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Abstract. In this paper, some zeros and non-zeros in the

character tables of symmetric groups are displayed in the partition

forms. In particular, more zeros of self conjugate partitions beside

odd permutations are heavily investigated.

1. Introduction

Representation theory of őnite groups has evidently wide application
in many areas of mathematics, such as graph theory [14], combinatoric
theory [6], and number theory [15] et cetera. Investigating character tables
of őnite groups is one of the most important and useful topic in this
subject. Even if there are many properties dealing with the construction
of character tables of őnite groups, there is a very few of such explicit
tables. Also, it seems that there is no a simple way to construct them.
However, some researchers devoted times to study some general behavior
of character tables, see for example [1ś3,5, 11,13].

For symmetric groups Sn, there is a question of Navarro to Olsson
(2010): łIf p is a prime, what are the elements x of the symmetric groups
Sn such that χ(x) = 0 for all χ ∈ Irr(Sn) of degree divisible by p?ž (see [9]).
In 2015 and 2016, Lucia Morotti found that the partition of p-adic type is
p-vanishing, but for p = 2, 3 there are some p-vanishing conjugacy classes
which are not the p-adic type, [9, 10]. However, for primes p > 3 such
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a conjugacy class is not found yet and she made a conjecture that łfor
prime p ⩾ 5, all p-vanishing classes are p-adic typesž (the meanings of
p-vanishing and p-adic types are provided in the next section).

This conjecture motivates us to study conditions on vanishing conju-
gacy classes for some characters of symmetric groups Sn. Some zeros and
non-zeros in the character tables of symmetric groups are displayed as
partitions of the forms in sections 3 and 4. Some more zeros besides odd
permutations of the characters associated to self conjugate partitions are
found in section 5.

2. Preliminary

A partition of a positive integer n is a tuple α = (α1, α2, . . . , αr) of
positive integers α1 ⩾ α2 ⩾ · · · ⩾ αr such that α1+α2+ · · ·+αr = n. The
integers αi’s are called the parts of α and r := l(α) the length of α [12]. To
indicate that α is a partition of n, we write α ⊢ n. For i = 1, . . . , n, if ti is
the number of parts of α equal to i, then we can also write α = (rtr , . . . , 1t1).
Usually iti is left out if ti = 0. If α = (α1, α2, . . . , αr) is a partition of
n then the Young diagram [α] of α consists of n boxes placed into r
rows, where the i-th row has αi boxes. The box in the i-th row and j-th
column of [α] is called the (i, j) node of [α]. For each i, denote α⊤

i the
number of parts of α which are bigger than or equal to i. The partition
α⊤ = (α⊤

1 , α
⊤
2 , . . . , α

⊤
s ) is called the conjugate partition associated with α.

If α = α⊤, then α is called a self-conjugate partition.

If (i, j) is a node of [α] we denote by Hα
i,j the (i, j)-hook of α which

is the set of nodes of [α] of the form (i, j′) for some j′ ⩾ j or (i′, j) for
some i′ ⩾ i. The hook-length hαi,j of the (i, j)-node is equal to the number
of nodes in Hα

i,j . The set of nodes (l, k)’s with l ⩾ i, k ⩾ j of α such that
(l+1, k+1) is not in [α] is called the (i,j)-rim of [α] and is denoted by Rα

i,j .
For h ⩾ 1, let wh(α) be the h-weight of α which is the maximum number
of h-hooks which can be recursively removed from α [6]. The h-weight of
a partition is also equal to the number of its hooks of length divisible by
h. For a partition α of n and k ∈ N, we also denote:

Iαk := {(i, j) |hαi,j = k}.

In the symmetric group Sn, each conjugacy class of Sn corresponds
naturally to the partitions of n associated to the cycle structure of that
class. The value of the irreducible character χα, labeled by the partition
α, evaluated at the conjugacy class corresponding to a partition β can
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be calculated recursively by the well known Murnaghan-Nakayama for-
mula, [6]. Precisely, if α is a partition of n = k +m and β ∈ Sn contains
a k-cycle and ρ ∈ Sm is of cycle type deleting k-cycle out of β, then

χα(β) =
∑

(i,j)∈Iα
k

(−1)l
α
i,jχα\Rα

i,j (ρ),

where lαi,j := α⊤
j − i is the leg length of the hook Hα

i,j and α\Rα
i,j simply

denotes the partition associated to the Young diagram [α]\Rα
i,j . By the

Frame-Robinson-Thrall Hook length formula, the degree of χα can be
calculated by

χα(1n) =
n!

