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Abstract. In this paper we prove that if P is a Poisson
algebra and the n-th hypercenter (center) of P has a finite codi-
mension, then P includes a finite-dimensional ideal K such that
P/K is nilpotent (abelian). As a corollary, we show that if the n-th
hypercenter of a Poisson algebra P (over some specific field) has a
finite codimension and P does not contain zero divisors, then P is
an abelian algebra.

Introduction

Let P be a vector space over a field F . Then P is called a Poisson
algebra, if P has two additional binary operations: the multiplication ·
and [ , ] such that the following conditions hold:

ab = ba, (ab)c = a(bc), a(b+ c) = ab+ ac, (λa)b = λ(ab) = a(λb);

[a+ b, c] = [a, c] + [b, c], [a, b+ c] = [a, b] + [a, c],

[λa, b] = λ[a, b] = [a, λb], [a, a] = 0,

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0;

[ab, c] = a[b, c] + b[a, c]

for all elements a, b, c ∈ P , λ ∈ F .
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If we will consider P as an associative and commutative algebra by the
outer multiplication, addition and multiplication, then we will denote it
by P (+, ·). If we will consider P as a Lie algebra by outer multiplication,
addition and Lie brackets, then we will denote it by P (+, [ , ]).

Poisson algebras arose from the study of Poisson geometry [27, 52]. It
has appeared in an extremely wide range of areas in mathematics and
physics, such as classical and quantum mechanics [1, 12, 36], quantum
groups [11,13], quantization theory [4,5,20,21], Poisson manifolds [26,48],
algebraic geometry [6, 18, 38], operads [16, 19, 32]. Some of the first works
where concrete Poisson algebras appeared were [7, 9, 39, 40, 51], while one
of the first works, where the study of the properties of abstract Poisson
algebras began, was the work [2]. Poisson algebras have been and are
being studied very intensively by many authors and from various points
of view (see, for example, the articles [10,14,15,17,19,28–31,33,34,37,41–
47,49] and the book [8]). This current paper is dedicated to extending to
Poisson algebras some results that became already classical in different
algebraic structures. The issue that will be discussed here has its sources
in articles [3, 35]. They showed that if the center of a group has a finite
index, then its derived subgroup is finite. This result became the starting
point for an interesting and broad topic, involving not only groups, but
also other algebraic structures, among which were non-associative algebras
(Lie algebras and Leibniz algebras) (see a survey [25]). In particular, in
the paper [50] has been proved that if the center of a Lie algebra has
finite codimension, then its derived ideal has finite dimension. A situation
with the center and derived subalgebra in Poisson algebras has significant
differences, in the Poisson algebras the center and derived subalgebra are
not ideals. Nevertheless, for Poisson algebras we obtained a similar result.

Let P be a Poisson algebra over a field F . As usual, a subset B of P
is called a subalgebra of P if B is a subspace of P and xy, [x, y] ∈ B for
every elements x, y ∈ B.

A subset L of P is called an ideal of P if L is a subspace of P and
xb, [x, b] ∈ L for every elements b ∈ L and x ∈ P .

A Poisson algebra P is called simple if it has only two ideals 〈0〉 and P .
The Poisson algebra P is called abelian, if [x, y] = 0 for all x, y ∈ P .

Let P be a Poisson algebra. Define the lower central series of P

P = γ1(P ) > γ2(P ) > . . . γα(P ) > γα+1(P ) > . . . γδ(P )

by the following rule: γ1(P ) = P , γ2(P ) = [P, P ], recursively γα+1(P ) =
[γα(P ), P ] for all ordinals α, and γλ(P ) =

⋂

µ<λ γµ(P ) for limit ordinals
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λ. The last term γδ(P ) is called the lower hypocenter of P . We have
γδ(P ) = [γδ(P ), P ].

As usually, we say that a Poisson algebra P is nilpotent, if there exists
a positive integer k such that γk(P ) = 〈0〉. More precisely, P is said to
be nilpotent of nilpotency class c if γc+1(P ) = 〈0〉, but γc(P ) 6= 〈0〉. We
denote the nilpotency class of P by ncl(P ).

