S-second submodules of a module

F. Farshadifar

Communicated by V. A. Artamonov

Abstract

Let R be a commutative ring with identity and let M be an R-module. The main purpose of this paper is to introduce and study the notion of S-second submodules of an R-module M as a generalization of second submodules of M.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

Consider a nonempty subset S of R. We call S a multiplicatively closed subset (briefly, m.c.s.) of R if (i) $0 \notin S$, (ii) $1 \in S$, and (iii) $s s \in S$ for all $s, s^{\prime} \in S$ [15]. Note that $S=R-P$ is a m.c.s. of R for every prime ideal P of R. Let M be an R-module. A proper submodule P of M is said to be prime if for any $r \in R$ and $m \in M$ with $r m \in P$, we have $m \in P$ or $r \in\left(P:_{R} M\right)$ [9]. A non-zero submodule N of M is said to be second if for each $a \in R$, the homomorphism $N \xrightarrow{a} N$ is either surjective or zero [16].

Let S be a m.c.s. of R and P a submodule of an R-module M with $\left(P:_{R} M\right) \cap S=\varnothing$. Then the submodule P is said to be an S-prime submodule of M if there exists an $s \in S$, and whenever $a m \in P$, then $s a \in\left(P:_{R} M\right)$ or $s m \in P$ for each $a \in R, m \in M$ [14]. Particularly, an ideal I of R is said to be an S-prime ideal if I is an S-prime submodule of the R-module R.

2020 MSC: 13C13, 13C05, 13A15, 16D60, 13H15.
Key words and phrases: second submodule, S-second submodule, S-cotorsionfree module, simple module.

Let S be a m.c.s. of R and M be an R-module. The main purpose of this paper is to introduce the notion of S-second submodules of an R-module M as a generalization of second (dual notion of S-prime) submodules of M and provide some useful information concerning this class of modules. Moreover, we obtain some results analogous to those for S-prime submodules considered in [14].

2. Main results

Let M be an R-module. A proper submodule N of M is said to be completely irreducible if $N=\bigcap_{i \in I} N_{i}$, where $\left\{N_{i}\right\}_{i \in I}$ is a family of submodules of M, implies that $N=N_{i}$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [11].

Remark 2.1. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$ [4].

Theorem 2.2. Let S be a m.c.s. of R. For a submodule N of an R-module M with $\operatorname{Ann}_{R}(N) \cap S=\varnothing$ the following statements are equivalent:
(a) There exists an $s \in S$ such that $s r N=s N$ or $s r N=0$ for each $r \in R$;
(b) There exists an $s \in S$ and whenever $r N \subseteq K$, where $r \in R$ and K is a submodule of M, implies either that $r s N=0$ or $s N \subseteq K$;
(c) There exists an $s \in S$ and whenever $r N \subseteq L$, where $r \in R$ and L is a completely irreducible submodule of M, implies either that $r s N=0$ or $s N \subseteq L$.
(d) There exists an $s \in S$, and $J N \subseteq K$ implies $s J \subseteq \operatorname{Ann}_{R}(N)$ or $s N \subseteq K$ for each ideal J of R and submodule K of M.

Proof. $(a) \Rightarrow(b)$ and $(b) \Rightarrow(c)$ are clear.
$(c) \Rightarrow(a)$ By part (c), there exists an $s \in S$. Assume that $s r N \neq 0$ for some $r \in R$. Then $s^{2} r N \neq 0$. If $r s N \subseteq L$ for some completely irreducible submodule L of M, then by assumption, $s N \subseteq L$. Hence, by Remark 2.1, $s N \subseteq r s N$, as required.
$(b) \Rightarrow(d)$ Suppose that $J N \subseteq K$ for some ideal J of R and submodule K of M. By part (b), there is an $s \in S$ so that $r N \subseteq K$ implies $s r \in$ $\operatorname{Ann}_{R}(N)$ or $s N \subseteq K$ for each $r \in R$. Assume that $s N \nsubseteq K$. Then by Remark 2.1, there exists a completely irreducible submodule L of M such that $K \subseteq L$ but $s N \nsubseteq L$. Then note that for each $a \in J$, we have $a N \subseteq L$. By part (b), we can conclude that $s a \in \operatorname{Ann}_{R}(N)$ and so $s J \subseteq \operatorname{Ann}_{R}(N)$.
$(d) \Rightarrow(b)$ Take $a \in R$ and K a submodule of M with $a N \subseteq K$. Now, put $J=R a$. Then we have $J N \subseteq K$. By assumption, there is an $s \in S$ such that $s J=R a s \subseteq \operatorname{Ann}_{R}(N)$ or $s N \subseteq K$ and so either $s a \in \operatorname{Ann}_{R}(N)$ or $s N \subseteq K$ as needed.

Definition 2.3. Let S be a m.c.s. of R and N be a submodule of an R-module M such that $\operatorname{Ann}_{R}(N) \cap S=\varnothing$. We say that N is an S-second submodule of M if satisfies the equivalent conditions of Theorem 2.2. By an S-second module, we mean a module which is an S-second submodule of itself.

The following lemma is known, but we write it here for the sake of reference.

Lemma 2.4. Let M be an R-module, S a m.c.s. of R, and N be a finitely generated submodule of M. If $S^{-1} N \subseteq S^{-1} K$ for a submodule K of M, then there exists an $s \in S$ such that $s N \subseteq K$.

Proof. This is straightforward.
Let S be a m.c.s. of R. Recall that the saturation S^{*} of S is defined as $S^{*}=\left\{x \in R: x / 1\right.$ is a unit of $\left.S^{-1} R\right\}$. It is obvious that S^{*} is a m.c.s. of R containing S [12].