∏

(i,j)∈[α] h
α
i,j

.

Note that, for each partition α of n, hαi,j = hα
⊤

j,i , for all (i, j) ∈ [α] and
hence

χα(1n) =
n!

∏

hαi,j
=

n!
∏

hα
⊤

j,i

= χα⊤

(1n).

Namely, the degree of χα and χα⊤

are always equal.

Let p be a prime and n = a0 + a1p+ · · ·+ atp
t be the p-adic decom-

position of n, (with at ̸= 0). A partition of n is of p-adic type if it is of
the form

(st,1p
t, . . . , st,ht

pt, . . . , s0,1, . . . , s0,h0)

with (si,1, . . . , si,hi
) ⊢ ai for 0 ⩽ i ⩽ t. As 0 ⩽ ai < p for 0 ⩽ i ⩽ k we

have equivalently that a partition α = (αj)j⩾0 is of p-adic type if and only
if

∑

j:pi|αj ,pi+1∤αj

αj = aip
i

for 0 ⩽ i ⩽ k, [8, 9]. Let χ be an irreducible character of a őnite groups
and let p be a prime. We say that χ is p-singular if p divides its degree.
A conjugacy class of a őnite group G is called p-vanishing if all p-singular
irreducible characters of G take value 0 on that conjugacy class. For
irreducible characters of symmetric groups, Lucia Morotti discovered that
(Corollary 1.5 in [9]):

Theorem 2.1. Partitions of p-adic type are p-vanishing.
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3. Some non-zeros in the character table of Sn

In this section, we provide an observation for conjugacy classes which
are not zero under the evaluation of some irreducible characters of őnite
groups. For any őnite group G, element g ∈ G and an irreducible character
χ of G, it is well known that (see, for example, Lemma 2.15 in [4])

χ(g) =

χ(1)
∑

i=1

εi,

where εi ’s are o(g)-roots of unity. For any positive integer m = pa11 · · · parr
(prime factorization), the weight set W (m) means the set of all non-
negative integers k in which there are m-roots of unity ε1, . . . , εk such that
ε1 + · · ·+ εk = 0. The main theorem of T.Y. Lam and K.H. Leung in [7]
asserts that the weight set W (m) is exactly given by N0p1 + · · ·+ N0pr,
where N0 denotes the set of all non-negative integers. Therefore the
following is immediate:

Theorem 3.1. Let α and β = (β1, . . . , βk) be partitions of n, m =
lcm(β1, . . . , βk) = pa11 · · · parr and W (m) = {n1p1 + · · ·+ nrpr |ni ∈ N0}.
If χα(1n) /∈ W (m), then χα(β) ̸= 0.

In particular,

Corollary 3.2. Let α and β = (β1, . . . , βk) be partitions of n such that
lcm(β1, . . . , βk) = pt for some integer t > 0. If p ∤ χα(1n), then χα(β) ̸= 0.

For example, if α = (2, 1n−2) and β be a partition of n such that
lcm(β1, . . . , βk) = pt for some integer t > 0 and p ∤ (n−1), then χα(β) ̸= 0
(because deg(χα) = n− 1).

Note from the Diophantine Frobenius problem that the largest number
that cannot be written in the form

n
∑

i=1

aixi, xi ∈ N0,

for given positive integers a1, . . . , an with gcd(a1, . . . , an) = 1 is called the
Frobenius number and denoted by g(a1, . . . , an). It is well known that for
a1, a2 ∈ N with gcd(a1, a2) = 1, then g(a1, a2) = a1a2 − a1 − a2. So the
following is an immediate consequence of Theorem 3.1.

Corollary 3.3. Let α and β = (β1, β2, . . . , βk) be partitions of n such
that lcm(β1, β2, . . . , βk) is pa1qa2 (prime factorization) for some integer
a1, a2 > 0. If χα(1n) = pq − p− q, then χα(β) ̸= 0.
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For example, if α = (2, 1n−2) and β are partitions of n = (p− 1)(q− 1)
such that lcm(β1, β2, . . . , βk) = ptqs for some positive integer t, s, then
χα(1n) = pq − p− q. Hence χα(β) ̸= 0.

