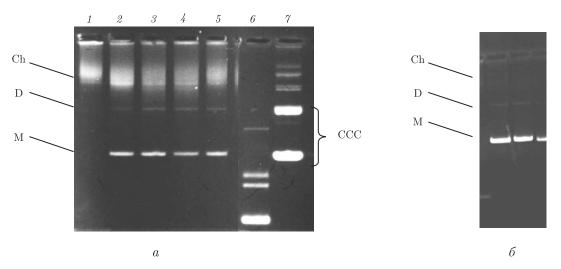
## Н. В. Черватюк, Ф. И. Товкач, Т. Е. Горб

## Особенности трансформации клеток *Erwinia carotovora* плазмидой pECL18

(Представлено членом-корреспондентом НАН Украины И.Г. Скрипалем)


Transformants Erwinia carotovora subsp. carotovora carrying pECL18 plasmid have been obtained with the help of the modified calcium method. The transformation frequency was  $2.8 \times 10^3$  colonies per  $\mu g$  of plasmid DNA. It has been established that the calcium competence of E. carotovora could be obtained by subjecting the cell from the logarithmic phase of growth to 0.1 M CaCl<sub>2</sub> per  $5 \times 10^8$  cell/ml. The frequency of the spontaneous loss of pECL18 plasmid is less than 1%. The ability to restrict the phage reproduction and the nuclease synthesis by the transformants has been studied. Foreign and homing RM-systems are autonomous, i. e. inhibit the phage reproduction independently. The obtained data are the prerequisite to construct a biotechnological system on the basis of non-pathogenic E. carotovora.

Erwinia carotovora привлекает внимание исследователей не только как возбудитель "мягкой гнили" экономически важных групп растений, но и как перспективный биотехнологический объект. Изучение молекулярной биологии и генетики этой важной фитопатогенной бактерии связано с решением вопросов о наличии фагов, плазмид, транспозонов, а также о их роли в горизонтальном переносе генов. Их решение возможно при разработке оригинальных генетических и молекулярно-биологических методов исследований. При этом создание условий для горизонтального переноса генов (трансформации, трансдукции, трансфекции) является одним из важных этапов в исследовании генетики данного фитопатогена.

Настоящая работа посвящена разработке эффективной трансформирующей системы для *E. carotovora*, а также изучению основных свойств полученных трансформантов.

В исследовании использованы следующие бактериальные штаммы, бактериофаги и плазмиды:

| Бактерии:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Erwinia carotovora subsp. carotovora |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| RC5297                               | Устойчивый к бактериоцину Eca153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| M2-4/50RI                            | Спонтанный диссоциант штамма ECA<br>M2-4 [12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| $Escherichia\ coli$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| JM109                                | $F'$ , proAB+, hsdR17( $r_K^ m_K^+$ ), $\lambda$ -r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| JM109(pECL18)                        | , and an analysis of the same |  |
| Бактериофаги:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ${ m ZF40~c5/5}$                     | clear-мутант фага ZF40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| ${\rm ZF40~mod~c5/5}$                | clear-мутант фага ZF40, модифицированный на штамме M2–4/50RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Плазмиды:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| pECL18                               | $\operatorname{Ap}^r$ HSD-плазмида, restriction-modification system Ecl18KI, RNAI, RNAII, $mob$ и $rom$ гены                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| pUC19                                | $\mathrm{Ap}^r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |



Для получения компетентных клеток и их трансформации применяли штамм R-типа E. carotovora subsp. carotovora 62A — RC5297, устойчивый к бактериоцину EcaEc153 [1, 2]. Выбор штамма для трансформации обусловлен тем, что у R-диссоциантов изменены поверхностные свойства клеток, что, по-видимому, увеличивает их компетентность, т.е. восприимчивость к чужеродной ДНК.

Компетентные клетки трансформировали плазмидой pECL18, которая, кроме гена синтеза  $\beta$ -лактамазы, несет ген, экспрессирующий рестриктазу II типа, Ecl18kI [3]. В этом случае предполагали использовать простой способ селективного отбора клонов и определения их фенотипа: полученные трансформанты, помимо роста на среде с ампициллином (50 мкг/мл), должны ограничивать развитие фагов — фенотип  $\mathrm{Ap}^r \mathrm{Res}^+$ .

Получение компетентных клеток и их трансформацию проводили кальциевым методом как указано в [4]. Частоту трансформации рассчитывали на 1 мкг сверхспиральной ковалентнозамкнутой ДНК (рис. 1).

