ПРОЧНОСТНЫЕ И ДЕФОРМАЦИОННЫЕ СВОЙСТВА УПРОЧНЕННЫХ ГОРНЫХ ПОРОД

Ревва В.Н. (ИФГП НАН Украины)

Експериментально досліджені міцністні та деформаційні властивості гірничих порід, які зміцнені магнезійним і карбамідним сполученнями, з урахуванням ширини розкриття тріщин і вологості породи та температури оточуючого середовища.

STRENGTH AND DEFORMATION BEHAVIOR OF BONDED ROCKS V.N. Revva

Strength and deformation characteristics of argillaceous rocks bonded with magnesia or carbamide compounds are studied experimentally subject to a crack opening displacement (COD), rock moisture, and ambient temperature.

Одним из эффективных способов предварительного (упреждающего) упрочнения массива трещиноватых горных пород является физикохимический [1-4], основанный на принудительном нагнетании в нарушенный трещинами массив полимерных смол холодного отверждения, заполняющих трещины и скрепляющих отдельные блоки пород в монолит. Связанный таким образом массив становится устойчивым, что обеспечивает надежную работу шахтной крепи и повышает устойчивость горных выработок.

Эффективность применения скрепляющих составов для упрочнения горных пород зависит от горно-геологических и физико-химических факторов [5]. Одними из важнейших факторов, влияющих на процесс упрочнения кровли горных выработок, являются раскрытие трещин и влажность горных пород, а также температура окружающей среды.

В данной работе экспериментально исследованы прочностные и деформационные свойства горных пород, скрепленных магнезиальным и карбамидным составами, с учетом ширины раскрытия трещин и влажности породы и температуры окружающей среды.

Поскольку химико-минералогический состав пород, который вступает во взаимодействие с кислотным отвердителем упрочняющего состава, оказывает большое влияние на эффективность упрочнения, а также учитывая результаты предыдущих исследований [6,7], эксперименты проводились только на аргиллитах в пределах одной литологической разности. Из скрепляющих составов были выбраны наиболее эффективные магнезиальный с латексом и КФЖ с щавелевой кислотой.

Для экспериментальных исследований из кусков аргиллита на камнерезном станке выпиливались призматические образцы с ребром не менее 55 мм. Затем образец разрезался на две половины, наносился клеевой слой толщиной 1, 2, 3, 4, 5 мм. После склейки он помещался в эксикатор. С использованием метода ЯМР [8] определялись времена t отверждения и сохранения оптимальных прочностных и деформационных свойств составов. Для исследуемых составов необходимые времена выдержки оптимальных свойств составили: для образцов, скрепленных магнезиальным составом — 10-13 суток; для образцов, скрепленных карбамидным составом — 3-7 суток.

Для экспериментов по оценке влияния влажности пород образцы аргиллита, естественная влажность у которых составляла Wn = 0,6%, искусственно увлажнялись, а количество влаги определялось методом ЯМР. Удалось получить образцы, влажность у которых изменялась от 0,6 до 2%. После этого производилась склейка образцов и они на время отверждения помещались в эксикатор. Каждые сутки по спектрам ЯМР определялись фазовое состояние и вес контрольных образцов.

Экспериментальные образцы для исследования влияния температуры окружающей среды с определенной влажностью породы помещались в эксикаторы, а затем необходимое время выдерживались в холодильных камерах с температурами T = -10; 0; 5; 10° C, а также при комнатной (24°C) температуре. Температура контролировалась с помощью термопары и потенциометра.

Подготовленные образцы скрепленных пород деформировались до разрушения на установке неравнокомпонентного трехосного сжатия (УНТС) по методике ИФГП НАН Украины [9]. При этом были реализованы две схемы нагружения ($\sigma_1 > \sigma_2 > \sigma_3$), обеспечивающие минимальные уровни энергии деформирования:

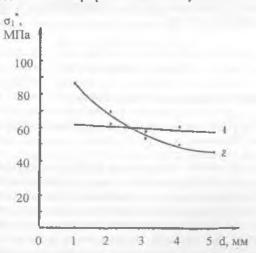
1)
$$\sigma_3 = 5 \text{ M}\Pi a$$
, $\mu_0 = -0.8$;

2)
$$\sigma_3 = 5 \text{ MHa}, \ \mu_{\sigma} = 0.8;$$

$$\mu_{\sigma}=2rac{\sigma_{2}-\sigma_{3}}{\sigma_{1}-\sigma_{3}}-1$$
 - параметр вида напряженного состояния Лоде-

Надаи.