Put

ζ(P ) = {z ∈ P | [z, x] = 0 for every element x ∈ P}.

The subset ζ(P ) is called the center of P .

Starting from the center we can construct the upper central series

〈0〉 = ζ0(P ) 6 ζ1(P ) 6 . . . ζα(P ) 6 ζα+1(P ) 6 . . . ζγ(P ) = ζ∞(P )

of a Poisson algebra P by the following rule: ζ1(P ) = ζ(P ) is the center
of P , recursively ζα+1(P )/ζα(P ) = ζ(P/ζα(P )) for all ordinals α, and
ζλ(P ) =

⋃

µ<λ ζµ(P ) for limit ordinals λ. We remark that each term of
this series is a subalgebra of P , which is an ideal of a Lie algebra P (+, [ , ]).
The last term ζ∞(P ) of this series is called the upper hypercenter of P .

It is a well-known that in nilpotent Lie algebras the lower and the
upper central series have the same length.

For Poisson algebras we obtained the following result.

Theorem A. Let P be a Poisson algebra over a field F . Suppose that the
center of P has a finite codimension d. Then P includes an ideal K of
finite dimension at most 1

2
d(d2 − 1) such that P/K is abelian.

In the paper [3] it was proved that if the hypercenter ζn(G) of a group
G has a finite index, then its (n+ 1)th hypocenter γn+1(G) is finite. This
result was also extended to other algebraic structures, in particular, on
Lie algebras [24] and Leibniz algebras [22,23]. For the Poisson algebras
we obtain the following result.

Theorem B. Let P be a Poisson algebra over a field F . Suppose that
hypercenter ζn(P ) has a finite codimension d. Then P includes an ideal K,
having finite dimension at most dn+1(1 + d), such that P/K is nilpotent
of nilpotency class at most n.

Here are some interesting corollaries.

Corollary B1. Let P be a Poisson algebra over a field F . Suppose that
char(F ) = p is a prime and F p = F . If hypercenter ζn(P ) has finite
codimension and P does not contain zero divisors, then P is abelian.

Corollary B2. Let P be a Poisson algebra over a finite field F . If hyper-
center ζn(P ) has finite codimension and P does not contain zero divisors,
then P is abelian.
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Corollary B3. Let P be a Poisson algebra over a locally finite field F .
If hypercenter ζn(P ) has finite codimension and P does not contain zero
divisors, then P is abelian.

1. Some preliminary results

Let P be a Poisson algebra. The equality [a, a] = 0 implies that

[a, b] = −[b, a].

Then
[c, ab] = −[ab, c] = −a[b, c]− b[a, c] = a[c, b] + b[c, a].

We now point out several consequences of these basic equalities. We have

[abc, d] = a[bc, d] + bc[a, d] = ab[c, d] + ac[b, d] + bc[a, d].

Using ordinary induction, we obtain

[a1a2a3a4 . . . an, x] = a2a3a4 . . . an[a1, x] + a1a3a4 . . . an[a2, x]

+ a1a2a4 . . . an[a3, x] + . . .+ a1a2a3 . . . an−1[an, x].

Furthermore

[xy, ab] = x[y, ab] + y[x, ab] = x(a[y, b] + b[y, a]) + y(a[x, b] + b[x, a])

= xa[y, b] + xb[y, a] + ya[x, b] + yb[x, a].

We have also

[c2, d] = [cc, d] = c[c, d] + c[c, d] = 2c[c, d],

[c3, d] = [c2c, d] = c2[c, d] + c[c2, d] = c2[c, d] + c(2c[c, d]) = 3c2[c, d].

Suppose that we have already proved that [cn, d] = ncn−1[c, d]. Then

[cn+1, d] = [cnc, d] = cn[c, d] + c[cn, d] = cn[c, d] + c(ncn−1[c, d])

= (n+ 1)cn[c, d].