Плазмидные ДНК, полученные по [5], разделяли в 0,8% агарозных гелях.

Для определения концентрации исходной плазмиды электрофореграммы анализировали с помощью программы Total Lab v.2.01; в качестве эталона использовали плазмиду pUC19. Рестриктазы выделяли согласно [6].

Для получения периплазматических фракций бактериальные клетки выращивали в течение 14 ч в минимальной среде с 0.5% полипектатом натрия и собирали центрифугированием (6000 g, 30 мин). Клеточный осадок отмывали дважды водопроводной водой и инкубировали в течение 2 ч на льду в растворе, содержащем 200 мкг/мл лизоцима, 15% сахарозы, 30 мМ трис-HCl (pH 8,0), 1 мМ ЭДТА. Содержимое супернатанта, полученного после описанной обработки и центрифугирования (17000 g, 30 мин), использовали для проведения гидролиза ДНК фага  $\lambda$  [7].

Трансформация бактерий предполагает получение компетентных клеток, которые способны поглощать ДНК из раствора. Кальцийзависимая компетентность позволяет транс-

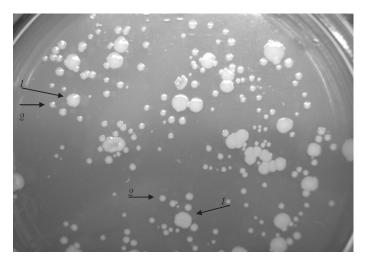



Рис. 2. Чашка Петри с LB-средой с 50 мкг/мл ампициллина после 48 ч культивирования трансформантов  $E.\ carotovora\ RC5297(pECL18)$ . Стрелками указаны колонии трансформантов (1) и пережившие за счет наличия экзогенной  $\beta$ -лактамазы колонии исходного штамма  $E.\ carotovora\ RC5297\ (2)$ 

формировать клетки с частотой до  $10^5-10^8$  клеток на 1 мкг плазмидной ДНК. Однако такая частота характерна лишь для специальных штаммов Escherichia coli, например JM109, HB101, TG1, и плазмид pUC18/19, pBR322, pBluescript [4, 8]. Для других же микроорганизмов она значительно ниже. Например, для E. carotovora subsp. carotovora частота трансформации составляет приблизительно  $1 \cdot 10^2-2.6 \cdot 10^3$  на 1 мкг ДНК плазмиды pBR322 [9].

Одним из важных условий получения компетентных клеток и их успешной трансформации является плотность культуры и поддержание во время всех процедур температуры на уровне 0—4 °C. Большинство описанных протоколов создания компетентности  $E.\ coli$  с помощью хлорида кальция предполагают использование клеток в активной логарифмической фазе роста (2 ч при сильной аэрации для  $E.\ coli$ ) [4]. Однако с применением этого подхода нам не удалось осуществить трансформацию  $E.\ carotovora\ RC5297$ . Одной из причин этого может быть следующее. В независимых исследованиях было показано, что периплазматическая фракция клеток  $E.\ carotovora\$ после культивирования в течение 12 ч содержит ферменты, деградирующие ДНК. К 24 часам пул этих ферментов в периплазме резко уменьшается. Не исключено, что проведение трансформации в логарифмической фазе роста не будет достаточно эффективным за счет накопления нуклеаз в периплазматическом пространстве. Поэтому для получения компетентных клеток использовали культуру, которая достигала стационарной фазы роста в богатой LB-среде с интенсивной аэрацией при 25 °C.

Тем не менее попытка создать  $\mathrm{Ca^{2+}}$ -зависимую компетентность клеток E. carotovora RC5297 при помощи стандартного протокола для E. coli с использованием 0.1 M  $\mathrm{CaCl_2}$  на  $1\cdot 10^9$  кл./мл оказалась неуспешной. Поэтому обработку клеток проводили в более жестких условиях, используя 0.1 M  $\mathrm{CaCl_2}$  на  $5\cdot 10^8$  кл./мл.

На LB-среде с 50 мкг/мл ампициллина после 20 ч инкубации были отобраны устойчивые клоны — трансформанты *E. carotovora* RC5297, несущие плазмиду pECL18 (рис. 2). При дальнейшей инкубации этих чашек вокруг больших колоний трансформантов появились более мелкие (см. рис. 2). Оказалось, что эти колонии, выросшие на среде с ампицил-

лином, не являются трансформантами. Хотя описанный феномен имеет самостоятельное значение, однако его можно объяснить секрецией эрвиниями  $\beta$ -лактамазы — фермента, разрушающего  $\beta$ -лактамное кольцо антибиотиков пенициллинового ряда — в окружающую среду [10].