Proposition 2.5. Let S be a m.c.s. of R and M be an R-module. Then we have the following.
(a) If N is a second submodule of M such that $S \cap \operatorname{Ann}_{R}(N)=\varnothing$, then N is an S-second submodule of M. In fact if $S \subseteq u(R)$ and N is an S-second submodule of M, then N is a second submodule of M.
(b) If $S_{1} \subseteq S_{2}$ are m.c.s.s of R and N is an S_{1}-second submodule of M, then N is an S_{2}-second submodule of M in case $\operatorname{Ann}_{R}(N) \cap S_{2}=\varnothing$.
(c) N is an S-second submodule of M if and only if N is an S^{*}-second submodule of M
(d) If N is a finitely generated S-second submodule of M, then $S^{-1} N$ is a second submodule of $S^{-1} M$

Proof. (a) and (b) These are clear.
(c) Assume that N is an S-second submodule of M. We claim that $\operatorname{Ann}_{R}(N) \cap S^{*}=\varnothing$. To see this assume that there exists an $x \in \operatorname{Ann}_{R}(N) \cap$ S^{*} As $x \in S^{*}, x / 1$ is a unit of $S^{-1} R$ and so $(x / 1)(a / s)=1$ for some $a \in R$ and $s \in S$. This yields that $u s=u x a$ for some $u \in S$. Now we have that $u s=u x a \in \operatorname{Ann}_{R}(N) \cap S$, a contradiction. Thus, $\operatorname{Ann}_{R}(N) \cap S^{*}=\varnothing$. Now
as $S \subseteq S^{*}$, by part (b), N is an S^{*}-second submodule of M. Conversely, assume that N is an S^{*}-second submodule of M. Let $r N \subseteq K$. As N is an S^{*}-second submodule of M, there is an $x \in S^{*}$ such that $x r \in \operatorname{Ann}_{R}(N)$ or $x N \subseteq K$. As $x / 1$ is a unit of $S^{-1} R$, there exist $u, s \in S$ and $a \in R$ such that $u s=u x a$. Then note that $(u s) r=u a x r \in \operatorname{Ann}_{R}(N)$ or $u s(x N) \subseteq K$. Therefore, N is an S-second submodule of M.
(d) If $S^{-1} N=0$, then as N is finitely generated, there is an $s \in S$ such that $s \in \operatorname{Ann}_{R}(N)$ by Lemma 2.4. This implies that $\operatorname{Ann}_{R}(N) \cap S \neq \varnothing$, a contradiction. Thus $S^{-1} N \neq 0$. Now let $r / t \in S^{-1} R$. As N is an S-second submodule of M, there is an $s \in S$ such that $r s N=s N$ or $r s N=0$. If $r s N=s N$, then $(r / s) S^{-1} N=S^{-1} N$. If $r s N=0$, then $(r / s) S^{-1} N=0$, as needed.

Corollary 2.6. Let M be an R-module and set $S=\{1\}$. Then every second submodule of M is an S-second submodule of M.

Proof. Let N be a second submodule of M. Then as $N \neq 0$, we have $1 \notin \operatorname{Ann}_{R}(N)$. Hence $S \cap \operatorname{Ann}_{R}(N)=\varnothing$ and the result follows from Proposition 2.5 (a).

The following examples show that the converses of Proposition 2.5 (a) and (d) are not true in general.

Example 2.7. Take the \mathbb{Z}-module $M=\mathbb{Z}_{p \infty} \oplus \mathbb{Z}_{2}$ for a prime number p. Then $2\left(\mathbb{Z}_{p \infty} \oplus \mathbb{Z}_{2}\right)=\mathbb{Z}_{p^{\infty}} \oplus 0$ implies that M is not a second \mathbb{Z}-module. Now, take the m.c.s. $S=\mathbb{Z} \backslash\{0\}$ and put $s=2$. Then $2 r M=\mathbb{Z}_{p^{\infty}} \oplus 0=2 M$ for all $r \in \mathbb{Z}$ and so M is an S-second \mathbb{Z}-module.

Example 2.8. Consider the \mathbb{Z}-module $M=\mathbb{Q} \oplus \mathbb{Q}$, where \mathbb{Q} is the field of rational numbers. Take the submodule $N=\mathbb{Z} \oplus 0$ and the m.c.s. $S=\mathbb{Z} \backslash\{0\}$. Then one can see that N is not an S-second submodule of M. Since $S^{-1} \mathbb{Z}=\mathbb{Q}$ is a field, $S^{-1}(\mathbb{Q} \oplus \mathbb{Q})$ is a vector space so that a non-zero submodule $S^{-1} N$ is a second submodule of $S^{-1}(\mathbb{Q} \oplus \mathbb{Q})$.

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$, equivalently, for each submodule N of M, we have $N=\left(0:_{M} A n n_{R}(N)\right)$ [2].

Proposition 2.9. Let M be an R-module and S be a m.c.s. of R. Then the following statements hold.
(a) If N is an S-second submodule of M, then $\operatorname{Ann}_{R}(N)$ is an S-prime ideal of R.
(b) If M is a comultiplication R-module and $\operatorname{Ann}_{R}(N)$ is an S-prime ideal of R, then N is an S-second submodule of M.

Proof. (a) Let $a b \in \operatorname{Ann}_{R}(N)$ for some $a, b \in R$. As N is an S-second submodule of M, there exists an $s \in S$ such that $a s N=s N$ or $a s N=0$ and $b s N=s N$ or $b s N=0$. If $a s N=0$ or $b s N=0$ we are done. If $a s N=s N$, then $0=b a s N=b s N$, a contradiction. If $b s N=s N$, then $0=a b s N=a s N$, a contradiction. Thus in any case, $a s N=0$ or $b s N=0$, as needed.
(b) Assume that M is a comultiplication R-module and $\operatorname{Ann}_{R}(N)$ is an S-prime ideal of R. Let $r \in R$ and K be a submodule of M with
 [14, Corollary 2.6], there is an $s \in S$ such that $s \operatorname{Ann}_{R}(K) \subseteq \operatorname{Ann}_{R}(N)$ or $s r \in \operatorname{Ann}_{R}(N)$. If $s r \in \operatorname{Ann}_{R}(N)$, we are done. If $s A n n_{R}(K) \subseteq \operatorname{Ann}_{R}(N)$, then $\operatorname{Ann}_{R}(K) \subseteq \operatorname{Ann}_{R}(s N)$. Now as M is a comultiplication R-module, we have $s N \subseteq K$, as desired.