В процессе испытания образцов на УНТС фиксировались главные напряжения σ_1 , σ_2 , σ_3 и деформации ε_1 , ε_2 , ε_3 . Исследовались также два случая ориентации (параллельно и перпендикулярно) плоскости склейки образцов относительно направления действия преобладающего сжимающего напряжения. На основании экспериментальных результатов рассчитывались наиболее показательные механические константы, характеризующие прочностные и деформационные свойства скрепленных пород в условиях объемного неравнокомпонентного сжатия: объемная прочность образца σ_1 , модуль объемного сжатия


$$K = \frac{\sigma_{cp}}{\varepsilon_{cp}}$$
,

где $\sigma_{ep} = 1/3(\sigma_1 + \sigma_2 + \sigma_3) -$ среднее напряжение, $\varepsilon_{ep} = 1/3 (\varepsilon_1 + \varepsilon_2 + \varepsilon_3)$ средняя деформация,

и объемная деформация
$$\frac{\Delta V}{V} = 3 \, \varepsilon_{cp}$$
 .

Оценка влияния ориентации плоскости склейки упрочненных образцов показала, что при ориентации плоскости склейки перпендикулярно направлению действия преобладающего сжимающего напряжения σ_1 разрушение происходит в основном по породе, а при ориентации параллельно σ_1 разрущение образца осуществляется как по породе, так и по контакту порода - скрепляющий состав. В случае же, когда $\mu_0 \approx -0.8$ образцы разрушаются в основном по склейке. Поэтому в дальнейших исследованиях упрочненных образцов рассматривалась только одна ориентация плоскости склейки относительно направления действия $\sigma_1 \sim$ параллельно (направление действия σ_3 перпендикулярно плоскости склейки), а схема нагружения реализовывалась только одна: $\sigma_3 \approx 5$ МПа, $\mu_{\sigma} = -0.8$.

На рис. 1 представлены зависимости объемной прочности образцов, скрепленных магнезиальным (кривая 1) и карбамидным составами (кривая 2), от толщины склейки, изменяющейся от 1 до 5 мм. Здесь и на других рисунках каждая точка на графиках соответствует 4-5 экспериментам.

Рис.1. Зависимость объемной прочности σ_1 упрочненных образцов аргиллита от толщины наносимого слоя d: 1- для магнезиального состава (t=10 суток); 2- для карбамидного состава (t=3 суток).

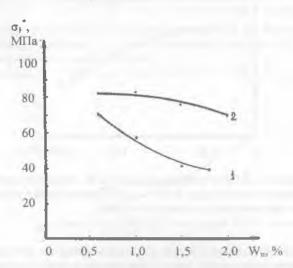
При этом $\sigma_3 = 5$ МПа, $\mu_a = -0.8$, Wn = 0.6%, T=24°C.

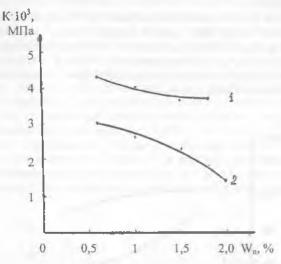
Для магнезиального состава прочность упрочненных образцов почти не изменяется, котя и наблюдается тенденция к уменьшению прочности с увеличением толщины склейки. С увеличением толщины склейки прочность образцов, скрепленных карбамидным составом, существенно уменьшается с 86 МПа до 45 МПа, т.е. на 48%. Деформационные свойства образцов, упрочненных магнезиальным или карбамидным составами, существенно не зависят от толщины склеиваемого слоя.

Таким образом, можно предположить, что для пород кровли с сильной трещиноватостью наиболее эффективным будет упрочнение магнезивльным составом.

Учитывая то, что наиболее высокие прочностные свойства скрепленные образцы имеют при толщине склейки 1 мм, в дальнейших экспериментах испытывались образцы только с этой толщиной склейки.

С увеличением влажности аргиллита от 0,6% до 1,8% прочность образцов; скрепленных магнезиальным составом (рис. 2, кривая 1), уменьшается от 65 МПа до 39 МПа, т.е. на 40%.




Рис.2. Зависимость объемной прочности σ_1 упрочненных образцов аргиллита от влажности скрепляемой породы $W_{\rm B}$: 1 — для магнезиального состава (t=13 суток); 2 — для карбамидного состава (t=5 суток).