Thus for every positive integer k we proved that [ck, d] = kck−1[c, d].
Further

[ck, d2] = [ck, dd] = d[ck, d] + d[ck, d] = 2d[ck, d] = 2kdck−1[c, d],

[ck, d3] = [ck, dd2] = d[ck, d2] + d2[ck, d]

= 2kd2ck−1[c, d] + kd2ck−1[c, d] = 3kd2ck−1[c, d].
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Suppose that we have already proved that [ck, dt] = ktdt−1ck−1[c, d].
Then

[ck, dt+1] = [ck, ddt]

= d[ck, dt] + dt[ck, d] = d(ktdt−1ck−1[c, d]) + dt(kck−1[c, d])

= ktdtck−1[c, d] + kdtck−1[c, d] = k(t+ 1)dtck−1[c, d].

Thus for every positive integers k and s we proved the equality [ck, ds] =
ksds−1ck−1[c, d].

Let A and U be Poisson algebras over a field F . Then a mapping
f : A → U is called a homomorphism, if

f(λa) = λf(a), f(a+ b) = f(a) + f(b),

f(ab) = f(a)f(b), f([a, b]) = [f(a), f(b)]

for all elements a, b ∈ A, λ ∈ F .

As usual, an injective homomorphism is called a monomorphism, a
surjective homomorphism is called an epimorphism and bijective homo-
morphism is called an isomorphism.

Proposition 1. Let A be an associative and commutative algebra over a
field F , generating by a subset S. Suppose that on A is defined a bilinear
operation [ , ] satisfying conditions [a, a] = 0 and [ab, c] = a[b, c] + b[a, c].
Then A is a Poisson algebra if and only if [[a, b], c]+[[b, c], a]+[[c, a], b] = 0
for all elements a, b, c ∈ S.

Proof. If A is a Poisson algebra, then [[a, b], c]+ [[b, c], a]+ [[c, a], b] = 0 for
arbitrary elements a, b, c, in particular, this equality is valid for elements
a, b, c ∈ S.

Conversely, suppose that [[a, b], c] + [[b, c], a] + [[c, a], b] = 0 for all
elements a, b, c ∈ S. Let d ∈ S. We have

[[a, b], cd] + [[b, cd], a] + [[cd, a], b]

= c[[a, b], d] + d[[a, b], c] + [c[b, d] + d[b, c], a] + [c[d, a] + d[c, a], b]

= c[[a, b], d] + d[[a, b], c] + [c[b, d], a]

+ [d[b, c], a] + [c[d, a], b] + [d[c, a], b]

= c[[a, b], d] + d[[a, b], c] + c[[b, d], a] + [b, d][c, a] + d[[b, c], a]

+ [b, c][d, a] + c[[d, a], b] + [d, a][c, b] + d[[c, a], b] + [c, a][d, b]

= c([[a, b], d] + [[b, d], a] + [[d, a], b]) + d([[a, b], c] + [[b, c], a]

+ [[c, a], b]) + [b, d][c, a] + [b, c][d, a] + [d, a][c, b] + [c, a][d, b] = 0.
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Using an ordinary induction, we obtain that

[[a, b], c1 . . . cn] + [[b, c1 . . . cn], a] + [[c1 . . . cn, a], b] = 0

for all elements a, b, c1, . . . , cn ∈ S. Further

[[a1a2, b], c] + [[b, c], a1a2] + [[c, a1a2], b]

= [a1[a2, b] + a2[a1, b], c] + a1[[b, c], a2] + a2[[b, c], a1]

+ [a1[c, a2] + a2[c, a1], b]

= [a1[a2, b], c] + [a2[a1, b], c] + a1[[b, c], a2]

+ a2[[b, c], a1] + [a1[c, a2], b] + [a2[c, a1], b]

= a1[[a2, b], c] + [a2, b][a1, c] + a2[[a1, b], c] + [a1, b][a2, c]

+ a1[[b, c], a2] + a2[[b, c], a1] + a1[[c, a2], b]

+ [c, a2][a1, b] + a2[[c, a1], b] + [c, a1][a2, b]

= a1([[a2, b], c] + [[b, c], a2] + [[c, a2], b])+

+ a2([[a1, b], c] + [[b, c], a1] + [[c, a1], b])+

+ [a2, b][a1, c] + [a1, b][a2, c] + [c, a2][a1, b] + [c, a1][a2, b] = 0.

