© Algebra and Discrete Mathematics Volume **32** (2021). Number 1, pp. 138–146 DOI:10.12958/adm1424

Cancellation ideals of a ring extension

S. Tchamna

Communicated by E. I. Zelmanov

ABSTRACT. We study properties of cancellation ideals of ring extensions. Let $R \subseteq S$ be a ring extension. A nonzero S-regular ideal I of R is called a *(quasi)-cancellation ideal* of the ring extension $R \subseteq S$ if whenever IB = IC for two S-regular (finitely generated) R-submodules B and C of S, then B = C. We show that a finitely generated ideal I is a cancellation ideal of the ring extension $R \subseteq S$ if and only if I is S-invertible.

1. Introduction and background

Throughout this article, we assume that all rings are commutative with identity. The notion of cancellation ideal for a ring has been studied in [1] and [2]. An ideal I of a ring R is called *cancellation ideal* if whenever IB = IC for two ideals B and C of R, then B = C [2]. A finitely generated ideal is a cancellation ideal if and only if for each maximal ideal M of R, I_M is a regular principal ideal of R_M [1, Theorem 1]. D.D Anderson and D.F Anderson used the notion of cancellation ideal to characterize Prüfer domain. A ring R is a Prüfer domain if and only if every finitely generated nonzero ideal of R is a cancellation ideal for ring extensions; which is a generalization of the notion of cancellation ideal for rings. Let $R \subseteq S$ be a ring extension, and let A be an R-submodule of S. The R-submodule A is said to be S-regular if AS = S[5, Definition 1, p. 84]. For two R-submodules E, F of S, denote by [E : F] the set of all $x \in S$ such that $xF \subseteq E$.

²⁰²⁰ MSC: 13A15, 13A18, 13B02.

Key words and phrases: ring extension, cancellation ideal, pullback diagram.

An *R*-submodule *A* of *S* is said to be *S*-invertible, if there exists an *R*-submodule *B* of *S* such that AB = R[5, Definition 3, p 90]. In this case, we write $B = A^{-1}$, and $A^{-1} = [R : A] = \{x \in S : xA \subseteq R\}$ [5, Remark 1.10, p. 90]. For the *R*-submodule *A* of *S*, and for a multiplicative subset τ of *R*, we denote by $A_{[\tau]}$ the set of all $x \in S$ such that $tx \in A$ for some $t \in \tau$. If \mathfrak{p} is a prime ideal of *R*, and $\tau = R \setminus \mathfrak{p}$, then $A_{[\mathfrak{p}]}$ denotes the set of all $x \in S$ such that $tx \in A$ for some $t \in \tau$. The set $A_{[\tau]}$ is called the saturation of *A* by τ . Properties of the saturation of a submodule are studied in [5, p. 18] and [6].

An S-regular ideal I of R is called (quasi)-cancellation ideal of the ring extension $R \subseteq S$ if whenever IB = IC for two S-regular (finitely generated) R-submodules B and C of S, then B = C. In section 2, we study properties of (quasi)-cancellation ideals of ring extensions. In Proposition 2.4, we prove that a finitely generated S-regular ideal I of R is a cancellation ideal if and only it is a quasi-cancellation ideal. In Theorem 2.12, we show that for an S-regular finitely generated ideal I of R, the followings are equivalent:

- (1) I is a cancellation ideal of the ring extension $R \subseteq S$.
- (2) I is an S-invertible ideal of R.
- (3) IR[X] is a cancellation ideal of the ring extension $R[X] \subseteq S[X]$.

Remark 1.1. Let $R \subseteq S$ be a ring extension, and let A, B be two Rsubmodules of S. Then A = B if and only if $A_{[\mathfrak{m}]} = B_{[\mathfrak{m}]}$ for each maximal ideal \mathfrak{m} of R. In fact, if A = B, then it clear that $A_{[\mathfrak{m}]} = B_{[\mathfrak{m}]}$ for each maximal ideal \mathfrak{m} of R. Conversely, if $A_{[\mathfrak{m}]} = B_{[\mathfrak{m}]}$ for each $\mathfrak{m} \in \mathcal{M}$, where \mathcal{M} is the set of all maximal ideals of R, then by [5, Remark 5.5, p. 50], we have $A = \bigcap_{\mathfrak{m} \in \mathcal{M}} A_{[\mathfrak{m}]} = \bigcap_{\mathfrak{m} \in \mathcal{M}} B_{\mathfrak{m}} = B$.