При этом $\sigma_3 = 5$ МПа, $\mu_{\alpha} = -0.8$, T=24°C, d=1 мм.

Влияние влажности породы, упрочненной карбамидным составом, не столь существенно и при изменении ее от 0,6 % до 2% объемная прочность образцов уменьшается с 82 МПа до 69 МПа, т.е только на 16%. Модуль объемного сжатия К образцов, скрепленных магнезиальным составом, с увеличением влажности пород от 0,6% до 1,8% уменьшается от 4,3·10³

МПа до 3,75·10³ МПа (рис.3, кривая 1), т.е на 13%, а объемная деформация $\frac{\Delta V}{V}$ (рис. 4, кривая 1) увеличивается с 36 · 10³ до 45 · 10³, т.е. на 25 %. Бо-

лее существенно зависят от влажности деформационные свойства образцов, скрепленных карбамидным составом. Так с увеличением влажности пород от 0,6% до 2,0% модуль объемного сжатия скрепленных образцов (рис.3, кривая 2) уменьшается от $3\cdot 10^3$ МПа до 1,4 $\cdot 10^3$ МПа, т.е. почти в два раза, а объемная деформация (рис.4, кривая 2) при этом увеличивается с $24\cdot 10^3$ до $65\cdot 10^3$, т.е. в 2,7 раза.

Рис.3. Зависимость модуля объемного сжатия K образцов аргиллита от влажности скрепляемой породы Wn: 1-для магнезиального состава (t=13 суток); 2-для карбамидного состава (t=5 суток).

При этом $\sigma_3 = 5$ МПа, $\mu_{\sigma} = -0.8$, T = 24°C, d = 1 мм.

На основании экспериментальных исследований следует вывод, что влажность скрепляемых пород более существенно влияет на прочностные свойства образцов, скрепленных магнезиальным составом, и на деформационные свойства образцов, упрочненных карбамидным составом.

Таким образом, можно предположить, что для условий повышенной влажности упрочняемых пород более эффективным будет упрочнение карбамидным составом.

С понижением температуры окружающей среды от 24 °C до – 10 °C объемная прочность образцов, скрепленных магнезиальным составом, почти не изменяется (рис. 5, кривая 1), а для случая упрочнения карбамидным составом объемная прочность образцов уменьшается с 82 МПа до 50 МПа (рис. 5, кривая 2), т.е. на 39 %.

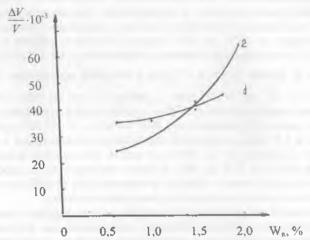
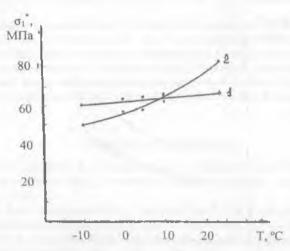



Рис.4. Зависимость объемной деформации образцов аргиллита от влажности скрепляемой породы: 1 – для магнезиального состава (t=13 суток); 2 – для карбамидного состава (t=5 суток).

При этом $\sigma_1 = 5$ МПа, $\mu_{\sigma} = -0.8$, T=24°C, d=1 мм.

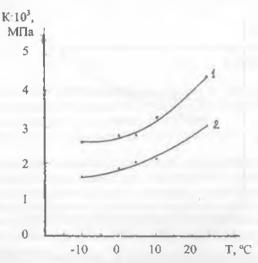


Рис.5. Зависимость объемной прочности σ_1^* упрочненных образдов аргиллита от температуры окружающей среды: 1 - для магнезиального состава (t=13 суток); 2 - для карбамидного состава (t=5 суток).

При этом $\sigma_3 = 5$ МПа, $\mu_{\sigma} = -0.8$, T = 24°C, d = 1 мм.