An R-module M satisfies the double annihilator conditions (DAC for short) if for each ideal I of R we have $I=\operatorname{Ann}_{R}\left(0:_{M} I\right)$ [10]. An R-module M is said to be a strong comultiplication module if M is a comultiplication R-module and satisfies the DAC conditions [6].

Theorem 2.10. Let M be a strong comultiplication R-module and N be a submodule of M such that $\operatorname{Ann}_{R}(N) \cap S=\varnothing$, where S is a m.c.s. of R. Then the following are equivalent:
(a) N is an S-second submodule of M;
(b) $\operatorname{Ann}_{R}(N)$ is an S-prime ideal of R;
(c) $N=\left(0:_{M} I\right)$ for some S-prime ideal I of R with $\operatorname{Ann}_{R}(N) \subseteq I$.

Proof. $(a) \Rightarrow(b)$ This follows from Proposition 2.9.
$(b) \Rightarrow(c)$ As M is a comultiplication R-module, $N=\left(0:_{M} A n n_{R}(N)\right)$. Now the result is clear.
$(c) \Rightarrow(a)$ As M satisfies the DAC conditions, $\operatorname{Ann}_{R}\left(\left(0:_{M} I\right)\right)=I$. Now the result follows from Proposition 2.9.

Let R_{i} be a commutative ring with identity, M_{i} be an R_{i}-module for each $i=1,2, \ldots, n$, and $n \in \mathbb{N}$. Assume that $M=M_{1} \times M_{2} \times$ $\cdots \times M_{n}$ and $R=R_{1} \times R_{2} \times \cdots \times R_{n}$. Then M is clearly an R-module with componentwise addition and scalar multiplication. Also, if S_{i} is a multiplicatively closed subset of R_{i} for each $i=1,2, \ldots, n$, then $S=$ $S_{1} \times S_{2} \times \cdots \times S_{n}$ is a multiplicatively closed subset of R. Furthermore,
each submodule N of M is of the form $N=N_{1} \times N_{2} \times \cdots \times N_{n}$, where N_{i} is a submodule of M_{i}.

Theorem 2.11. Let $M=M_{1} \times M_{2}$ be an $R=R_{1} \times R_{2}$-module and $S=S_{1} \times S_{2}$ be a m.c.s. of R, where M_{i} is an R_{i}-module and S_{i} is a m.c.s. of R_{i} for each $i=1,2$. Let $N=N_{1} \times N_{2}$ be a submodule of M. Then the following are equivalent:
(a) N is an S-second submodule of M;
(b) N_{1} is an S_{1}-second submodule of M_{1} and $\operatorname{Ann}_{R_{2}}\left(N_{2}\right) \cap S_{2} \neq \varnothing$ or N_{2} is an S_{2}-second submodule of M_{2} and $\operatorname{Ann}_{R_{1}}\left(N_{1}\right) \cap S_{1} \neq \varnothing$.

Proof. (a) $\Rightarrow(b)$ Let $N=N_{1} \times N_{2}$ be an S-second submodule of M. Then $\operatorname{Ann}_{R}(N)=\operatorname{Ann}_{R_{1}}\left(N_{1}\right) \times \operatorname{Ann}_{R_{2}}\left(N_{2}\right)$ is an S-prime ideal of R by Proposition 2.9. By [14, Lemma 2.13], either $\operatorname{Ann}_{R}\left(N_{1}\right) \cap S_{1} \neq \varnothing$ or $\operatorname{Ann}_{R}\left(N_{2}\right) \cap S_{2} \neq \varnothing$. We may assume that $\operatorname{Ann}_{R}\left(N_{1}\right) \cap S_{1} \neq \varnothing$. We show that N_{2} is an S_{2}-second submodule of M_{2}. To see this, let $r_{2} N_{2} \subseteq K_{2}$ for some $r_{2} \in R_{2}$ and a submodule K_{2} of M_{2}. Then $\left(1, r_{2}\right)\left(N_{1} \times N_{2}\right) \subseteq$ $M_{1} \times K_{2}$. As N is an S-second submodule of M, there exists an $\left(s_{1}, s_{2}\right) \in S$ such that $\left(s_{1}, s_{2}\right)\left(N_{1} \times N_{2}\right) \subseteq M_{1} \times K_{2}$ or $\left(s_{1}, s_{2}\right)\left(1, r_{2}\right)\left(N_{1} \times N_{2}\right)=0$. It follows that $s_{2} N_{2} \subseteq K_{2}$ or $s_{2} r_{2} N_{2}=0$ and so N_{2} is an S_{2}-second submodule of M_{2}. Similarly, if $\operatorname{Ann}_{R_{2}}\left(N_{2}\right) \cap S_{2} \neq \varnothing$, one can see that N_{1} is an S_{1}-second submodule of M_{1}.
$(b) \Rightarrow(a)$ Assume that N_{1} is an S_{1}-second submodule of M_{1} and $\operatorname{Ann}_{R_{2}}\left(N_{2}\right) \cap S_{2} \neq \varnothing$. Then there exists an $s_{2} \in \operatorname{Ann}_{R_{2}}\left(N_{2}\right) \cap S_{2}$. Let $\left(r_{1}, r_{2}\right)\left(N_{1} \times N_{2}\right) \subseteq K_{1} \times K_{2}$ for some $r_{i} \in R_{i}$ and submodule K_{i} of M_{i}, where $i=1,2$. Then $r_{1} N_{1} \subseteq K_{1}$. As N_{1} is an S_{1}-second submodule of M_{1}, there exists an $s_{1} \in S_{1}$ such that $s_{1} N_{1} \subseteq K_{1}$ or $s_{1} r_{1} N_{1}=0$. Now we set $s=\left(s_{1}, s_{2}\right)$. Then $s\left(N_{1} \times N_{2}\right) \subseteq K_{1} \times K_{2}$ or $s\left(r_{1}, r_{2}\right)\left(N_{1} \times N_{2}\right)=0$. Therefore, N is an S-second submodule of M. Similarly one can show that if N_{2} is an S_{2}-second submodule of M_{2} and $\operatorname{Ann}_{R_{1}}\left(N_{1}\right) \cap S_{1} \neq \varnothing$, then N is an S-second submodule of M.

