		2,5
% -экв/л	16,6	20,0	12,6	6,30	2,00	42,3		

Численность бактерий подвержена большим сезонным колебаниям, особенно четко проявляющимся в лимане. Так, летом абсолютное число микробных организмов здесь составляло 1,8-2,1 осенью -3,0-8,2 млн. $\kappa n/mn$. Та же закономерность отмечена и в отношении гетеротрофов.

Таблица З Численность бактерий в воде подземного источника и лимана

· · · · · · · · · · · · · · · · · · ·			Термофильные сапрофиты	
Место отбора проб	Общее число бактерий, млн. кл/мл			споровые, °/₀
	Ию	нь		
Подземный источник	1,2	2,0	150	Нет
Южный берег лимана	2,1	3,8	120	
Северный берег лимана	1,8	3,5	100	10
	Октя	брь		
Подземный источник	1,4	8,0	100	Нет
Южный берег лимана	8,2	11,2	90	1,0
Северный берег лимана	3,0	11,0	80	12,5

^{*} Споровые не обнаружены.

Количество термофильных сапрофитов на МПА колеблется от 80 до 150 колоний/ $M\lambda$ воды, причем споровые составляют 5% (0—12 колоний/мл). Что касается их динамики, то обнаружена закономерность, обратная установленной для абсолютного числа бактерий и количества сапрофитных гетеротрофов в воде, а именно, их численность уменьщалась от источника к лиману и летом была выше, чем осенью (см. табл. 3).

ЛИТЕРАТУРА

- Абдиров Ч. А., Константинова Л. Г., Сагидуллаев Н. С. 1965. Микробиологическая и гидрохимическая характеристика некоторых водоемов правобережья низовьев дельты Амударьи. (Сообщ. 1), «Вест. КК фил-ла АН УзССР», 4.
 Кузнецов С. И. 1952. Роль микроорганизмов в круговороте веществ в озерах. Изд-во АН СССР, М.
 Разумов А. С. 1932. Прямой метод учета бактерий в воде. Сравнение его с метоготу Кога «Мукробиологи». 1
- тодом Коха. «Микробиология», 1, 2.
- 4. Родина А. Г. 1965. Методы водной микробиологии. Изд-во «Наука», М.—Л.
- 5. Сагидуллаев Н. С., Новожилова М. И. 1971. Гетеротрофная микрофлора водоемов Амударьи и ее значение в минерализации органического вещества. «Микробиология», 40, 4.

Поступила 31. III 1972 г.

УДК 581.526.325(28)

ФИТОПЛАНКТОН НЕКОТОРЫХ ПРУДОВ И ОЗЕР ДАГЕСТАНА

Л. П. ЛАЗАРЕВА, А. К. МАГОМЕДОВ

(Дагестанское отделение КаспНИИРХ, Махачкала)

Фитопланктон водоемов Дагестана до настоящего времени почти не изучен. Литературных данных по этому вопросу чрезвычайно мало [5].

Нами исследован фитопланктон водоемов низменной части Дагестана — прудов рыбопитомника «Уйташ», озер Ак-Гель и Темиргое и прудов при оз. Мектеб, различающихся по морфометрическим данным, расположению, физико-химическому состоянию, составу ихтиофауны и плотности посадки рыб.