С помощью описанного выше метода удалось достичь частоты трансформации  $2.8 \cdot 10^3$  на 1 мкг сверхспиральной ковалентнозамкнутой ДНК плазмиды pECL18, что является довольно высоким показателем для  $E.\ carotovora$  [9]. Причем полученные трансформанты оказались очень стабильными: частота потери плазмиды в отсутствие селективного пресса составляла менее 1%. В то время как для штамма  $E.\ carotovora\ RC5297$ , содержащего плазмиду R68.45, частота ее потери достигала 67 % [11].

Известно, что при межвидовом и межродовом переносе плазмид характер их репликации изменяется [9]. Поэтому выделенные из тарансформантов плазмиды были проанализированы в 0.8% агарозных гелях. Сравнительный анализ содержания плазмиды pECL18 в  $E.\ coli$  JM109 и в  $E.\ carotovora\ RC5297$  показал, что в этих двух штаммах она реплицируется в виде двух форм — мономерной и димерной (см. рис. 1).

У некоторых трансформантов *E. carotovora* RC5297(pECL18) было проверено свойство ограничивать развитие фагов. Для этого использовали *clear*-мутанты эрвиниофага ZF40. В табл. 1 приведены показатели эффективности посева исходного и модифицированного на штамме *E. carotovora* M2–4/50RI *clear*-мутанта c5/5 фага ZF40. Незначительное уменьшение эффективности посева (в пределах одного порядка) фага ZF40 c5/5 на штамме с плазмидой pECL18 свидетельствует о наличии частично модифицированных сайтов для рестриктазы Ecl18kI на ДНК фага ZF40. В случае же модифицированного мутанта наблюдали значительное снижение эффективности посева (см. табл. 1). Эти результаты свидетельствуют о том, что плазмида pECL18 нормально экспрессируется в клетках данного штамма, что приводит к синтезу рестриктазы и ограничению развития фагов за счет гидролиза их ДНК. Кроме того, из полученных результатов можно сделать вывод, что хозяйская RM-система штамма *E. carotovora* RC5297 и привнесенная с плазмидой pECL18 RM-система ведут себя автономно, т. е. ограничивают развитие фага независимо друг от друга (см. табл. 1).

Для подтверждения приведенных результатов проводили выделение нуклеаз из полученных трансформантов и контрольных штаммов. Как видно из рис. 3, нуклеаза Ecl18kI, выделенная из штамма  $E.\ coli\ \mathrm{JM109(pECL18)}$ , гидролизует ДНК фага  $\lambda$  более чем на 14 фрагментов. Проверку сайтспецифической эндонуклеазной активности проводили также и в лизатах клеток  $E.\ carotovora\ \mathrm{M2-4/50RI}$ , RC5297 и RC5297(pECL18). Во всех этих случаях наличия явных дискретных фрагментов ДНК  $\lambda$  не обнаружено (см. рис. 3), что может быть связано с превалированием неспецифического гидролиза ДНК. Поэтому для идентификации дискретности фрагментов, полученных при гидролизе нуклеазами штамма  $E.\ carotovora\ \mathrm{RC5297(pECL18)}$ , была использована программа  $\mathrm{Total} Lab\ v.2.01$ . Установлено, что на фоне продуктов неспецифического гидролиза присутствуют дискретные полосы ДНК, которые,

Таблица 1. Эффективность посева clear-мутантов фага ZF40 на различных штаммах E. carotovora

| Штамм Erwinia carotovora | Эффективн           | Эффективность посева    |  |
|--------------------------|---------------------|-------------------------|--|
| subsp. carotovora        | c5/5                | $\mod \mathrm{c}5/5$    |  |
| RC5297                   | 1,0                 | $0.3 \cdot 10^{-6}$     |  |
| RC5297(pECL18)           | 0,35                | менее $1 \cdot 10^{-7}$ |  |
| M2-4/50RI                | $0.9 \cdot 10^{-5}$ | 1,0                     |  |



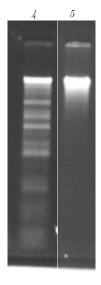



Рис. 3. Гидролиз ДНК фага  $\lambda$  нуклеазами из штаммов E. carotovora subsp. carotovora (1–3) и E. coli JM109 (4, 5): 1- ECA M2–4/50RI, 2- ECA RC5297, 3- ECA RC5297(pECL18), 4-E. coli JM109 (pECL18), 5-E. coli JM109

очевидно, являются рестриктами Ecl18kI. Их наличие свидетельствует об экспрессии данной эндонуклеазы в клетках трансформантов  $E.\ carotovora\ RC5297(pECL18)$ .