4. Some zeros in the character table of Sn

First, we observe that:

Proposition 4.1. Let α and β be partitions of n such that α = (α1, 1
n−α1)

with n− α1 ⩾ α1 > 1. If β = (β1, . . . , βr, α1, 1), then χα(β) = 0.

Proof. Let k ∈ {1, . . . , r}. Denote α(k) the partition associated to the
Young diagram obtained by removing the hook of length βk from [α(k−1)],
where [α(0)] = [α]. Since α = (α1, 1

n−α1) and n− α1 ⩾ α1, [α] contains
exactly one hook of length l for each n − α1 ⩾ l ⩾ α1. Since βk ⩾ α1,
we have that Iα

(k−1)

βk
contains at most one element. If Iα

(k−1)

βk
has no

element, χα(β) = 0, by the Murnaghan-Nakayama formula. Suppose that

Iα
(k−1)

βk
has exactly one element and let Iα

(k−1)

βk
= {(ik, jk)}. Then, by the

Murnaghan-Nakayama formula,

χα(β) = (−1)
lα
(i1,j1)(−1)

lα
(1)

(i2,j2) · · · (−1)
lα

(r−1)

(ir,jr) χγ(α1, 1).

Let γ be the partition associated to the Young diagram obtained by
removing a sequence of hooks of lengths β1, β2, . . . , βr from α; i.e., γ =
(α1, 1). Since [γ] does not contain a hook of length α1, we now conclude
that χα(β) = 0.

Let α be a partition of n. If γ is the partition associated to the Young
diagram [γ] obtained by the process Pα(β1, β2, . . . , βs):

łremoving a hook of length β1 out of [α] at node (i1, j1) following by
removing a hook of length β2 out of [α] \Rα

(i1,j1)
at node (i2, j2) of

[α] \Rα
(i1,j1)

and so on till the sth stepž,

then we will denote γ by α
(s)
a⃗ (β1, β2, . . . , βs), where a⃗ = (a1, a2, . . . , as)

is the őnite sequences of pairs of positive integers a1 = (i1, j1), a2 =
(i2, j2), . . . , as = (is, js). Denote Iα(β1, β2, . . . βs) the set of all sequences
a⃗ of pair of the positive integers for which the process Pα(β1, β2, . . . , βs)
can be done. Note that if s = 1, then Iα(β1) = Iαβ1

.

Theorem 4.2. Let α and β = (β1, . . . , βs, . . . , βk) be partitions of n,

for some 1 ⩽ s < k. Let p be a prime. If p| deg(χα
(s)
a⃗

(β1,...,βs)) for all



216 On the character tables of symmetric groups

a⃗ ∈ Iα(β1, . . . , βs) and (βs+1, . . . , βk) ⊢ m, (1 < m) is a partition of
p-vanishing, then χα(β) = 0.

Proof. We őrst remove β1 out of [α] at all possible nodes. By the
MurnaghanśNagayama formula, we have

χα(β) =
∑

(a1)∈Iα(β1)

(−1)l
α
a1χ

α
(1)
(a1)

(β1)(β2, . . . , βs, . . . , βk).

Next, we remove β2 out of [α
(1)
(a1)

(β1)] at all possible nodes. We then have

χα(β) =
∑

(a1)∈Iα(β1)

(−1)l
α
a1

×

(

∑

a2∈I
α
(1)
(a1)

(β1)

β2

(−1)l
α
(1)
(a1)

(β1)

a2 χ
α
(2)
(a1,a2)

(β1,β2)(β3, . . . , βs, . . . , βk)

)

.

By repeating this process, we conclude that

χα(β) =
∑

(a1)∈Iα(β1)

(−1)l
α
a1 · · ·

∑

as∈Iα
(s−1)

βs

(−1)l
α(s−1)
as χα

(s)
a⃗

(β1,...,βs)(βs+1, . . . , βk)

=
∑

a⃗∈Iα(β1,...,βs)

±χα
(s)
a⃗

(β1,...,βs)(βs+1, . . . , βk)

where a⃗ = (a1, . . . , as), Iα
(s−1)

βs
= I

α
(s−1)
(a1,...,as−1)

(β1,...,βs−1)

βs
and lα

(s−1)

as =

l
α
(s−1)
(a1,...,as−1)

(β1,...,βs−1)

as . Since (βs+1, . . . , βk) ⊢ m is a partition of p-vanishing

and p| deg(χα
(s)
a⃗

(β1,...,βs)) for all a⃗ ∈ Iα(β1, . . . , βs), by Theorem 2.1,

χα
(s)
a⃗

(β1,...,βs)(βs+1, . . . , βk) = 0. Therefore χα(β) = 0.