Theorem 2.12. Let $M=M_{1} \times M_{2} \times \cdots \times M_{n}$ be an $R=R_{1} \times R_{2} \times \cdots \times R_{n^{-}}$ module and $S=S_{1} \times S_{2} \times \cdots \times S_{n}$ be a m.c.s. of R, where M_{i} is an R_{i}-module and S_{i} is a m.c.s. of R_{i} for each $i=1,2, \ldots, n$. Let $N=$ $N_{1} \times N_{2} \times \cdots \times N_{n}$ be a submodule of M. Then the following are equivalent:
(a) N is an S-second submodule of M;
(b) N_{i} is an S_{i}-second submodule of M_{i} for some $i \in\{1,2, \ldots, n\}$ and $\operatorname{Ann}_{R_{j}}\left(N_{j}\right) \cap S_{j} \neq \varnothing$ for all $j \in\{1,2, \ldots, n\}-\{i\}$.

Proof. We apply induction on n. For $n=1$, the result is true. If $n=2$, then the result follows from Theorem 2.11. Now assume that parts (a)
and (b) are equal when $k<n$. We shall prove $(b) \Leftrightarrow(a)$ when $k=n$. Let $N=N_{1} \times N_{2} \times \cdots \times N_{n}$. Put $N^{\prime}=N_{1} \times N_{2} \times \cdots \times N_{n-1}$ and $\dot{S}=S_{1} \times S_{2} \times \cdots \times S_{n-1}$. Then by Theorem 2.11 , the necessary and sufficient condition for N is an S-second submodule of M is that N is an \dot{S}-second submodule of \dot{M} and $\operatorname{Ann}_{R_{n}}\left(N_{n}\right) \cap S_{n} \neq \varnothing$ or N_{n} is an S_{n}-second submodule of M_{n} and $\operatorname{Ann}_{\dot{R}}(\hat{N}) \cap \dot{S} \neq \varnothing$, where $\dot{R}=R_{1} \times R_{2} \times \cdots \times R_{n-1}$. Now the result follows from the induction hypothesis.

Lemma 2.13. Let S be a m.c.s. of R and N be an S-second submodule of an R-module M. Then the following statements hold for some $s \in S$.
(a) $s N \subseteq s \in$ for all $s \in S$.
(b) $\left(\operatorname{Ann}_{R}(N):_{R} \dot{s}\right) \subseteq\left(\operatorname{Ann}_{R}(N):_{R} s\right)$ for all $\dot{s} \in S$.

Proof. (a) Let N be an S-second submodule of M. Then there is an $s \in S$ such that $r N \subseteq K$ for each $r \in R$ and a submodule K of M implies that $s N \subseteq K$ or $s r N=0$. Let L be a completely irreducible submodule of M such that $s ́ N \subseteq L$. Then $s N \subseteq L$ or $s s N=0$. $\operatorname{As~}^{s} \operatorname{Ann}_{R}(N) \cap S=\varnothing$, we get that $s N \subseteq L$. Thus $s N \subseteq s \in$ by Remark 2.1.
(b) This follows from Proposition 2.9 (a) and [14, Lemma 2.16 (ii)].

Proposition 2.14. Let S be a m.c.s. of R and N be a finitely generated submodule of M such that $\operatorname{Ann}_{R}(N) \cap S=\varnothing$. Then the following are equivalent:
(a) N is an S-second submodule of M;
(b) $S^{-1} N$ is a second submodule of $S^{-1} M$ and there is an $s \in S$ satisfying $s N \subseteq \dot{s} N$ for all $\dot{s} \in S$.

Proof. $(a) \Rightarrow(b)$ This follows from Proposition 2.5 (d) and Lemma 2.13. $(b) \Rightarrow(a)$ Let $a N \subseteq K$ for some $a \in R$ and a submodule K of M. Then $(a / 1)\left(S^{-1} N\right) \subseteq S^{-1} K$. Thus by part (b), $S^{-1} N \subseteq S^{-1} K$ or $(a / 1)\left(S^{-1} N\right)=0$. Hence by Lemma $2.4, s_{1} N \subseteq K$ or $s_{2} a N=0$ for some $s_{1}, s_{2} \in S$. By part (b), there is an $s \in S$ such that $s N \subseteq s_{1} N$ and $s N \subseteq s_{2} N \subseteq\left(0:_{M} a\right)$. Therefore, $s N \subseteq K$ or $a s N=0$, as desired.

Theorem 2.15. Let S be a m.c.s. of R and N be a submodule of an R module M such that $\operatorname{Ann}_{R}(N) \cap S=\varnothing$. Then N is an S-second submodule of M if and only if $s N$ is a second submodule of M for some $s \in S$.

Proof. Let $s N$ be a second submodule of M for some $s \in S$. Let $a N \subseteq K$ for some $a \in R$ and a submodule K of M. As $a s N \subseteq K$ and $s N$ is a second submodule of M, we get that $s N \subseteq K$ or $a s N=0$, as needed. Conversely, assume that N is an S-second submodule of M. Then there is an $s \in S$
such that if $a N \subseteq K$ for some $a \in R$ and a submodule K of M, then $s N \subseteq K$ or $s a N=0$. Now we show that $s N$ is a second submodule of M. Let $a \in R$. As asN \subseteq as N, by assumption, $s N \subseteq a s N$ or $a s^{2} N=0$. If $s N \subseteq a s N$, then there is nothing to show. Assume that $s N \nsubseteq a s N$. Then $a s^{2} N=0$ and so $a \in\left(\operatorname{Ann}_{R}(N):_{R} s^{2}\right) \subseteq\left(\operatorname{Ann}_{R}(N):_{R} s\right)$ by Lemma 2.13. Thus, we can conclude that as $N=0$, as desired.