Using an ordinary induction, we obtain that

[[a1 . . . ak, b], c] + [[b, c], a1 . . . ak] + [[c, a1 . . . ak], b] = 0

for all elements a1, . . . , ak, b, c ∈ S. Taking into account what was proved
above, we obtain

[[a1 . . . ak, b], c1 . . . cn] + [[b, c1 . . . cn], a1 . . . ak][[c1 . . . cn, a1 . . . ak], b] = 0

for all elements a1, . . . , ak, b, c1, . . . , cn ∈ S. Using similar reasoning, we
prove the equality

[[a, b1 . . . bt], c] + [[b1 . . . bt, c], a] + [[c, a], b1 . . . bt] = 0

for all elements a, b1, . . . , bt, c ∈ S.

From this we already get

[[a1 . . . ak, b1 . . . bt], c1 . . . cn] + [[b1 . . . bt, c1 . . . cn], a1 . . . ak]

+ [[c1 . . . cn, a1 . . . ak], b1 . . . bt] = 0.

for all elements a1, . . . , ak, b1, . . . , bt, c1, . . . , cn ∈ S.

Every element x of A has a form x = y1 + . . . + ym where yj =
αv1,j . . . vr,j where α ∈ F , v1,j , . . . , vr,j ∈ S. Since an operation [ , ] is



“adm-n1” — 2021/4/10 — 20:38 — page 90 — #94

90 On extension of Baer results to Poisson algebras

bilinear, from proved above it follows that Jacobi identity is valid for all
elements of A.

Proposition 2. Let A be an arbitrary Poisson algebra over a field F .
Then there exists a Poisson algebra S over a field F having a multiplicative
identity element and monomorphism f : A → S. Moreover, Im(f) is an
ideal of S.

Proof. If A has an identity element by multiplication, then all is proved.
Therefore we will suppose that A has no an identity element. Put S = A×F
and define on S the following operations. Put

γ(a, λ) = (γa, γλ), (a, λ) + (b, µ) = (a+ b, λ+ µ),

(a, λ)(b, µ) = (ab+ λb+ µa, λµ), [(a, λ), (b, µ)] = ([a, b], 0)

for all elements a, b ∈ A, λ, µ, γ ∈ F .
As in Algebra Theory it is possible to prove that by the outer multipli-

cation, addition and multiplication S is an associative and commutative
algebra and the pair (0, 1F ) is its identity element. Furthermore,

[(a, λ), (a, λ)] = ([a, a], 0) = (0, 0),

[[(a, λ), (b, µ)], (c, γ)] + [[(b, µ), (c, γ)], (a, λ)] + [[(c, γ), (a, λ)], (b, µ)]

= [([a, b], 0), (c, γ)] + [([b, c], 0), (a, λ)] + [([c, a], 0), (b, µ)]

= ([[a, b], c], 0) + ([[b, c], a], 0) + ([[c, a], b], 0)

= ([[a, b], c] + [[b, c], a] + [[c, a], b], 0) = (0, 0),

[(a, λ)(b, µ), (c, γ)] = [(ab+ λb+ µa, λµ), (c, γ)] = ([ab+ λb+ µa, c], 0)

= ([ab, c] + [λb, c] + [µa, c], 0) = ([ab, c] + λ[b, c] + µ[a, c], 0),

(a, λ)[(b, µ), (c, γ)] + (b, µ)[(a, λ), (c, γ)]

= (a, λ)([b, c], 0) + (b, µ)([a, c], 0)

= (a[b, c] + λ[b, c], 0) + (b[a, c] + µ[a, c], 0)

= (a[b, c] + λ[b, c] + b[a, c] + µ[a, c], 0).