For s = 1 in Theorem 4.2, we have in particular that:

Corollary 4.3. Let p be a prime, a, c, l be positive integers such that
a ⩾ cp+1 and k be a non-negative integer such that a+cp+2l+k+1 = n.
Let α, β ⊢ n with α = (a, cp+ 1, 2l, 1k) and β = (a+ l + k + 1, γ) with
γ ⊢ cp+ l =: m. If p ∤ m and γ is of p-vanishing then χα(β) = 0.

Proof. Since hα1,1 = a+ l + k + 1, we have that

α(1) := α
(1)
((1,1))(h

α
1,1) = (cp, 1l)
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which is a partition of m = n − hα1,1 = cp + l associated to the Young
diagram obtained by removing the hook of lengths hα1,1 out of [α]. The
Frame-Robinson-Thrall Hook length formula implies that

deg(χα(1)
) = χα(1)

(1m) =
(cp+ l)!

(cp+ l)(cp− 1)!l!
=

(cp− 1 + l)!

(cp− 1)!l!

=

(

(cp− 1) + l

l

)

.

We now write cp − 1 = esp
s + es−1p

s−1 + · · · + e1p + e0 and l = drp
r +

dr−1p
r−1 + · · ·+ d1p+ d0 as p-adic decompostitions. Since p ∤ m, p ∤ l; i.e.,

1 ⩽ d0 < p. Also, e0 = p− 1. Thus, the number of carries when l is added
to cp− 1 in base p is at least 1. By the Kummer’s Theorem,

νp

((

(cp− 1) + l

l

))

⩾ 1,

Namely, p | deg(χα(1)
). Hence, the result follows by Theorem 4.2.

Moreover, for s = 2 in Theorem 4.2, we also have in particular that:

Corollary 4.4. Let p be a prime, a, b, c, l, t be positive integers such that
a ⩾ b ⩾ cp + 2 and k be a non-negative integer such that a + b + cp +
3l + 2t + k + 2 = n. Let α, β ⊢ n with α = (a, b, cp + 2, 3l, 2t, 1k) and
β = (β1, β2, γ) with γ ⊢ cp + l =: m, where β1 = a + l + t + k + 2 and
β2 = b+ l + t. If p ∤ m and γ is of p-vanishing then χα(β) = 0.

Proof. Since hα1,1 = a+ l + t+ k + 2 = β1, we have that

α(1) := α
(1)
((1,1))(h

α
1,1) = (b− 1, cp+ 1, 2l, 1t)

which is a partition associated to the Young diagram obtained by removing
the hook of lengths β1 out of [α]. Since β2 = b+ l + t = hα

(1)

1,1 , we have

α(2) := α
(2)
((1,1),(1,1))(β1, β2) = (cp, 1l) ⊢ m = n− β1 − β2 = cp+ l

is a partition associated to the Young diagram obtained from [α(1)] by
removing hooks of lengths β2. The same arguments as in the proof of
Corollary 4.3 can be used to complete the proof.
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5. Zeros of self conjugate partitions

Recall from Lemma 2.1.8 in [6] that χα⊤

(β) = χα(β) if β is even and

χα⊤

(β) = −χα(β) if β is odd. Hence, if α⊤ = α, then χα(β) = 0 for any
odd β. However, there are some more zeros for self conjugate partitions.

Proposition 5.1. Let α = α⊤ and β be partitions of n. If β1 is an even
part of β such that β1 >

n
2 and γ ⊢ (n− β1), then χα(β1, γ) = 0.