The set of all maximal ideals of R is denoted by $\operatorname{Max}(R)$.
Theorem 2.16. Let S be a m.c.s. of R and N be a submodule of an R-module M such that $\operatorname{Ann}_{R}(N) \subseteq \operatorname{Jac}(R)$, where $\operatorname{Jac}(R)$ is the Jacobson radical of R. Then the following statements are equivalent:
(a) N is a second submodule of M;
(b) $\operatorname{Ann}_{R}(N)$ is a prime ideal of R and N is an $(R \backslash \mathfrak{M})$-second submodule of M for each $\mathfrak{M} \in \operatorname{Max}(R)$.

Proof. $(a) \Rightarrow(b)$ Let N be a second submodule of M. Clearly, $\operatorname{Ann}_{R}(N)$ is a prime ideal of R. Since $\operatorname{Ann}_{R}(N) \subseteq J a c(R), \operatorname{Ann}_{R}(N) \subseteq \mathfrak{M}$ for each $\mathfrak{M} \in \operatorname{Max}(R)$ and so $\operatorname{Ann}_{R}(N) \cap(R \backslash \mathfrak{M})=\varnothing$. Now the result follows from Proposition 2.5 (a).
$(b) \Rightarrow(a)$ Let $\operatorname{Ann}_{R}(N)$ be a prime ideal of R and N be an $(R \backslash \mathfrak{M})$ second submodule of M for each $\mathfrak{M} \in \operatorname{Max}(R)$. Let $a \in R$ and $a \notin$ $\operatorname{Ann}_{R}(N)$. We show that $a N=N$. Let $\mathfrak{M} \in \operatorname{Max}(R)$. Then as $a N \subseteq a N$, there exists an $s_{\mathfrak{M}} \in R \backslash \mathfrak{M}$ such that $s_{\mathfrak{M}} N \subseteq a N$ or $s_{\mathfrak{M}} a N=0$. As $\operatorname{Ann}_{R}(N)$ is a prime ideal of R and $s_{\mathfrak{M}} \notin \operatorname{Ann}_{R}(N)$, we have $a s_{\mathfrak{M}} \notin$ $\operatorname{Ann}_{R}(N)$ and so $s_{\mathfrak{M}} N \subseteq a N$. Now consider the set

$$
\Omega=\left\{s_{\mathfrak{M}}: \exists \mathfrak{M} \in \operatorname{Max}(R), s_{\mathfrak{M}} \notin \mathfrak{M} \text { and } s_{\mathfrak{M}} N \subseteq a N\right\}
$$

Then we claim that $\Omega=R$. To see this, take any maximal ideal \mathfrak{M} containing Ω. Then the definition of Ω requires that there exists an $s_{\mathfrak{M}} \in \Omega$ and $s_{\mathfrak{M}} \notin \mathfrak{M}$. As $\Omega \subseteq \mathfrak{M}$, we have $s_{\mathfrak{M}} \in \Omega \subseteq \mathfrak{M}$, a contradiction. Thus, $\Omega=R$ and this yields

$$
1=r_{1} s \mathfrak{M}_{1}+r_{2} s \mathfrak{M}_{2}+\cdots+r_{n} s \mathfrak{M}_{\mathfrak{n}}
$$

for some $r_{i} \in R$ and $s_{\mathfrak{M}_{\mathfrak{i}}} \in R \backslash \mathfrak{M}_{\mathfrak{i}}$ with $s_{\mathfrak{M}_{\mathfrak{i}}} N \subseteq a N$, where $\mathfrak{M}_{\mathfrak{i}} \in \operatorname{Max}(R)$ for each $i=1,2, \ldots, n$. This yields that

$$
N=\left(r_{1} s_{\mathfrak{M}_{1}}+r_{2} s_{\mathfrak{M}_{2}}+\cdots+r_{n} s_{\mathfrak{M}_{\mathfrak{n}}}\right) N \subseteq a N
$$

Therefore, $N \subseteq a N$ as needed.

Now we determine all second submodules of a module over a quasilocal ring in terms of S-second submodules.

Corollary 2.17. Let S be a m.c.s. of a quasilocal ring (R, \mathfrak{M}) and N be a submodule of an R-module M. Then the following statements are equivalent:
(a) N is a second submodule of M;
(b) $\operatorname{Ann}_{R}(N)$ is a prime ideal of R and N is an $(R \backslash \mathfrak{M})$-second submodule of M.

Proof. This follows from Theorem 2.16.
Proposition 2.18. Let S be a m.c.s. of R and $f: M \rightarrow M^{\prime}$ be a monomorphism of R-modules. Then we have the following.
(a) If N is an S-second submodule of M, then $f(N)$ is an S-second submodule of M^{\prime}.
(b) If \dot{N} is an S-second submodule of \dot{M} and $\dot{N} \subseteq f(M)$, then $f^{-1}(N)$ is an S-second submodule of M.

Proof. (a) As $\operatorname{Ann}_{R}(N) \cap S=\varnothing$ and f is a monomorphism, we have $\operatorname{Ann}_{R}(f(N)) \cap S=\varnothing$. Let $r \in R$. Since N is an S-second submodule of M, there exists an $s \in S$ such that $\operatorname{sr} N=s N$ or $s r N=0$. Thus $\operatorname{srf}(N)=s f(N)$ or $\operatorname{sr} f(N)=0$, as needed.
(b) $\operatorname{Ann}_{R}(N) \cap S=\varnothing$ implies that $\operatorname{Ann}_{R}\left(f^{-1}\left(N^{\prime}\right)\right) \cap S=\varnothing$. Now let $r \in R$. As N is an S-second submodule of M, there exists an $s \in S$ such that $\operatorname{srN}=s N^{\prime}$ or $s r N^{\prime}=0$. Therefore $\operatorname{sr} f^{-1}\left(N^{\prime}\right)=s f^{-1}\left(N^{\prime}\right)$ or $\operatorname{sr} f^{-1}\left(N^{\prime}\right)=0$, as requested.