Since [ab, c] = a[b, c] + b[a, c], we obtain

[(a, λ)(b, µ), (c, γ)] = (a, λ)[(b, µ), (c, γ)] + (b, µ)[(a, λ), (c, γ)].

It follows that by the above defined operations, S is a Poisson algebra.
Consider now the mapping f : A → S, defined by the rule f(a) = (a, 0)

for all elements a ∈ A. We have

f(a+ b) = (a+ b, 0) = (a, 0) + (b, 0) = f(a) + f(b),
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f(λa) = (λa, 0) = λ(a, 0) = λf(a),

f(ab) = (ab, 0) = (a, 0)(b, 0) = f(a)f(b),

f([a, b]) = ([a, b], 0) = [(a, 0), (b, 0)] = [f(a), f(b)].

These equalities show that f is a homomorphism. Clearly f is injective,
so that f is a monomorphism. Hence f(A) is a subalgebra of S and A is
isomorphic to S.

Finally, let (x, α) be an arbitrary element of S, a be an arbitrary
element of A, then

(x, α)(a, 0) = (xa+ αa, 0) ∈ f(A),

[(x, α), (a, 0)] = ([x, a], 0) ∈ f(A).

Thus Im(f) is an ideal of S.

This Proposition allows us to consider farther only Poisson algebras
having the multiplicative identity element 1P .

If B,C are the subspaces of a Poisson algebra P , then let

• B + C = {b+ c| for all elements b ∈ B, c ∈ C},
• BC be the subspace of P generated by the subset

{bc| for all elements b ∈ B, c ∈ C},

• [B,C] be the subspace of P generated by the subset

{[b, c]| for all elements b ∈ B, c ∈ C}.

Clearly, BC is a subset of P consisting of elements of the type

a1b1 + . . .+ anbn

where a1, . . . , an ∈ B, b1, . . . , bn ∈ C.

Similarly, [B,C] is a subset of P consisting of elements of the type

[a1, b1] + . . .+ [an, bn]

where a1, . . . , an ∈ B, b1, . . . , bn ∈ C.

Proposition 3. Let P be a Poisson algebra over a field F .

(i) If B is a subalgebra of P and C is an ideal of P , then B + C, BC
are subalgebras of P . Moreover, if B, C are ideals of P , then B+C,
BC are ideals of P .

(ii) The center ζ(P ) is a subalgebra of P , which is an ideal of Lie algebra
P (+, [ , ]).
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(iii) The center ζ(P ) contains every idempotent of P , in particular,
1P ∈ ζ(P ).

(iv) If P is not a simple algebra, then P has a proper non-zero maximal
ideal.

(v) For every element x ∈ P a subset xP = {xy| y ∈ P} is a subalgebra
of P and an ideal of P (+, ·).

Proof. (i) Let x, y ∈ B + C, then x = b + c, y = u + v where b, u ∈ B,
c, v ∈ C. Then

λx = λ(b+ c) = λb+ λc ∈ B + C,

x− y = (b+ c)− (u+ v) = (b− u) + (c− v) ∈ B + C,

xy = (b+ c)(u+ v) = bu+ (cu+ bv + cv) ∈ B + C,

[x, y] = [b+ c, u+ v] = [b, u] + ([c, u] + [b, v] + [c, v]) ∈ B + C.

These equalities show that B + C is a subalgebra of P .

Every element x of BC has a form x = b1c1 + . . . + bncn where
b1, . . . , bn ∈ B, c1, . . . , cn ∈ C. If λ ∈ F , then

λx = λ(b1c1 + . . .+ bncn) = (λb1)c1 + . . .+ (λbn)cn ∈ BC,

If y is another element of BC, then y = a1d1 + . . .+ akdk, a1, . . . , ak ∈ B,
d1, . . . , dk ∈ C. Then

x− y = (b1c1 + . . .+ bncn)− (a1d1 + . . .+ akdk) ∈ BC,

xy =





∑

16j6n

bjcj









∑

16m6k

amdm



 =
∑

16j6n
16m6k

(bjam)(cjdm) ∈ BC,

[x, y] =





∑

16j6n

bjcj ,
∑

16m6k

amdm



 =
∑

16j6n
16m6k

[bjcj , amdm].