Proof. Since α = α⊤, hα1,1 > hα1,2 = hα2,1 > hαi,j for all (i, j) ̸= (1, 1),
(1, 2), (2, 1) and hα1,1 is odd. Thus, whα

1,2
(α) = 2. So 2hα1,2 ⩽ n and then

hα1,2 ⩽
n
2 . Since β1 is even and hα1,1 is odd, β1 ̸= hα1,1. Moreover, by the

assumption that β1 >
n
2 , we have that the Young diagram of [α] does not

contain a hook of length β1. Hence χα(β1, γ) = 0.

According to Proposition 5.1, if α is a self conjugate partition and
β is even, it does not necessary to have that χα(β) ̸= 0; for example, if
α = (13, 5, 23, 18) which is self conjugate and β = (20, 5, 23, 1, ) which is
even, then χα(β) = 0.

In the remaining, we concentrate only on self conjugate partitions α
of n. Let α = (rk11 , . . . , rkmm ) with r1 > · · · > rm and ki > 0 for 1 ⩽ i ⩽ m.
Since α is self conjugate, we have that ri =

∑m−i+1
j=1 kj for 1 ⩽ i ⩽ m and

then also that ki = rm−i+1 − rm−i+2 for 1 ⩽ i ⩽ m. Let s = ⌈m/2⌉, the
ceiling function of m/2. We also denote ⌊q⌋ the ŕoor function of the real
number q.

For each 1 ⩽ i, j ⩽ m, we denote Ai,j the ki × kj matrix whose its
entries are hook lengths of [α] in the strip (i, j) which is the set of nodes

{(x, y) ∈ N× N | k1 + · · ·+ ki−1 < x ⩽ k1 + · · ·+ ki

and k1 + · · ·+ kj−1 < y ⩽ k1 + · · ·+ kj}

in [α]. Namely, we can consider the set of all hook lengths of [α] as a block
matrix A in the form

A =











A1,1 A1,2 . . . A1,m

A2,1 A2,2 . . . A2,m
...

...
. . .

...
Am,1 Am,2 . . . Am,m











,

with Ai,j = 0 if i+ j ⩾ m+ 2, in particular if i, j ⩾ s+ 1. This matrix
is symmetric because α is self conjugate. Thus, it suffices to investigate
the matrices Ai,j with 1 ⩽ i ⩽ s and i ⩽ j ⩽ m. In the following, for
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positive integers n1 < n2, we denote [n1, n2] := {k ∈ Z |n1 ⩽ k ⩽ n2}
and also deőne [n1, n2] = ∅ if n1 > n2. We also denote e(Ai,j) the set of
all entries in Ai,j . By direct computation, we have that, for each 1 ⩽ i ⩽ s
and i ⩽ j ⩽ m,

e(Ai,j) = [ri+ rj − (
i

∑

t=1

kt)− (

j
∑

t=1

kt)+1, ri+ rj − (
i−1
∑

t=1

kt)− (

j−1
∑

t=1

kt)− 1].

Moreover, for each 1 ⩽ i ⩽ ⌊m/2⌋ and 1 ⩽ j ⩽ m− 1 with i ⩽ j and
i+ j ⩽ m, we denote

Gi+1,j+1 = [max
(

e(Ai+1,j+1)
)

+ 1,min
(

e(Ai,j)
)

− 1] (5.1)

and, for each 1 ⩽ j ⩽ m,

G1,j =
[

r1 + rj − (

j−1
∑

t=1

kt), n
]

. (5.2)

Note by the direct calculation that Ga,b = ∅ for a+ b ⩾ m+ 3. Then

Gi,i+j−1 =

[

ri + ri+j−1 − (

i−1
∑

t=1

kt)− (

i+j−2
∑

t=1

kt),

ri−1 + ri+j−2 − (

i−1
∑

t=1

kt)− (

i+j−2
∑

t=1

kt)

]

,

(5.3)

for all 1 ⩽ i ⩽ ⌊(m− j + 3)/2⌋ =: Mj . In the following results, for each
1 ⩽ j ⩽ m, deőne

Gj :=

Mj
⋃

i=1

Gi,i+j−1. (5.4)

Note from (5.3) that the union in (5.4) is a disjoint union; namely,
Gi,i+j−1 ∩ Gk,k+j−1 = ∅ if i ̸= k. Moreover, for each j, we have that
min(Gi,i+j−1) > max(Gi+1,i+j) for each i = 1, . . . ,Mj − 1 and thus the
smallest element of Gj belongs to GMj ,Mj+j−1. Let Hα be the set of all
hook lengths of [α].