Деформационные свойства образцов, скрепленных магнезиальным или карбамидным составами, с понижениями температуры изменяются в сторону увеличения пластичности. Так при изменении температуры окружающей среды от 24°С до -10°С модуль объемного сжатия К образцов, склеенных магнезиальным составом, уменьщается с $4,4\cdot10^3$ МПа до $2,6\cdot10^3$ МПа (рис. 6, кривая 1), т.е. в 1,7 раза, а объемная деформация $\frac{\Delta V}{V}$ увеличивается с $31\cdot10^{-3}$ до $46\cdot10^{-3}$ (рис. 7, кривая 1), т.е. на 48%. У образцов, скрепленных карбамидным составом, с понижением температуры модуль объемного сжатия К уменьщается с $3\cdot10^3$ МПа до $1,6\cdot10^3$ МПа (рис. 6, кривая 2), т.е. в 1,87 раза, а объемная деформация увеличивается с $21\cdot10^{-3}$ до $45\cdot10^{-3}$ (рис. 7, кривая 2), т.е. почти в 2 раза. С повышением влажности окружающей среды от 72% до 98% влияние температуры на деформационные свойства скрепленных образцов становится еще более существенным, особенно, для случая упрочнения карбамидным составом.

Следовательно, понижение температуры окружающей среды увеличивает пластические свойства образцов, скрепленных как магнезиальным, так и карбидными составами, и существенно влияет на прочностные свойства образцов, упрочненных карбамидным составом. Поэтому для условий с пониженной температурой окружающей среды (например, условий вечной мерзлоты) наиболее эффективным будет упрочнение пород магнезиальным составом.

Рис.6. Зависимость модуля объемного сжатия упрочненных образцов аргиллита от температуры окружающей среды: 1 - для магнезиального состава (t=13 суток); 2 - для карбамидного состава (t=5 суток).

При этом $\sigma_3 = 5$ МПа, $\mu_{\sigma} = -0.8$, Wn = 0.6%, d = 1 мм,

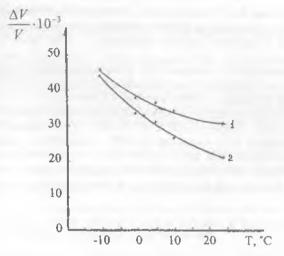


Рис.7. Зависимость объемной деформации упрочненных образцов аргиллита от температуры окружающей среды: 1 — для магнезиального состава (t=13 суток); 2 — для карбамидного состава (t=5 суток).

При этом $\sigma_3 = 5$ МПа, $\mu_{\sigma} = -0.8$, Wn = 0.6%, d = 1 мм

На основанни проведенных исследований можно сделать следующие рекомендации. Как магнезиальный, так и карбамидный составы могут быть использованы для упрочнения горных пород в условиях пониженной температуры и повышенной влажности пород. Наиболее эффективным будет упрочнение пород магнезиальным составом для условий пониженной температуры, а карбамидным составом для пород с повышенным содержанием влаги.

СПИСОК ЛИТЕРАТУРЫ

- Бутенко И.Т., Кара В.В., Сальников В.К., Пихович И.Я. Химический способ упрочнения пород в очистных забоях угольных шахт. – Киев: Техника, 1978. – 67с.
- Васильев В.В., Белоусов Ю.И., Срибный М.А. Об укреплении пород физико-химическим способом //Уголь. – 1982. - №2. – С.16-18.
- Давыдов В.В., Белоусов Ю.И. Химический способ укрепления пород. М.: Недра, 1977. – 228с.
- 4. Докукин А.В., Васильев В.В. Физико-химическое воздействие на массивы горных пород и угля. – М.: ЦНИЭИ уголь, 1982. – 49с.
- Васильев В.В. Полимерные композиции в горном деле. М.: Наука, 1986. – 296с.

- Алексеев А.Д., Ревва В.Н., Ульянова Е.В., Левченко В.И. Оценка фазового состояния и прочностных свойств скрепляющих составов горных пород. //Физика и техника высоких давлений. 1989.- Вып. 32. С.55-57.
- 7. Ревва В.Н., Ульянова Е.В., Алексеев А.Д. Влияние влажности пород на эффективность их упрочнения скрепляющими составами. //Физика и техника высоких давлений. ~ 1990. Вып. 34. ~ С.65-67.
- Способ определения степени упрочнения малоустойчивой кровли горной выработки: А.С. 1724881 СССР Е21Д 11/00. / А.Д. Алексеев, В.Н. Ревва, Е.В. Ульянова, Н.А. Рязанцев (СССР). №4692258. Заявлено 16.05.89; опубл. 07.04.92. Бюл. №13. 3с.
- 9. Алексеев А.Д., Ревва В.Н., Рязанцев Н.А. Разрушение горных пород в объемном поле сжимающих напряжений. К.: Наукова думка, 1989. 168c.