Таким образом, нами изучены особенности трансформации клеток  $E.\ carotovora$  subsp. carotovora плазмидой pECL18 и получены трансформанты  $E.\ carotovora$  RC2597(pECL18) с частотой  $2.8 \cdot 10^3$  на 1 мкг плазмидной ДНК. Показано, что частота трансформации существенно зависит от стадии роста культуры и от количества хлорида кальция, используемого для получения компетентных клеток. Привнесенная с данной плазмидой и хозяйская RM-системы ведут себя автономно, т.е. ограничивают развитие фага независимо друг от друга. Полученные результаты являются предпосылкой для разработки биотехнологической системы на основе непатогенной для человека бактерии  $E.\ carotovora$ , ее экзогенных и эндогенных плазмид.

- 1. *Кушкина А. И.*, *Товкач Ф. И.* Индикаторная система для изучения лизогенного развития умеренного бактериофага ZF40 *Erwinia carotovora* // Мікробіол. журн. -2005. **67**, № 3. C. 50-61.
- 2. *Товкач Ф. И.* Изучение фагоустойчивости *Erwinia carotovora* с помощью умеренного бактериофага ZF40 // Микробиология. − 2002. − **71**, № 1. − C. 82−88.
- 3. Zakharova M. V., Beletskaya I. V., Denjmukhametov M. M. Characterization of pECL18 and pKPNo 2. a proposed pathway for the evolution of two plasmids that carry identical genes for a type II restriction-modification system // Mol. Genet. Genomics. 2002. 267, No 2. P. 171–178.
- 4. Стикланд Ю. Е. Получение зондов и их мечение // Молекулярная клиническая диагностика. Методы / Под ред. С. Херрингтона, Дж. Макги. Москва: Мир, 1999. 558 с.
- 5. Kado C. I., Liu S.-T. Rapid procedure for detection and isolation of large and small plasmids // J. Bacteriol. -1981. -145, No 3. P. 1365-1373.
- 6. *Белавин П. А.*, Дедков В. С., Дегтярев С. X. Метод определения эндонуклеаз рестрикции в колониях бактерий // Прикл. биохимия и микробиология. − 1988. − **24**, № 1. − С. 121–124.
- 7. Hu N. T., Hung M. N., Chion S. J. et al. Cloning and characterization of a gene required for the secretion of extracellular enzymes across the outer membrane by Xantomonas campestris pv. campestris // J. Bacteriol. 1992. 174, No 8. P. 2679–2687.
- 8. *Маниатис Т.*,  $\Phi$ рич Э., *Сэмбрук Дж*. Методы генетической инженерии. Молекулярное клонирование: Пер. с англ. Москва: Мир, 1984. 480 с.

- 9. Hinton J. C., Perombelon M. C., Salmond G. P. Efficient transformation of Erwinia carotovora subsp. carotovora and E. carotovora subsp. atroseptica // J. Bacteriol. 1985. 161, No 2. P. 786–788.
- 10. Черватию Н. В, Товкач Ф. И. Влияние экзогенной плазмиды R68.45 на продуктивное и лизогенное развитие умеренного бактериофага ZF40 Erwinia carotovora // Мікробіол. журн. 2006. **68**, № 2. С. 48–57.
- 11. Housby J. N., Thomas J. D., Wharam S. D. et al. Conditional mutations in OutE and OutL block exoenzyme secretion across the *Erwinia carotovora* outher membrane // FEMS Microbial. Lett. 1998. **162**, No 1. P. 91–102.
- 12. Товкач Ф. И. Популяционная гетерогенность коллекционных штаммов Erwinia carotovora subsp. carotovora и ее связь с фаговой лизогенной конверсией // Микробиология и биотехнология XXI столетия: Материалы междунар. конф. Минск, 2002. С. 103–104.

Институт микробиологии и вирусологии им. Д.К. Заболотного НАН Украины, Киев

Поступило в редакцию 30.06.2006