Proposition 5.2. For a self conjugate partition α of n and 1 ⩽ x ⩽ n
integer, we have that x /∈ Hα if and only if x ∈ G(α), where G(α) :=
G1 ∩G2 ∩ · · · ∩Gm.
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Proof. Suppose that x ∈ G(α). For each j ∈ 1, 2, . . . ,m, there exists
i ∈ {1, 2, . . . ,Mj} such that x ∈ Gi,i+j−1. By (5.1) and (5.2), we see
that x > max(e(Ai,i+j−1)) and x < min(e(Ai−1,i+j−2)). This implies that
x /∈ e(Ai+t,i+j−1+t) for each 0 ⩽ t ⩽ Mj − i and x /∈ e(Ai−t,i+j−1−t)
for each 1 ⩽ t ⩽ i − 1. Namely, x does not appear in the j-diagonal
(South-East) strip

Mj
⋃

i=1

e(Ai,i+j−1)

of A. Since j is arbitrary, x is not an entry of A which means that x /∈ Hα.
On the other hand, suppose that x /∈ G(α). Then there exists j ∈

{1, 2, . . . ,m} such that x /∈ Gj . Note that, for each j = 1, . . . ,m,

Gj ∪

Mj
⋃

i=1

e(Ai,i+j−1) = {1, . . . , n}.

Then x ∈ e(Ai,i+j−1) for some 1 ⩽ i ⩽ Mj , and hence x ∈ Hα.

By the distributive law of sets and the deőnition of Gj ’s above, we
have that

G(α) =
⋃

(Gi1,1+i1−1 ∩Gi2,2+i2−1 ∩ · · · ∩Gim,m+im−1), (5.5)

where the union runs over the set

I := {(i1, i2, . . . , im) ∈ Zm | 1 ⩽ ij ⩽ Mj for each 1 ⩽ j ⩽ m}.

There are exactly
m
∏

j=1

Mj

terms in the union form of G(α) in (5.5). Since G1,1 ∩G1,2 ∩ · · · ∩G1,m =
[2r1, n], there are at most 2r1 − 1 non-empty terms in (5.5).

Proposition 5.3. Let Y = Gi1,1+i1−1 ∩Gi2,2+i2−1 ∩ · · · ∩Gim,m+im−1 be
a term in the union form of G(α) in (5.5).

1) If there exists 1 ⩽ l ⩽ m− 1 such that il − il+1 ⩾ 2 or il+1 − il ⩾ 1,
then Y = ∅.

2) If there exist 1 ⩽ l ⩽ m − 2 such that il = il+1 = il+2 and ril +
ril+l−1 ⩾ ril−1 + ril+l − kil+l − kil+l−1, then Y = ∅.

3) If there exist 1 ⩽ l ⩽ m− 2 such that il = il+1 + 1 = il+2 + 2 and
ril+2

+ ril+2+l+1 ⩾ ril+1
+ ril+2+l − kil+1

− kil+2
, then Y = ∅.
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Proof. Suppose that there exits 1 ⩽ l ⩽ m− 1 such that il − il+1 ⩾ 2 or
il+1 − il ⩾ 1. If il − il+1 ⩾ 2, then il − 1 > il+1 and il+1 + l ⩽ il + l − 2.
Thus ril−1 < ril+1

and ril+l−2 ⩽ ril+1+l. By (5.3), it is now straightforward
to conclude that

max(Gil,il+l−1) < min(Gil+1,il+1+l)

which means that Gil,il+l−1 ∩ Gil+1,il+1+l = ∅ and hence Y = ∅. If
il+1 − il ⩾ 1, then il+1 > il and il+1 − 1 ⩾ il. Thus ril+1−1 ⩽ ril and
ril+1+l−1 < ril+l−1. By (5.3), it is now straightforward to conclude that

min(Gil,il+l−1) > max(Gil+1,il+1+l)

which means that Gi1,i1+1−1 ∩Gi2,i2+2−1 = ∅ and hence Y = ∅.
Suppose that there exist 1 ⩽ l ⩽ m− 2 such that il = il+1 = il+2. By

(5.3), we have that

min(Gil,il+l−1) > min(Gil+1,il+1+l) > min(Gil+2,il+2+l+1),

and

max(Gil,il+l−1) > max(Gil+1,il+1+l) > max(Gil+2,il+2+l+1).