We have

[bjcj , amdm] = bjam[cj , dm] + bjdm[cj , am] + cjam[bj , dm] + cjdm[bj , am].

Since C is an ideal, [cj , dm], [cj , am], [bj , dm], dm[cj , am], cj [bj , dm],
dmcj ∈ C, so that bjam[cj , dm], bjdm[cj , am], cjam[bj , dm] ∈ BC. Since B
is a subalgebra, [bj , am] ∈ B, so that cjdm[bj , am] ∈ BC. Thus we obtain
that [bjcj , amdm] ∈ BC. It is true for all j, m, 1 6 j 6 n, 1 6 m 6 k, so
that [x, y] ∈ BC. These inclusions show that BC is a subalgebra of P .
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Suppose now that B, C are ideals of P . By above proved B + C and
BC are subalgebras of P . Let x ∈ P , y ∈ B + C, then y = b+ c where
b ∈ B, c ∈ C. Then

xy = x(b+ c) = xb+ xc ∈ B + C,

[x, y] = [x, b+ c] = [x, b] + [x, c] ∈ B + C.

These equalities show that B + C is an ideal of P .

Let x ∈ P , y ∈ BC, then y = b1c1 + . . .+ bncn where b1, . . . , bn ∈ B,
c1, . . . , cn ∈ C. Then

xy = x





∑

16j6n

bjcj



 =
∑

16j6n

(xbj)cj ∈ BC,

[x, y] =



x,
∑

16j6n

bjcj



 =
∑

16j6n

[x, bjcj ]

=
∑

16j6n

(bj [x, cj ] + cj [x, bj ]) ∈ BC.

These equalities show that BC is an ideal of P .

(ii) Let x be an arbitrary element of P and z ∈ ζ(P ). If λ ∈ F , then

[x, λz] = λ[x, z] = 0,

so that λz ∈ ζ(P ).

If y is another element of ζ(P ), then

[x, z − y] = [x, z]− [x, y] = 0,

so that z − y ∈ ζ(P ). Further

[x, zy] = z[x, y] + y[z, x] = 0,

so that zy ∈ ζ(P ). Furthermore

[[z, y], x] + [[y, x], z] + [[x, z], y] = 0.

Since [y, x] = 0 = [x, z], we obtain that [[z, y], x] = 0, so that [z, y] ∈ ζ(P ).
The last inclusion shows that ζ(P ) is a subalgebra of P .

(iii) Let e be an idempotent of P . For an arbitrary element x of P we
obtain

[e, x] = [ee, x] = e[e, x] + e[e, x] = 2e[e, x].
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If 2e[e, x] = 0, all is proved. Suppose that 2e[e, x] 6= 0. We have [e, x]−
2e[e, x] = 0. It follows that

0 = 2e([e, x]−2e[e, x]) = 2e[e, x]−4e2[e, x] = 2e[e, x]−4e[e, x] = −2e[e, x].

Thus 2e[e, x] = 0.
(iv) Indeed, if P is not simple, then P includes a proper non-zero

ideal K. Let

I = {Y | Y is a proper non-zero ideal of P}.

Family I is not empty. Since 1P 6∈ Y for each Y ∈ I, an union of every
linear ordered (by inclusion) subset of I belong to I. By Zorn Lemma a
family I has a maximal element.

(v) Clearly, xP is an ideal of associative algebra P (+, ·). Let y, z ∈ xP ,
then y = xu, z = xv for some elements u, v ∈ P . We have

[y, z] = [xu, xv] = x[u, xv] + u[x, xv]

= x[u, xv] + ux[x, v] + uv[x, x] = x([u, xv] + u[x, v]).