Let $R\subseteq S$ and $L\subseteq T$ be two ring extensions, and consider the following commutative diagram

where ker Ψ is an ideal of R, $\Psi : S \longrightarrow T$ is surjective, the restriction $\alpha : R \longrightarrow L$ of Ψ is also surjective and the vertical mappings are inclusions. When ker Ψ is a maximal ideal of S, the previous commutative diagram is called *a pullback diagram a type* \Box . Pullback diagrams of type \Box are studied by S. Gabelli and E. Houston in [4]. **Lemma 1.2.** Consider the above pullback diagram of type \Box . If A, B are two S-regular ideals of R such that $\Psi(A) = \Psi(B)$, then A = B.

Proof. Let A, B be two S-regular ideals of R such that $\Psi(A) = \Psi(B)$. By [7, Remark 1.1], we have ker $\Psi \subseteq A$ and ker $\Psi \subseteq B$. Let $a \in A$. Then there exists $b \in B$ such that $\Psi(a) = \Psi(b)$. Hence $a - b \in \ker \Psi \subseteq B$. Thus $a \in B$. This shows that $A \subseteq B$. With the same argument, $B \subseteq A$. Thus A = B.

2. Cancellation ideals of ring extensions

In this section, we define and study properties of cancellation ideals of ring extensions.

Definition 2.1. Let $R \subseteq S$ be a ring extension. A nonzero S-regular ideal I of R is called a (quasi)-cancellation ideal of the ring extension $R \subseteq S$ if whenever IB = IC for two S-regular (finitely generated) R-submodules B and C of S, then B = C.

The following proposition studies cancellation ideals in pullback diagram of type \Box . In this article, the Jacobson radical of a ring is denoted Jac(R).

Proposition 2.2. Suppose that the following diagram

is a pullback diagram of type \Box such that ker $\Psi \subseteq \text{Jac}(R)$. Then an S-regular ideal I of R is a cancellation ideal of the extension $R \subseteq S$ if and only if $\Psi(I)$ is a cancellation ideal of the extension $L \subseteq T$.

Proof. Suppose that I is a cancellation ideal of the extension $R \subseteq S$. Since IS = S, we have $\Psi(I)\Psi(S) = \Psi(S)$. It follows that $\Psi(I)T = T$. Hence $\Psi(I)$ is a T-regular ideal of L. Let E and F be two T-regular L-submodules of T such that $\Psi(I)E = \Psi(I)F$. Let $B = \Psi^{-1}(E)$ and $C = \Psi^{-1}(F)$. Then by [7, Lemma 2.8(1)] B and C are two S-regular ideals of R. Furthermore, $E = \Psi(B)$ and $F = \Psi(C)$ since Ψ is surjective. It follows from the equality $\Psi(I)E = \Psi(I)F$ that $\Psi(I)\Psi(B) = \Psi(I)\Psi(C)$. Hence $\Psi(IB) = \Psi(IC)$. Furthermore, (IB)S = IS = S and (IC)S = IS = S. Therefore, by

Lemma 1.2, we have IB = IC. Hence B = C since I is a cancellation ideal of the extension $R \subseteq S$. It follows that $E = \Psi(B) = \Psi(C) = F$. This shows that $\Psi(I)$ is a cancellation ideal of the extension $L \subseteq T$.