So,

Gil,il+l−1 ∩Gil+1,il+1+l ∩Gil+2,il+2+l+1

= [min(Gil,il+l−1),max(Gil+2,il+2+l+1)].

This set is non-empty when ril + ril+l−1 ⩽ ril−1 + ril+l − kil+l − kil+l−1.
Similar arguments can be applied to conclude the remaining.

According to Proposition 5.3, a possibly nonempty set

Y =

m
⋂

k=1

Gik,k+ik−1

in the union form of G(α) in (5.3) must satisfy the conditions ik − ik+1 ∈
{0, 1} for each k = 1, . . . ,m. In other words, the non-empty set Y is the
intersection of nodes, Gik,k+ik−1’s in a North-East ladder (possibly with
different steps) of [α].

For each 1 ⩽ v ⩽ ⌊m2 ⌋ + 1, let LN
v be the one step vth North-East

ladder starting in the North direction of [α] deőned by

LN
v := Gv,v ∩Gv−1,v ∩Gv−1,v+1 ∩Gv−2,v+1 ∩ · · · ∩G2,2v−2

∩G1,2v−2 ∩G1,2v−1 · · · ∩G1,m.
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Note that G1,i ∩G1,k = G1,i if i < k. Thus,

LN
v =

(

⋂

0⩽i<v−1

(Gv−i,v+i ∩G(v−1)−i,v+i)
)

∩
(

⋂

i⩾2v−1

G1,i

)

=
⋂

0⩽i<v−1

(Gv−i,v+i ∩G(v−1)−i,v+i)

for all 2 ⩽ v ⩽ ⌊m2 ⌋+ 1, and LN
1 = G1,1.

Similarly, for each 1 ⩽ v ⩽ ⌊m+1
2 ⌋, let LE

v be the one step vth North-
East ladder starting in the East direction of [α] deőned by

LE
v := Gv,v ∩Gv,v+1 ∩Gv−1,v+1 ∩Gv−1,v+2 ∩ · · · ∩G2,2v−1

∩G1,2v−1 ∩G1,2v · · · ∩G1,m.

Using the same arguments as above we have that

LE
v =

⋂

0⩽i⩽v−1

(Gv−i,v+i ∩Gv−i,v+1+i),

for all 2 ⩽ v ⩽ ⌊m+1
2 ⌋, and LE

1 = G1,1.
For the following results, for each 2 ⩽ v ⩽ ⌊m2 ⌋+ 1, we denote

aNv = max
{

rv−i + rv+i − (

v−i−1
∑

t=1

kt)− (
v+i−1
∑

t=1

kt) | 0 ⩽ i < v − 1
}

,

bNv = min
{

rv−i−1 + rv+i−1 − (
v−i−1
∑

t=1

kt)− (
v+i−1
∑

t=1

kt) | 0 ⩽ i < v − 1
}

,

cNv = max
{

rv−i−1 + rv+i − (

v−i−2
∑

t=1

kt)− (

v+i−1
∑

t=1

kt) | 0 ⩽ i < v − 1
}

,

dNv = min
{

rv−i−2 + rv+i−1 − (

v−i−2
∑

t=1

kt)− (

v+i−1
∑

t=1

kt) | 0 ⩽ i < v − 1
}

,

and for each 2 ⩽ v ⩽ ⌊m+1
2 ⌋, we denote

aEv = max
{

rv−i + rv+i − (
v−i−1
∑

t=1

kt)− (
v+i−1
∑

t=1

kt) | 0 ⩽ i ⩽ v − 1
}

,

bEv = min
{

rv−i−1 + rv+i−1 − (

v−i−1
∑

t=1

kt)− (

v+i−1
∑

t=1

kt) | 0 ⩽ i ⩽ v − 1
}

,



K. Kawsathon and K. Rodtes 223

cEv = max
{

rv−i + rv+i+1 − (
v−i−1
∑

t=1

kt)− (
v+i
∑

t=1

kt) | 0 ⩽ i ⩽ v − 1
}

,

dEv = min
{

rv−i−1 + rv+i − (

v−i−1
∑

t=1

kt)− (

v+i
∑

t=1

kt) | 0 ⩽ i ⩽ v − 1
}

.