Proposition 2.19. Let S be a m.c.s. of R, M a comultiplication R-module, and let N be an S-second submodule of M. Suppose that $N \subseteq K+H$ for some submodules K, H of M. Then $s N \subseteq K$ or $s N \subseteq H$ for some $s \in S$.

Proof. As $N \subseteq K+H$, we have $\operatorname{Ann}_{R}(K) \operatorname{Ann}_{R}(H) \subseteq \operatorname{Ann}_{R}(N)$. This implies that there exists an $s \in S$ such that $s \operatorname{Ann}_{R}(K) \subseteq \operatorname{Ann}_{R}(N)$ or $s A n n_{R}(H) \subseteq \operatorname{Ann}_{R}(N)$ since by $\operatorname{Proposition~2.9,~} \operatorname{Ann}_{R}(N)$ is an S-prime ideal of R. Therefore, $\operatorname{Ann}_{R}(K) \subseteq \operatorname{Ann}_{R}(s N)$ or $\operatorname{Ann}_{R}(H) \subseteq \operatorname{Ann}_{R}(s N)$. Now as M is a comultiplication R-module, we have $s N \subseteq K$ or $s N \subseteq H$ as needed.

Let M be an R-module. The idealization $R(+) M=\{(a, m): a \in$ $R, m \in M\}$ of M is a commutative ring whose addition is componentwise and whose multiplication is defined as $(a, m)(b, \dot{m})=(a b, a \dot{m}+b m)$ for
each $a, b \in R, m, \dot{m} \in M$ [13]. If S is a m.c.s. of R and N is a submodule of M, then $S(+) N=\{(s, n): s \in S, n \in N\}$ is a m.c.s. of $R(+) M$ [1].

Proposition 2.20. Let M be an R-module and let I be an ideal of R such that $I \subseteq \operatorname{Ann}_{R}(M)$. Then the following are equivalent:
(a) I is a second ideal of R;
(b) $I(+) 0$ is a second ideal of $R(+) M$.

Proof. This is straightforward.
Theorem 2.21. Let S be a m.c.s. of R, M be an R-module, and I be an ideal of R such that $I \subseteq \operatorname{Ann}_{R}(M)$ and $I \cap S=\varnothing$. Then the following are equivalent:
(a) I is an S-second ideal of R;
(b) $I(+) 0$ is an $S(+) 0$-second ideal of $R(+) M$;
(c) $I(+) 0$ is an $S(+) M$-second ideal of $R(+) M$.

Proof. $(a) \Rightarrow(b)$ Let $(r, m) \in R(+) M$. As I is an S-second ideal of R, there exists an $s \in S$ such that $r s I=s I$ or $r s I=0$. If $r s I=0$, then $(r, m)(s, 0)(I(+) 0)=0$. If $r s I=s I$, then we claim that $(r, m)(s, 0)(I(+) 0)=(s, 0)(I(+) 0)$. To see this let $(s a, 0)=(s, 0)(a, 0) \in$ $(s, 0)(I(+) 0)$. As $r s I=s I$, we have $s a=r s b$ for some $b \in I$. Thus as $b \in I \subseteq \operatorname{Ann}_{R}(M)$,

$$
(s a, 0)=(s r b, 0)=(s r b, s m b)=(s r, s m)(b, 0)=(s, 0)(r, m)(b, 0)
$$

Hence $(s, 0)(a, 0) \in(r, m)(s, 0)(I(+) 0)$, and so

$$
(s, 0)(I(+) 0) \subseteq(r, m)(s, 0)(I(+) 0)
$$

Since the inverse inclusion is clear we reach the claim.
$(b) \Rightarrow(c)$ Since $S(+) 0 \subseteq S(+) M$, the result follows from Proposition $2.5(\mathrm{~b})$.
$(c) \Rightarrow(a)$ Let $r \in R$. As $I(+) 0$ is an $S(+) M$-second ideal of $R(+) M$, there exists an $(s, m) \in S(+) M$ such that $(r, 0)(s, m)(I(+) 0)=$ $(s, m)(I(+) 0)$ or $(r, 0)(s, m)(I(+) 0)=0$. If $(r, 0)(s, m)(I(+) 0)=0$, then

$$
0=(r, 0)(s, m)(a, 0)=(r s, r m)(a, 0)=(r s a, r m a)=(r s a, 0)
$$

far each $a \in I$. Thus $r s I=0$. If $(r, 0)(s, m)(I(+) 0)=(s, m)(I(+) 0)$, then we claim that $r s I=s I$. To see this let $s a \in s I$. Then for some $b \in I$, we have

$$
\begin{aligned}
(s a, 0) & =(s a, a m)=(s, m)(a, 0)=(s, m)(r, 0)(b, 0) \\
& =(s r b, r m b)=(s r b, 0) .
\end{aligned}
$$

Hence, $s a \in r s I$ and so $s I \subseteq s r I$, as needed.

Let P be a prime ideal of R and N be a submodule of an R-module M. The P-interior of N relative to M is defined (see [3, 2.7]) as the set

$$
I_{P}^{M}(N)=\bigcap\{L \mid L \text { is a completely irreducible submodule of } M
$$

$$
\text { and } r N \subseteq L \text { for some } r \in R-P\}
$$

Let R be an integral domain. A submodule N of an R-module M is said to be a cotorsion-free submodule of M (the dual of torsion-free) if $I_{0}^{M}(N)=N$ and is a cotorsion submodule of M (the dual of torsion) if $I_{0}^{M}(N)=0$. Also, M said to be cotorsion (resp. cotorsion-free) if M is a cotorsion (resp. cotorsion-free) submodule of M [5].

One can see that if M is a cotorsion-free R-module, then R is an integral domain and M is a faithful R-module. In [5, Proposition 2.9 (e)], it is shown that if M is a comultiplication R-module the reverse is true. The following example shows that sometimes the reverse of this statement may not be true.
Example 2.22. Consider the \mathbb{Z}-module $M=\prod_{i=1}^{\infty} \mathbb{Z}_{p^{i}}$, where p is a prime number. Then it is easy to see that M is a faithful \mathbb{Z}-module. But the \mathbb{Z}-module M is not second since $(\overline{1}, \overline{0}, \overline{0}, \ldots) \notin p M$ and so $M \neq p M$. Therefore, by [5, Theorem 2.10], $I_{0}^{M}(M) \neq M$ and so the \mathbb{Z}-module M is not a cotorsion-free module.

