On the kernels of higher R-derivations of $R\left[x_{1}, \ldots, x_{n}\right]^{*}$

S. Kour

Communicated by A. P. Petravchuk

Abstract. Let R be an integral domain and $A=R\left[x_{1}, \ldots\right.$, $\left.x_{n}\right]$ be the polynomial ring in n variables. In this article, we study the kernel of higher R-derivation D of A. It is shown that if R is a HCF ring and tr. $\operatorname{deg}_{R}\left(A^{D}\right) \leqslant 1$ then $A^{D}=R[f]$ for some $f \in A$.

Introduction

Derivations of polynomial rings and their kernels have been the objects of great interest for a long time because of their connections with several conjunctures and popular problems in Commutative Algebra and Algebraic Geometry. For a good collection of results on derivations of a polynomial ring containing a field of characteristic $p \geqslant 0$, one can refer to $[3,5-7]$.

Recently, the kernels of higher derivations have been studied by several mathematicians and many interesting and known results of derivations have been extended to higher derivations e.g. [5, 8]. Let R be a field. In [6], Nowicki and Nagata studied the structure of R-derivations of $R\left[x_{1}, x_{2}\right]$. They proved that the kernel of any non-trivial R-derivation of $R\left[x_{1}, x_{2}\right]$ will be of the form $R[f]$ for some $f \in R\left[x_{1}, x_{2}\right]$. The above result is generalised by Berson in [2] and by Kahoui in [3] to the polynomial ring $R\left[x_{1}, x_{2}\right.$] over a unique factorization domain R. More precisely, they proved that if R is a unique factorization domain and d is a non trivial R-derivation of

[^0]$A=R\left[x_{1}, x_{2}\right]$, then there exists $f \in A$ such that $A^{d}=R[f]$. Nowicki in [7] observed that if R is a field and d is an R-derivation of $A=R\left[x_{1}, \ldots, x_{n}\right]$ with tr. $\operatorname{deg}_{R}\left(A^{d}\right) \leqslant 1$ then $A^{d}=R[f]$ for some $f \in A$.

In [8], Wada studied the kernels of higher R-derivations of $R\left[x_{1}, x_{2}\right]$ and $R\left(x_{1}, x_{2}\right)$, where R denotes a field. Later, Kojima and Wada in [5] extended the study of the kernels of higher R-derivations to the polynomial ring $R\left[x_{1}, x_{2}\right]$ over a HCF (Highest Common Factor) ring R. They proved that if R is a HCF ring, then the kernel of any non-trivial higher R derivation of $R\left[x_{1}, x_{2}\right]$ will be of the from $R[h]$ for some $h \in R\left[x_{1}, x_{2}\right]$. The above result on the kernels of higher derivations is same as Theorem 2.8 of Nowicki and Nagata [6] and Corollary 3.2 of Kahoui [3] in the context of ordinary derivation. There are many other interesting results on derivations which have been extended to higher derivations.

Let R be a HCF ring and let $A=R\left[x_{1}, \ldots, x_{n}\right]$. In this article, we prove that if D is a non-trivial higher R-derivation on A with $\operatorname{tr} . \operatorname{deg}_{R}\left(A^{D}\right) \leqslant 1$, then $A^{d}=R[f]$ for some $f \in A$. Kojima and Wada's Theorem 1.1 in [5] can be obtained as a corollary to our result. We would also like to mention that our result is obtained by using the arguments similar to Proposition 4.8 of [1] and Theorem 1.1 of [5].

1. Preliminaries

Let us first recall some definitions and basic facts about higher derivation. Let R be an integral domain and A be an R-algebra. Let F be an R-algebra containing A as R-subalgebra. Then a higher R-derivation on A into F is a set of R-linear homomorphisms $D=\left\{D_{n}\right\}_{n \geqslant 0}$ from A to F satisfying the following conditions:

1) D_{0} is the identity map of A.
2) For any integer $n \geqslant 0$ and for any $a, b \in A$,

$$
D_{n}(a b)=\sum_{i+j=n} D_{i}(a) D_{j}(b)
$$

A higher R-derivation on A into F is called higher R-derivation of A (resp. a rational higher R-derivation of A) if $F=A$ (resp. $F=q t(A)$). If $D=\left\{D_{n}\right\}_{n \geqslant 0}$ is a higher R-derivation of A, then D_{1} is a derivation of A. The kernel A^{D} of a higher R-derivation $D=\left\{D_{n}\right\}_{n \geqslant 0}$ is given by the set $\left\{a \in A \mid D_{i}(a)=0 \forall i \geqslant 1\right\}=\cap_{i \geqslant 1} \operatorname{ker} D_{i}$. It is easy to see that A^{D} is an R-subalgebra of A. We say that D is a non trivial if $A^{D} \neq A$.