Here, we set any sum containing r0 or km+1 to be n and set rm+1 = 0.

Theorem 5.4. Let α = (rk11 , rk22 , . . . , rkss , r
ks+1

s+1 . . . , rkmm ) be a self conju-
gate partition. If β is a partition of n and β has a part

x ∈ [max{aNv , cNv },min{bNv , dNv }] ∪ [max{aEv , c
E
v },min{bEv , d

E
v }],

for some v ⩾ 2, then χα(β) = 0.

Proof. Let ε ∈ {N,E}. Assume the assumption and consider Lε
v as T ε

v ∩B
ε
v,

where

TN
v =

⋂

0⩽i<v−1

Gv−i,v+i, BN
v =

⋂

0⩽i<v−1

G(v−1)−i,v+i,

and

TE
v =

⋂

0⩽i⩽v−1

Gv−i,v+i, BE
v =

⋂

0⩽i⩽v−1

Gv−i,v+1+i.

It is a direct computation from (5.3) that aε = min(T ε
v ), b

ε = max(T ε
v ),

cε = min(Bε
v) and dε = max(Bε

v). Then Lε
v = [max{aεv, c

ε
v},min{bεv, d

ε
v}].

Note that Lε
v ⊆ G(α) and then, by Proposition 5.2, x /∈ Hα for any x ∈ Lε

v.
By the Murnaghan-Nakayama formula, we complete the proof.

Note that Lε
1 = G1,1 = [2r1, n]. Thus, if β contains a part x ⩾ 2r1, then

χα(β) = 0, by the Murnaghan-Nakayama formula. For v = 2 and m ⩾ 2,
we compute that aN2 = 2(r2 − k1), b

N
2 = 2(r1 − k1), c

N
2 = r1 + r2 − k1 and

dN2 = n. Therefore, the following is immediate.

Corollary 5.5. Let α = (rk11 , rk22 , . . . , rkss , r
ks+1

s+1 . . . , rkmm ) be a self conju-
gate partition of n with m ⩾ 2. Then χα(β) = 0 for all partition β of n
containing a part x ∈ [max{2(r2 − k1), r1 + r2 − k1}, 2(r1 − k1)].

Moreover, the smaller x belongs to G(α), the larger number of zero
occurs in the row χα (for any self conjugate partition α). The smallest
element ofG(α) belongs to LN

s+1 form = 2s or belongs to LE
s form = 2s−1,

if they are not empty.
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The following corollaries are illustration of the usage of Theorem 5.4.
The partition forms in the corollaries are found under the assumption
that LN

s+1 for m = 2s or LE
s for m = 2s− 1 is not empty in some speciőc

conditions. However, after the form of α is explicit, there are several
different ways to conclude the corollaries by the Murnaghan-Nakayama
formula as well.

Corollary 5.6. Let s, x, y be positive integers with x ⩽ y and s ⩾ 2. Let

α = ((sx+sy)x, (sx+(s−1)y)x, . . . , (sx+y)x, (sx)y, ((s−1)x)y, . . . , xy),

and β be partitions of n = sx(s(x+ y) + y). If β contains a part x+ y or
2(x+ y), then χα(β) = 0.

Proof. The given partition α is a self conjugate partition. We compute
that aNs+1 = 0, bNs+1 = x+ y = cNs+1 and

dNs+1 =

{

2(x+ y) if s ⩾ 3;
x+ 3y if s = 2.

Also, aEs = 2(x+ y), cEs = x+ y,

dEs =

{

2(x+ y) if s ⩾ 3;
x+ 3y if s = 2

and bEs =







3(x+ y) if s ⩾ 4;
2x+ 4y if s = 3;
x+ 5y if s = 2.

The conclusion is immediate by Theorem 5.4 and the condition that
x ⩽ y.

By calculating on LN
s and LE

s and using the same arguments as above,
we also have:

Corollary 5.7. Let s, x, y be positive integers with x ⩽ y and s ⩾ 2. Let

α = ((sx+ (s− 1)y)x, (sx+ (s− 2)y)x, . . . , (sx)x, ((s− 1)x)y,

((s− 1)x)y, . . . , xy),

and β be partitions of n = sx(s(x+ y)− y). If β contains a part x+ y or
2(x+ y), then χα(β) = 0.
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