Definition 2.23. Let M be an R-module and S be a m.c.s. of R with $\operatorname{Ann}_{R}(M) \cap S=\varnothing$. We say that M is an S-cotorsion-free module in the case that we can find $s \in S$ such that if $r M \subseteq L$, where $r \in R$ and L is a completely irreducible submodule of M, then $s M \subseteq L$ or $r s=0$.

Proposition 2.24. Let M be an R-module and S be a m.c.s. of R. Then the following statements are equivalent.
(a) M is an S-second R-module.
(c) $P=\operatorname{Ann}_{R}(M)$ is an S-prime ideal of R and the R / P-module M is an S-cotorsion-free module.

Proof. $(a) \Rightarrow(b)$. We can assume that $P=0$. By Proposition 2.9 (a), $\operatorname{Ann}_{R}(M)$ is an S-prime ideal of R. Now let L be a completely irreducible submodule of M and $r \in R$ such that $r M \subseteq L$. Then there exists an $s \in S$ such that $s M \subseteq L$ or $s r M=0$ because M is S-second. Therefore, $s M \subseteq L$ or $r s \in \operatorname{Ann}_{R}(M)=0$, as needed.
$(b) \Rightarrow(a) . \operatorname{As} \operatorname{Ann}_{R}(M)$ is an S-prime ideal of $R, \operatorname{Ann}_{R}(M) \cap S=\varnothing$. Suppose that there exist $r \in R$ and completely irreducible submodule L of M such that $r M \subseteq L$. By assumption, there is an $s \in S$ such that $s M \subseteq L$ or $r s=0_{R / P}$. Thus $s M \subseteq L$ or $r s \in P=\operatorname{Ann}_{R}(M)$, as desired.

Theorem 2.25. Let M be a module over an integral domain R. Then the following are equivalent:
(a) M is a cotorsion-free R-module;
(b) M is an $(R \backslash P)$-cotorsion-free for each prime ideal P of R;
(c) M is an $(R \backslash \mathfrak{M})$-cotorsion-free for each maximal ideal \mathfrak{M} of R.

Proof. $(a) \Rightarrow(b)$ This is clear.
$(b) \Rightarrow(c)$ This is obvious.
$(c) \Rightarrow(a)$ Let M be $(R \backslash \mathfrak{M})$-cotorsion-free for each maximal ideal \mathfrak{M} of R. Let $a M \subseteq L$ for some $a \in R$ and a completely irreducible submodule L of M. Assume that $a \neq 0$. Take a maximal ideal \mathfrak{M} of R. As M is $(R \backslash \mathfrak{M})$-cotorsion-free, there exists an $s_{\mathfrak{M}} \in R \backslash \mathfrak{M}$ such that $s_{\mathfrak{M}} M \subseteq L$ or $a s_{\mathfrak{M}}=0$. As R is an integral domain, $a s_{\mathfrak{M}} \neq 0$ and so $s_{\mathfrak{M}} M \subseteq L$. Now set

$$
\Omega=\left\{s_{\mathfrak{M}}: \exists \mathfrak{M} \in \operatorname{Max}(R), s_{\mathfrak{M}} \notin \mathfrak{M} \text { and } s_{\mathfrak{M}} M \subseteq L\right\}
$$

A similar argument as in the proof of Theorem 2.16 shows that $\Omega=R$. Thus we have $\left\langle s_{\mathfrak{M}_{1}}\right\rangle+\left\langle s_{\mathfrak{M}_{2}}\right\rangle+\cdots+\left\langle s_{\mathfrak{M}_{\mathfrak{n}}}\right\rangle=R$ for some $s_{\mathfrak{M}_{\mathfrak{i}}} \in \Omega$. This implies that $M=\left(\left\langle s_{\mathfrak{M}_{1}}\right\rangle+\left\langle s_{\mathfrak{M}_{2}}\right\rangle+\cdots+\left\langle s_{\mathfrak{M}_{n}}\right\rangle\right) M \subseteq L$ and hence $M=L$. This means that M is a cotorsion-free R-module.

Let M be an R-module. The dual notion of $Z_{R}(M)$, the set of zero divisors of M, is denoted by $W_{R}(M)$ and defined by

$$
W(M)=\{a \in R: a M \neq M\}
$$

Theorem 2.26. Let S be a m.c.s. of R and M be a finitely generated comultiplication R-module with $\operatorname{Ann}_{R}(M) \cap S=\varnothing$. Then the following statements are equivalent:
(a) Each non-zero submodule of M is S-second;
(b) M is a simple R-module.