Conversely, suppose that $\Psi(I)$ is a cancellation ideal of the extension $L \subseteq T$. Let B and C be two S-regular R-submodules of S such that IB = IC. Then $\Psi(I)\Psi(B) = \Psi(I)\Psi(C)$. Since BS = S, we have $\Psi(B)T = T$. Hence $\Psi(B)$ is a T-regular ideal of L. With the same argument, $\Psi(C)$ is a T-regular ideal of L. It follows that $\Psi(B) = \Psi(C)$ since $\Psi(I)$ is a cancellation ideal of the extension $L \subseteq T$. Therefore, by Lemma 1.2, we have B = C. This shows that I is a cancellation ideal of the extension $R \subseteq S$.

In the next proposition, we give a characterization of a cancellation ideal of a ring extension. This result is an analogue of [3, Proposition 2.1, p. 10] in the case of cancellation ideal of a ring.

Proposition 2.3. Let $R \subseteq S$ be a ring extension, and let I be an S-regular ideal of R. The following statements are equivalent.

- (1) I is a (quasi)-cancellation ideal of the ring extension $R \subseteq S$.
- (2) [IJ:I] = J for any S-regular (finitely generated) R-submodule J of S.
- (3) If $IJ \subseteq IK$ for two S-regular (finitely generated) R-submodules J and K of S, then $J \subseteq K$.

Proof. $(1) \Rightarrow (2)$ Suppose that I is a cancellation ideal of the extension $R \subseteq S$, and let J be an S-regular R-submodule of S. The containment $J \subseteq [IJ:I]$ is always true. Let $x \in [IJ:I]$. Then $xI \subseteq IJ$. It follows that $(x, J)I \subseteq IJ$, where (x, J) is the R-submodule of S generated by x and J. Therefore, (x, J)I = IJ since the containment $IJ \subseteq (x, J)I$ is always true. Furthermore, (x, J) is an S-regular R-submodule of S since $J \subseteq (x, J)$. It follows from the definition of a cancellation ideal that (x, J) = J. This shows that $x \in J$, and thus $[IJ:I] \subseteq J$. Therefore [IJ:I] = J.

 $(2) \Rightarrow (3)$ Suppose that the statement (2) is true. Let J and K be two S-regular R-submodules of S. Then by (2), we have [IK:I] = K. If $IJ \subseteq IK$, then $J \subseteq [IK:I] = K$.

 $(3) \Rightarrow (1)$ This implication is obvious.

Proposition 2.4. Let $R \subseteq S$ be a ring extension, and let I be a finitely generated S-regular ideal of R. Then I is a cancellation ideal of $R \subseteq S$ if and only if I is a quasi-cancellation ideal of $R \subseteq S$.

Proof. Let I be a finitely generated S-regular ideal of R. If I is a cancellation ideal of the extension $R \subseteq S$, then obviously I is an quasicancellation ideal of the extension $R \subseteq S$. Conversely, suppose that I is a quasi-cancellation ideal of the extension $R \subseteq S$. Let $a_1, \ldots, a_n \in R$ be a set of generators of I. Let B, C be two S-regular R-submodules of S such that $IB \subseteq IC$. Let $b \in B$. Then $bI \subseteq IC$. So, for $1 \leq i \leq n$, we have $ba_i = \sum_{j=1}^k a_j c_{ij}$ with $c_{ij} \in C$ for $1 \leq j \leq k$. Furthermore, since CS = S, there exist $u_1, \ldots, u_\ell \in C$ and $s_1, \ldots, s_\ell \in S$ such that $u_1 s_1 + \cdots + u_\ell s_\ell = 1$. Let C' be the *R*-submodule of S generated by the elements of the set $\{u_1, \ldots, u_n, c_{ij} : 1 \leq i \leq n, 1 \leq j \leq k\}$. Let B_0 be the *R*-submodule of *S* generated by b. Then $(B_0 + (u_1, \ldots, u_n)R) I \subseteq IC'$. It follows from the the equivalence (1) \Leftrightarrow (3) of Proposition 2.3 that $B_0 + (u_1, \ldots, u_n) R \subseteq C'$ since $B_0 + (u_1, \ldots, u_n)$ and C' are finitely generated S-regular ideal of S. Therefore, $b \in C' \subseteq C$. Hence $B \subseteq C$ since b was arbitrary chosen in B. This shows that I is a cancellation ideal of the extension $R \subseteq S$.