Let $D=\left\{D_{n}\right\}_{n \geqslant 0}$ be a higher R-derivation on A. Then D defines an R algebra homomorphism $\Phi_{D}: A \rightarrow A[|t|]$ given by $\Phi_{D}(a)=\sum_{i \geqslant 0} D_{i}(a) t^{i}$.
Φ_{D} is called the R-algebra homomorphism associated to D. Clearly, the kernel A^{D} can be seen as the set $\left\{a \in A \mid \Phi_{D}(a)=a\right\}$. The R-algebra homomorphism Φ_{D} is naturally extended to the $k=q t(R)$-algebra homomorphism $\Phi: q t(A) \rightarrow q t(A)[|t|]$ by defining

$$
\Phi\left(\frac{a}{b}\right)=\frac{\Phi_{D}(a)}{\Phi_{D}(b)} \quad \forall a, b \in A, b \neq 0
$$

The k-algebra homomorphism Φ defines a higher k-derivation $\bar{D}=$ $\left\{\bar{D}_{n}\right\}_{n \geqslant 0}$ on $q t(A)$ such that

$$
\Phi(x)=\sum_{i \geqslant 0} \bar{D}_{i}(x) t^{i} \forall x \in q t(A) .
$$

Note that $\bar{D}_{i} \mid A=D_{i} \forall i \geqslant 0$. The k-derivation $\bar{D}=\left\{\bar{D}_{n}\right\}_{n \geqslant 0}$ is called the extension of D to $q t(A)$. From the definition, it is clear that $q t\left(A^{D}\right) \subseteq$ $q t(A)^{\bar{D}}$.

Let D be a higher R derivation of A and let $A_{k}=k \otimes_{R} A$, where k denotes the quotient field $q t(R)$. Note that the R-algebra homomorphism $\Phi_{D}: A \rightarrow A[|t|]$ can be extended to a k-algebra homomorphism Φ_{k} : $A_{k} \rightarrow A_{k}[|t|]$ defined as $\Phi_{k}(f / a)=\Phi_{D}(f) / a$ for $a \in A \backslash\{0\}$. Let D_{k} be the higher k-derivation given by Φ_{k}.

We first prove the following lemma which is similar to Lemma 2.4 of [5].

Lemma 1. Let R be an integral domain and D be a non-trivial higher R-derivation of $A=R\left[x_{1}, \ldots, x_{n}\right]$. Then $\operatorname{tr} . \operatorname{deg}_{R}\left(A^{D}\right) \leqslant n-1$.

Proof. Let $k=q t(R)$ and let D_{k} be the higher k-derivation of $A_{k}=k \otimes_{R} A$ defined by Φ_{k}. Then $A_{k}^{D_{k}} \cap A=A^{D}$ and $q t\left(A^{D}\right)=q t\left(A_{k}^{D_{k}}\right)$. Suppose, if possible, $\operatorname{tr} . \operatorname{deg}_{R}\left(A^{D}\right)=n$. Then tr. $\operatorname{deg}_{R}\left(A^{D}\right) \leqslant \operatorname{tr} \cdot \operatorname{deg}_{k}\left(A_{k}^{D_{k}}\right)$ implies that $\operatorname{tr} . \operatorname{deg}_{k}\left(A_{k}^{D_{k}}\right)=n$. Now by Lemma 2.4 of $[5], D_{k}$ is a trivial derivation. Therefore, D is a trivial derivation.

2. Kernel of higher \boldsymbol{R}-derivation

In this section, we discuss the kernel of higher R-derivation of the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ over a HCF ring R.

Theorem 1. Let R be a HCF ring and let $A=R\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables. Let D be a higher R-derivation of A with $\operatorname{tr} . \operatorname{deg}_{R}\left(A^{D}\right) \leqslant 1$. Then $A^{D}=R[f]$ for some $f \in A$.

Proof. We first consider the case where R is a field. In this case the $\operatorname{argument}$ goes along the lines of the proof of [7, Theorem 7.1.4], . Let $\operatorname{tr} . \operatorname{deg}_{R}\left(A^{D}\right)=m$. Clearly, $m \leqslant 1$. If $m=0$, then $A^{D}=R=R[1]$. If $m=1$, then A^{D} is a Dedekind subring of A. Therefore, by Zaks' [9, Theorem 8], there exists $f \in A \backslash R$ such that $A^{D}=R[f]$.

Now, we consider the case where R is a HCF ring. Let $k=q t(R)$. Then the higher R-derivation D can be extended to a higher k-derivation D_{k} on $A_{k}=k \otimes_{R} A$, associated with the ring homomorphism $\Phi_{k}: A_{k} \rightarrow A_{k}[|t|]$. Note that $A_{k}^{D_{k}} \cap A=A^{D}$ and $q t\left(A^{D}\right)=q t\left(A_{k}^{D_{k}}\right)$.