Proof. (a) \Rightarrow (b) Assume that every non-zero submodule of M is an S-second submodule of M. First we show that $W_{R}(M)=\operatorname{Ann}_{R}(M)$. Let $a \in W_{R}(M)$. Then $a M \neq M$. Since M is S-second, there exists an $s \in S$ such that $s a M=s M$ or $s a M=0$. If $s a M=s M$, then $s \in\left(s a M:_{R} M\right)$. Now put $N=\left(0:_{M}\left(s a M:_{R} M\right)\right)$ and note that $s \in S \cap \operatorname{Ann}_{R}(N) \neq \varnothing$. Thus, N is not S-second and so by part (a), we have $N=\left(0:_{M}\left(s a M:_{R} M\right)\right)=0$. Now as M is a comultiplication R-module, one can see that $M\left(s a M:_{R} M\right)=M$. By [7, Corollary 2.5], $1-x \in \operatorname{Ann}_{R}(M) \subseteq\left(s a M:_{R} M\right)$ for some $x \in\left(s a M:_{R} M\right)$ since M is a finitely generated R-module. This implies that $\left(s a M:_{R} M\right)=R$
and so $s a M=M$. It follows that $a M=M$, which is a contradiction. Therefore, $s a M=0$. Then $s \in \operatorname{Ann}_{R}(a M)$ and so $S \cap \operatorname{Ann}_{R}(a M) \neq \varnothing$. Hence by assumption, $a M=0$. Thus, we get $W_{R}(M)=\operatorname{Ann}_{R}(M)$. Let $a \notin W_{R}(M)$. Now we will show that $\left(0:_{M} a\right)=0$. If $\left(0:_{M} a^{2}\right)=0$, then $\left(0:_{M} a\right)=0$. Suppose $\left(0:_{M} a^{2}\right) \neq 0$. Since $\left(0:_{M} a^{2}\right)$ is an S-second submodule of M and $a\left(0:_{M} a^{2}\right) \subseteq\left(0:_{M} a\right)$, there is an $s \in S$ such that $s a\left(0:_{M} a^{2}\right)=0$. This implies that $\left(0:_{M} a^{2}\right) \subseteq\left(0:_{M} a s\right)$. Let $m_{1} \in\left(0:_{M} a\right)$. Then $a m_{1}=0$. We have $m_{1}=a m_{2}$ since $a M=M$. Thus $a m_{1}=a^{2} m_{2}=0$. Hence $m_{2} \in\left(0:_{M} a^{2}\right) \subseteq\left(0:_{M} a s\right)$. This implies that $0=\operatorname{sam}_{2}=s m_{1}$ and so $m_{1} \in\left(0:_{M} s\right)$. Therefore, $\left(0:_{M} a\right) \subseteq\left(0:_{M} s\right)$ and so $s \in \operatorname{Ann}_{R}\left(\left(0:_{M} a\right)\right)$. Hence $S \cap \operatorname{Ann}_{R}\left(\left(0:_{M} a\right)\right) \neq \varnothing$. So by assumption, we have $\left(0:_{M} a\right)=0$. Now take a submodule H of M. If $\operatorname{Ann}_{R}(H)=\operatorname{Ann}_{R}(M)$, then $H=M$ since M is a comultiplication R-module. Take an element $a \in \operatorname{Ann}_{R}(H) \backslash \operatorname{Ann}_{R}(M)$. As $W_{R}(M)=$ $\operatorname{Ann}_{R}(M), a \notin W_{R}(M)$ and so $\left(0:_{M} a\right)=0$. Then we get

$$
H=\left(0:_{M} \operatorname{Ann}_{R}(H)\right) \subseteq\left(0:_{M} a\right)=0
$$

Therefore, M is a simple R-module.
$(b) \Rightarrow(a)$ Note that every simple R-module M is a second submodule of M. Since $\operatorname{Ann}_{R}(M) \cap S=\varnothing$, by Proposition 2.5 (a), M is an S-second submodule of M.

An R-module M is said to be a multiplication module if for every submodule N of M there exists an ideal I of R such that $N=I M[8]$.

Corollary 2.27. Let S be a m.c.s. of R. If M is a finitely generated multiplication and comultiplication R-module with $\operatorname{Ann}_{R}(M) \cap S=\varnothing$, then the following statements are equivalent:
(a) Each non-zero submodule of M is S-second;
(b) M is a simple R-module;
(c) Each proper submodule of M is an S-prime submodule of M.

Proof. This follows from Theorem 2.26 and [14, Theorem 2.26].
Example 2.28. Consider the \mathbb{Z}-module \mathbb{Z}_{n}. Take $S=\mathbb{Z}-0$. We know that \mathbb{Z}_{n} is a finitely generated multiplication and comultiplication \mathbb{Z}-module. Then by Corollary 2.27 , if n is not a prime number, the \mathbb{Z}-module \mathbb{Z}_{n} has a non-zero submodule which is not S-second and a proper submodule which is not S-prime.

References

[1] Anderson D.D., Winders M.,Idealization of a module, Journal of Commutative Algebra 1 (1) 2009, 3-56.
[2] Ansari-Toroghy H., Farshadifar F., The dual notion of multiplication modules, Taiwanese J. Math., 11 (4), (2007), 1189-1201.
[3] Ansari-Toroghy H., Farshadifar F., On the dual notion of prime submodules, Algebra Colloq., 19 (Spec 1), (2012), 1109-1116.
[4] Ansari-Toroghy H., Farshadifar F., The dual notion of some generalizations of prime submodules, Comm. Algebra, 39 (2011), 2396-2416.
[5] Ansari-Toroghy H., Farshadifar F., On the dual notion of prime submodules (II), Mediterr. J. Math., 9 (2) (2012), 329-338.
[6] Ansari-Toroghy H., Farshadifar F., Strong comultiplication modules, CMU. J. Nat. Sci. 8 (1) (2009), 105-113.
[7] Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Addison-Wesley, 1969.
[8] A. Barnard, Multiplication modules, J. Algebra, 71 (1981), 174-178.
[9] Dauns J., Prime submodules, J. Reine Angew. Math., 298, (1978), 156-181.
[10] Faith C., Rings whose modules have maximal submodules, Publ. Mat. 39 (1995), 201-214.
[11] Fuchs L., Heinzer W., Olberding B., Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., 249, (2006), 121-145.
[12] Gilmer R., Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, No. 90. Kingston, Canada: Queen's University, 1992.
[13] Nagata M., Local Rings, New York, NY, USA: Interscience, 1962.
[14] Sevim E.S., Arabaci T., Tekir Ü., Koc S., On S-prime submodules, Turkish Journal of Mathematics, 43 (2) (2019), 1036-1046.
[15] Wang F., Kim H., Foundations of Commutative Rings and Their Modules, Singapore: Springer, 2016.
[16] Yassemi S., The dual notion of prime submodules, Arch. Math. (Brno), 37, (2001), 273-278.

Contact information

Faranak Farshadifar
 Assistant Professor, Department of Mathematics, Farhangian University, Tehran, Iran.
 E-Mail(s): f.farshadifar@cfu.ac.ir

Received by the editors: 15.08.2019
and in final form 25.01.2020.