Lemma 2.5. Let $R \subseteq S$ be a ring extension, and let $u_1, \ldots, u_\ell \in S$. Define the sets $E = (u_1, \ldots, u_\ell)R_{[\mathfrak{p}]}$ and $A = (u_1, \ldots, u_\ell)R$, where \mathfrak{p} is a prime ideal of R. For any ideal I of R, we have:

- (1) $(AI)_{[\mathfrak{p}]} = (EI)_{[\mathfrak{p}]}$. In particular, $A_{[\mathfrak{p}]} = E_{[\mathfrak{p}]}$.
- (2) $(EI)_{[\mathfrak{p}]} = (EI_{[\mathfrak{p}]})_{[\mathfrak{p}]}.$

Proof. (1) First, observe that $AI \subseteq EI$. So $(AI)_{[\mathfrak{p}]} \subseteq (EI)_{[\mathfrak{p}]}$. Let $x \in (EI)_{[\mathfrak{p}]}$. Then there exists $t \in R \setminus \mathfrak{p}$ such that $tx \in EI$. Therefore, $tx = \sum_{i=1}^{n} e_i x_i$ for some $e_i \in E$ and $x_i \in I$, $1 \leq i \leq n$. For each $1 \leq i \leq n$, write $e_i = \sum_{j=1}^{\ell} u_j y_{ij}$ with $y_{ij} \in R_{[\mathfrak{p}]}$ for $1 \leq j \leq \ell$. Let $s_{ij} \in R \setminus \mathfrak{p}$ such that $s_{ij}y_{ij} \in R$, $s_i = \prod_{j=1}^{\ell} s_{ij}$ and $s = \prod_{i=1}^{n}$. Then $s_i e_i \in A$. It follows that $(st)x = \sum_{i=1}^{\ell} (se_i)x_i \in AI$. Thus $x \in (AI)_{[\mathfrak{p}]}$ since $st \in R \setminus \mathfrak{p}$. This shows that $(EI)_{[\mathfrak{p}]} \subseteq (AI)_{[\mathfrak{p}]}$. Hence $(AI)_{[\mathfrak{p}]} = (EI)_{[\mathfrak{p}]}$. In particular, if we take I = R, then we get $A_{[\mathfrak{p}]} = E_{[\mathfrak{p}]}$.

(2) The containment $(EI)_{[\mathfrak{p}]} \subseteq (EI_{[\mathfrak{p}]})_{[\mathfrak{p}]}$ is clear since $EI \subseteq EI_{[\mathfrak{p}]}$. Let $x \in (EI_{[\mathfrak{p}]})_{[\mathfrak{p}]}$. Then $tx \in EI_{[\mathfrak{p}]}$ for some $t \in R \setminus \mathfrak{p}$. Thus $tx = \sum_{i=1}^{k} v_i y_i$ with $v_i \in E$ and $y_i \in I_{[\mathfrak{p}]}$ for $1 \leq i \leq k$. Let $s_i \in R \setminus \mathfrak{p}$ such that $s_i y_i \in I$, and let $s = \prod_{i=1}^{k} s_i$. Then $(st)x = \sum_{i=1}^{k} v_i(sy_i) \in EI$. It follows that $x \in (EI)_{[\mathfrak{p}]}$. Therefore, $(EI)_{[\mathfrak{p}]} = (EI_{[\mathfrak{p}]})_{[\mathfrak{p}]}$

Theorem 2.6. Let $R \subseteq S$ be a ring extension, and let I be a finitely generated S-regular ideal of R. The following statements are equivalent. (1) I is a quasi-cancellation ideal of the extension $R \subseteq S$.

142

(2) For each prime ideal \mathfrak{p} of R, and for each S-regular finitely generated $R_{\mathfrak{p}}$ -submodule E of S, we have $[(EI)_{\mathfrak{p}}] : I_{\mathfrak{p}}] = E_{\mathfrak{p}}]$.