Since D_{k} is a higher k-derivation on A_{k} with tr. $\operatorname{deg}_{k}\left(A_{k}\right) \leqslant 1, A_{k}^{D_{k}}=$ $k[f]$ for some $f \in A_{k}$. If $f \in k$, then $A_{k}^{D_{k}}=k$. Therefore, $A^{D}=A_{k}^{D_{k}} \cap A=$ $k \cap A=R$. Suppose $f \in A_{k} \backslash k$. Clearly, $f \in A_{k}^{D_{k}}$. Since $k \subseteq A_{k}^{D_{k}}$, we may choose f in A^{D}. Furthermore, we may assume that the constant term of f is zero. Now the rest of the argument is similar to the proof of Proposition 4.8 of [1].

Observe that we may assume the greatest common divisor of the coefficients of f as polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ over R is one. If not, then let r_{1}, \ldots, r_{m} be the coefficients of f and let r be the greatest common divisor of r_{1}, \ldots, r_{m} (It exists as R is a HCF ring). Then, we can write $f=r f^{\prime}$ and $f^{\prime} \in A^{D}$.

Now recall that there exists a family $\left\{V_{\alpha}\right\}_{\alpha \in \Lambda}$ of valuation rings such that $R=\cap_{\alpha} V_{\alpha}$ and associated valuation maps are lattice homomorphisms. Observe that $\left(r_{1}, \ldots, r_{m}\right) V_{\alpha}=V_{\alpha}$ for each $\alpha \in \Lambda$. Further, note that the valuation ring V_{α} can be extended to a valuation ring V_{α}^{\prime} of $A_{k}=$ $k\left[x_{1}, \ldots, x_{n}\right]$ by defining the value of a polynomial to be the minimum of the values of its coefficients. Then x_{i} 's are units in V_{α}^{\prime} and the residues of the x_{i} modulo the maximal ideal of V_{α}^{\prime} are algebraically independent over the residue field of V_{α}^{\prime}. Since f has the constant term zero and $\left(r_{1}, \ldots, r_{m}\right) V_{\alpha}=V_{\alpha}$, the residue of f modulo the maximal ideal of V_{α}^{\prime} is transcendental over the residue field of V_{α}. Therefore, V_{α}^{\prime}-value of any polynomial in $k[f]$ is the minimum of the values of its coefficients. Hence, $a_{1} f+a_{2} f^{2}+\cdots+a_{t} f^{t} \in k[f] \cap A$, implies that for all $1 \leqslant i \leqslant t, a_{i} \in V_{\alpha}$. Since $R=\cap_{\alpha} V_{\alpha}$ we have $k[f] \cap A=R[f]=A^{D}$.

Corollary 1. [5, theorem 1.1] Let R be a HCF ring and let D be a nontrivial higher R-derivation of $A=R\left[x_{1}, x_{2}\right]$. Then there exists $f \in A$ such that $A^{D}=R[f]$.

References

[1] S.S. Abhyankar, W. Heinzer, P. Eakin, On the uniqueness of the coefficient ring in a polynomial ring, J.Algebra., 23, 1972, pp.310-342.
[2] J. Berson, Derivations on polynomial rings over a domain, Master Thesis, University of Nijmegen, The Netherlands, 1999.
[3] M. EL Kahoui, Constants of derivations in polynomial rings over unique factorization domains, Proc. Amer. Math. Soc., 132, 2004, pp.2537-2541.
[4] H. Kojima, On the kernels of some higher derivations in polynomial rings, J. Pure Appl. Algebra., 215, 2011, pp.2512-2514.
[5] H. Kojima, N. Wada, Kernels of higher derivations in $R[x, y]$, Comm. Algebra., 39, 2011, pp.1577-1582.
[6] A. Nowicki, M. Nagata, Rings of constants for k-derivations in $k\left[x_{1}, \ldots, x_{n}\right]$, J. Math. Kyoto Uni., 28, 1988, pp.111-118.
[7] A. Nowicki, Polynomial derivations and their rings of constants, Uniwersytet Mikolaja Kopernika, 1994.
[8] N. Wada, Some results on the kernels of higher derivations on $k[x, y]$ and $k(x, y)$, Colloq. Math., 122, 2011, pp.185-189.
[9] A. Zaks, Interpre'tations algebrico-ge'ometriques du quatorzie'me proble'me de Hilbert, Bull.Sci.Math., 78, 1954, pp.155-168.

Contact information

Surjeet Kour Discipline of Mathematics, Indian Institute of Technology Delhi, India, 110016.
 E-Mail(s): surjeetkour@maths.iitd.ac.in, koursurjeet@gmail.com
 Web-page(s): sites.google.com/view/ surjeetkour

Received by the editors: 17.08 .2018
and in final form 29.07.2020.

[^0]: *This research is supported by DST-INSPIRE grant IFA-13/MA-30.
 2020 MSC: 13N15, 13C99.
 Key words and phrases: derivation, higher derivation, kernel of derivation.