Proof. (1) ⇒ (2) Suppose that *I* is a quasi-cancellation ideal of the extension $R \subseteq S$, and let \mathfrak{p} be a prime ideal of *R*. Let *E* be a finitely generated *S*-regular $R_{[\mathfrak{p}]}$ -submodule of *S*. Then $E = (u_1, \ldots, u_\ell) R_{[\mathfrak{p}]}$ for some elements u_1, \ldots, u_ℓ of *S*. Let *A* be the *R*-submodule of *S* generated by u_1, \ldots, u_ℓ . Then by Proposition 2.3 and Proposition 2.4, we have [AI:I] = A. It follows from [6, Proposition 2.1(4)] that $[(AI)_{\mathfrak{p}}: I_{[\mathfrak{p}]}] = A_{[\mathfrak{p}]}$. Hence by Lemma 2.5, we have $[(EI_{[\mathfrak{p}]})_{[\mathfrak{p}]}: I_{[\mathfrak{p}]}] = [(EI)_{\mathfrak{p}}: I_{[\mathfrak{p}]}] = [(AI)_{\mathfrak{p}}: I_{[\mathfrak{p}]}] = A_{[\mathfrak{p}]}$.

 $(2) \Rightarrow (1)$ Suppose that the statement (2) is true. Let A be an S-regular finitely generated R-submodule of S, and let \mathfrak{p} be a prime ideal of R. Let $E = AR_{[\mathfrak{p}]}$. Then by Lemma 2.5, we have $(AI)_{[\mathfrak{p}]} = (EI)_{[\mathfrak{p}]}$ and $A_{[\mathfrak{p}]} = E_{[\mathfrak{p}]}$. So, by hypothesis we have $A_{[\mathfrak{p}]} = E_{[\mathfrak{p}]} = [(EI)_{[\mathfrak{p}]} : I_{[\mathfrak{p}]}] = [(AI)_{[\mathfrak{p}]} : I_{[\mathfrak{p}]}]$. But by [6, Proposition 2.1(4)], we have $[(AI)_{[\mathfrak{p}]} : I_{[\mathfrak{p}]}] = [(AI) : I]_{[\mathfrak{p}]}$. Therefore, $A_{[\mathfrak{p}]} = [(AI) : I]_{[\mathfrak{p}]}$ for each prime ideal \mathfrak{p} of R. It follows from Remark 1.1 that [AI : I] = A. Therefore, by the equivalence $(1) \Leftrightarrow (2)$ of Proposition 2.3, I is a quasi-cancellation ideal of the extension $R \subseteq S$. \Box

In their book [5], Knebusch and Zhang defined the notion of Prüfer extension using valuation ring [5, Definition 1, p. 46]. Several characterizations of a Prüfer extension are given in [5, Theorem 5.2, p. 47]. For the purpose of this work, we will use the following: a ring extension $R \subseteq S$ is called Prüfer extension if R is integrally closed in S and $R[\alpha] = R[\alpha^n]$ for any $\alpha \in S$ and any $n \in \mathbb{N}$.

Lemma 2.7. [5, Theorem 1.13, p. 91] If a ring extension $R \subseteq S$ is a Prüfer extension, then every finitely generated S-regular R-submodule of S is S-invertible.

Proposition 2.8. Let $R \subseteq S$ be a ring extension, and let I be an S-regular ideal of R.

- (1) If I is a cancellation ideal of the extension $R \subseteq S$, then [I:I] = R.
- (2) If the extension R ⊆ S is Prüfer, then the converse of statement (1) is also true (i.e. in a Prüfer extension R ⊆ S, if I is an S-regular ideal satisfying [I : I] = R, then I is a quasi-cancellation ideal).

Proof. (1) The proof follows directly from the equivalence $(1) \Leftrightarrow (2)$ of Theorem 2.3. It suffices to take J = R.

(2) Suppose that the extension $R \subseteq S$ is Prüfer, and let I be an S-regular ideal of R such that [I:I] = R. Let A be an S-regular finitely

generated *R*-submodule of *S*. Then by Lemma 2.7, *A* is *S*-invertible. We show that A[I:I] = [AI:I]. Let $x \in [AI:I]$. Then $xI \subseteq AI$. Hence $xIA^{-1} \subseteq I$. Thus $xA^{-1} \subseteq [I:I]$. It follows that $x \in A[I:I]$. On the other hand, let $y = \sum_{i=1}^{k} a_i v_i \in A[I:I]$ with $a_i \in A$ and $v_i \in [I:I]$ for $1 \leq i \leq k$. Then $v_iI \subseteq I$. Hence $a_iv_iI \subseteq AI$. Therefore, $a_iv_i \in [AI:I]$. So $y = \sum_{i=1}^{k} a_iv_i \in [AI:I]$. This shows that [AI:I] = A[I:I]. Hence [AI:I] = A[I:I] = AR = A. Hence, by the equivalence (1) \Leftrightarrow (2) of Proposition 2.3, *I* is a quasi-cancellation ideal of the extension $R \subseteq S$. \Box

Let $R \subseteq S$ be a ring extension. A nonzero S-regular ideal I of R is called *m*-canonical ideal of the extension $R \subseteq S$ if [I : [I : J]] = J for all S-regular ideal J of R. Properties of m-canonical ideals of a ring extension are studied in [7].

Corollary 2.9. Any m-canonical ideal of a Prüfer extension is a quasicancellation ideal.

Proof. If I is an m-canonical ideal of a Prüfer extension $R \subseteq S$, then by [7, Proposition 2.3], we have [I : I] = R. It follows from Proposition 2.8(2) that I is a quasi-cancellation ideal of the extension $R \subseteq S$.

Lemma 2.10. Let $R \subseteq S$ be a ring extension, and let I be an S-regular ideal of R which is a cancellation ideal of $R \subseteq S$. If I = (x, y) + A, where A is an ideal of R containing $\mathfrak{m}I$ for some maximal ideal \mathfrak{m} of R, then I = (x) + A or I = (y) + A.

Proof. Let $J = (x^2 + y^2, xy, xA, yA, A^2)R$. Then $IJ = I^3$. Observe that I^2 is S-regular since $I^2S = I(IS) = IS = S$. Also, from the equality $IJ = I^3$ we have $(IJ)S = I^3S = I(IS) = IS = S$. So JS = S. This shows that J is an S-regular ideal of R. It follows from the equation $IJ = I^3$ and the fact that I is a cancellation ideal of the extension $R \subseteq S$ that $J = I^2$. Thus $x^2 = t(x^2 + y^2) + \text{terms from } (xy, xA, yA, A^2)$, with $t \in R$. Suppose that $t \in \mathfrak{m}$. Then $x^2 \in (y^2, xy, xA, yA, A^2)$, since $tx \in \mathfrak{m}I \in A$. Let K = (y) + A. Then $I^2 = IK$. Furthermore, from the equality $IK = I^2$, we have $K(IS) = I^2S$. Hence KS = S. Therefore, K is an S-regular ideal of S. It follows that I = K since I is a cancellation ideal of the extension $R \subseteq S$. The rest of the proof is similar to the proof of [2, Lemma]. \Box

Proposition 2.11. Let $R \subseteq S$ be a ring extension, and let I be a nonzero S-regular ideal of R. If I is a cancellation ideal of the extension $R \subseteq S$, then for each maximal ideal \mathfrak{m} of R, there exists $a \in R$ such that $I_{[\mathfrak{m}]} = (a)_{[\mathfrak{m}]}$.

Proof. Suppose that I is a cancellation ideal of the ring extension $R \subseteq S$, and let \mathfrak{m} be a maximal ideal of R. Suppose that $I \subseteq \mathfrak{m}$. Then by Lemma 2.10, and the proof of [2, Theorem], there exists $a \in I$ such that for each $b \in I$, (1 - u)b = ra for some $u \in \mathfrak{m}$ and $r \in R$. Therefore, $(1 - u)b \in (a)$. So $b \in (a)_{[\mathfrak{m}]}$. This shows that $I_{[\mathfrak{m}]} \in (a)_{[\mathfrak{m}]}$. On the other hand, the equality $(a)_{[\mathfrak{m}]} \subseteq I_{[\mathfrak{m}]}$ is always true. Thus $I_{[\mathfrak{m}]} = (a)_{[\mathfrak{m}]}$. If $I \nsubseteq \mathfrak{m}$, then $I_{[\mathfrak{m}]} = (1)_{[\mathfrak{m}]} = R_{[\mathfrak{m}]}$. In fact, for $x \in R_{[\mathfrak{m}]}$, there exists $s \in R \setminus \mathfrak{m}$ such that $sx \in R$. Thus $(st)x \in I$ for each $t \in I \setminus \mathfrak{m}$. It follows that $x \in I_{[\mathfrak{m}]}$.

Theorem 2.12. Let $R \subseteq S$ be a ring extension, and let I be a nonzero finitely generated S-regular ideal of R. The following statements are equivalent.

- (1) I is a cancellation ideal of the extension $R \subseteq S$.
- (2) I is a quasi-cancellation ideal of the extension $R \subseteq S$.
- (3) I is an S-invertible ideal of R.
- (4) IR[X] is a cancellation ideal of the extension $R[X] \subseteq S[X]$.

Proof. The equivalence $(1) \Leftrightarrow (2)$ is the result of Theorem 2.4.

(1) \Rightarrow (3) Suppose that I is a cancellation ideal of the extension $R \subseteq S$, and let \mathfrak{m} be a maximal ideal of R. By the previous proposition, $I_{[\mathfrak{m}]} = (a)_{[\mathfrak{m}]}$ for some $a \in R$. It follows that $(I_{[\mathfrak{m}]})_{\mathfrak{m}_{[\mathfrak{m}]}} = ((a)_{[\mathfrak{m}]})_{\mathfrak{m}_{[\mathfrak{m}]}}$. But by [5, Lemma 2.9(b), p. 28], we have $I_{\mathfrak{m}} = (I_{[\mathfrak{m}]})_{\mathfrak{m}_{[\mathfrak{m}]}}$ and $(a)_{\mathfrak{m}} = ((a)_{[\mathfrak{m}]})_{\mathfrak{m}_{[\mathfrak{m}]}}$. Hence $I_{\mathfrak{m}} = (a)_{\mathfrak{m}}$. This shows that I is locally principal. It follows from [5, Proposition 2.3, p. 97] that I is S-invertible.

 $(3) \Rightarrow (1)$ This implication is obvious.

 $(3) \Rightarrow (4)$ Suppose that I is an S-invertible ideal of the extension $R \subseteq S$. First, note that (IR[X])(S[X]) = S[X] since IS = S. Hence IR[X] is an S[X]-regular ideal of R[X]. Let J be the R-submodule of S such that IJ = R. Then (IR[X])(JR[X]) = R[X]. This shows that IR[X] is an S[X]-invertible ideal of R[X]. It follows from the equivalence $(1) \Leftrightarrow (3)$ that IR[X] is a cancellation ideal of the extension $R[X] \subseteq S[X]$.

 $(4) \Rightarrow (1)$ Suppose that IR[X] is a cancellation ideal of the extension $R[X] \subseteq S[X]$. Let J be an S-regular ideal of R. Then by the equivalence $(1) \Leftrightarrow (2)$ of Proposition 2.3, we have [(IR[X])(JR[X]) : IR[X]] = JR[X].

We show that [IJ:I] = J. First, note that the containment $J \subseteq [IJ:I]$ I is always true. Let $u \in [IJ:I]$. Then $uI \subseteq IJ$. Therefore, $uIR[X] \subseteq (IJ)R[X] \subseteq (IR[X])(JR[X])$. Hence $u \in [(IR[X])(JR[X]):IR[X]] = JR[X]$. It follows that $u \in JR[X] \cap S = J$. This shows that $[IJ:I] \subseteq J$. Hence [IJ:I] = J. It follows from the equivalence (1) \Leftrightarrow (2) of Proposition 2.3 that I is a cancellation ideal of the extension $R \subseteq S$. \Box **Corollary 2.13.** Let $R \subseteq S$ be a ring extension, and let I be a finitely generated S-regular ideal of R. If I is a cancellation ideal of the extension $R \subseteq S$, then $I_{[\mathfrak{m}]}$ is a cancellation ideal of the extension $R_{[\mathfrak{m}]} \subseteq S$ for each maximal ideal \mathfrak{m} of R.

Proof. Let *I* be a finitely generated *S*-regular ideal of *R*, and let **m** be a maximal ideal of *R*. Suppose that *I* is a cancellation ideal of the extension $R \subseteq S$. Then by the previous theorem, *I* is *S*-invertible. Let *J* be an *R*-submodule of *S* such that IJ = R. Then $I_{[m]}J_{[m]} \subseteq (IJ)_{[m]} \subseteq R_{[m]}$. Furthermore, since IS = S, there exist $x_i \in I$ and $y_i \in J$, $1 \leq i \leq \ell$, such that $1 = \sum_{i=1}^{\ell} x_i y_i$. Let $u \in R_{[m]}$. There exists $t \in R \setminus \mathfrak{m}$ such that $tu \in R$ and $u = \sum_{i=1}^{\ell} (ux_i)y_i$. But for $1 \leq i \leq \ell$, $t(ux_i) = (tu)x_i \in I$ since $tu \in R$ and $x_i \in I$. It follows that $ux_i \in I_{[m]}$. Therefore, $u = \sum_{i=1}^{\ell} (ux_i)y_i \in I_{[m]}J \subseteq I_{[m]}J_{[m]}$. This shows that $R_{[m]} \subseteq I_{[m]}J_{[m]}$. Thus $I_{[m]}J_{[m]} = R_{[m]}$. Hence $I_{[m]}$ is an *S*-invertible $R_{[m]}$ -submodule of *S*. It follows that $I_{[m]}$ is a cancellation ideal of the extension $R_{[m]} \subseteq S$, since an invertible ideal of ring extension is always a cancellation ideal.

References

- Anderson, D.D., Anderson, D. F. (1984). Some remarks on cancellation ideals. Math Japonica. 29 (6), pp 879-886.
- [2] Anderson, D.D., Roitman, M. (1997). A characterization of cancellation ideals. Proc. Amer. Math. Soc. No. 10, pp 2853 - 2854.
- [3] Fuchs, L.; Salce, L. (2001) Modules over non-Noetherian domains. Mathematical Surveys and Monographs, Vol. 84. American Mathematical Society, Providence, RI. xvi+613 pp.
- [4] Gabelli, S; Houston, E. (2000). Ideal theory in pullbacks. In Chapman S. T; Glaz S., eds. Non-Noetherian commutative ring theory. Math. Appl., Vol 520. Dordrecht: Kluwer Acad. Publ., pp. 199-227.
- [5] Knebusch, M., Zhang, D. (2002). Manis valuations and Prüfer extensions I. Lecture Notes in Mathematics, Vol. 1791. Berlin: Springer-Verlag.
- [6] Paudel, L., Tchamna, S. (2018). On the saturation of submodules. Algebra and Discrete Mathematics, Vol. 26, No. 1, pp. 110 - 123
- [7] Tchamna, S. (2017). Multiplicative canonical ideals of ring extensions. Journal of Algebra and Its Appl. Vol. 16, No. 4:170069.

CONTACT INFORMATION

Simplice TchamnaDepartment of Mathematics
Georgia College, Milledgeville, GA, USA
E-Mail(s): simplice.tchamna@gcsu.edu

Received by the editors: 26.07.2019 and in final form 30.10.2020.