Thus [xP, xP ] 6 xP , so that xP is a subalgebra of P .

Consider some examples of Poisson algebras.

Example 1. If L is a Lie algebra, then put xy = 0 for all x, y ∈ L. Then,
clearly, L is a Poisson algebra.

On the other hand, let A be an associative and commutative algebra.
Put [x, y] = 0. Then, clearly, L is a Poisson algebra. These algebras are
called trivial.

Example 2. Let F be a field and P = F [x, y] be a polynomial algebra
with two variables x, y. Let f(x, y) be an arbitrary polynomial. We denote
by f ′

x (respectively, f ′

y) the derivative of the polynomial f(x, y) with
respect to variable x (respectively, y). Put now

[f, g] = f ′

xg
′

y − f ′

yg
′

x.

We have

[λf, g] = (λf)′xg
′

y − (λf)′yg
′

x = λf ′

xg
′

y − λf ′

yg
′

x = λ(f ′

xg
′

y − f ′

yg
′

x) = λ[f, g]

for every element λ ∈ F . Similarly, [f, λg] = λ[f, g].

[f + h, g] = (f + h)′xg
′

y − (f + h)′yg
′

x = f ′

xg
′

y + h′xg
′

y − f ′

yg
′

x − h′yg
′

x

= (f ′

xg
′

y − f ′

yg
′

x) + (h′xg
′

y − h′yg
′

x) = [f, g] + [h, g].
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Similarly, [f, g + h] = [f, g] + [f, h].

[f, f ] = f ′

xf
′

y − f ′

yf
′

x = 0.

[[f, g], h] + [[g, h], f ] + [[h, f ], g]

= [f ′

xg
′

y − f ′

yg
′

x, h] + [g′xh
′

y − g′yh
′

x, f ] + [h′xf
′

y − h′yf
′

x, g]

= (f ′

xg
′

y − f ′

yg
′

x)
′

xh
′

y − (f ′

xg
′

y − f ′

yg
′

x)
′

yh
′

x

+ (g′xh
′

y − g′yh
′

x)
′

xf
′

y − (g′xh
′

y − g′yh
′

x)
′

yf
′

x

+ (h′xf
′

y − h′yf
′

x)
′

xg
′

y − (h′xf
′

y − h′yf
′

x)
′

yg
′

x

= ((f ′

xg
′

y)
′

x − (f ′

yg
′

x)
′

x)h
′

y − ((f ′

xg
′

y)
′

y − (f ′

yg
′

x)
′

y)h
′

x

+ ((g′xh
′

y)
′

x − (g′yh
′

x)
′

x)f
′

y − ((g′xh
′

y)
′

y − (g′yh
′

x)
′

y)f
′

x

+ ((h′xf
′

y)
′

x − (h′yf
′

x)
′

x)g
′

y − ((h′xf
′

y)
′

y − (h′yf
′

x)
′

y)g
′

x

= (f ′′

xxg
′

y + f ′

xg
′′

yx − f ′′

yxg
′

x − f ′

yg
′′

xx)h
′

y

− (f ′′

xyg
′

y + f ′

xg
′′

yy − f ′′

yyg
′

x − f ′

yg
′′

xy)h
′

x

+ (g′′xxh
′

y + g′xh
′′

yx − g′′yxh
′

x − g′yh
′′

xx)f
′

y

− (g′′xyh
′

y + g′xh
′′

yy − g′′yyh
′

x − g′yh
′′

xy)f
′

x

+ (h′′xxf
′

y + h′xf
′′

yx − h′′yxf
′

x − h′yf
′′

xx)g
′

y

− (h′′xyf
′

y + h′xf
′′

yy − h′′yyf
′

x − h′yf
′′

xy)g
′

x

= f ′′

xxg
′

yh
′

y + f ′

xg
′′

yxh
′

y − f ′′

yxg
′

xh
′

y − f ′

yg
′′

xxh
′

y

− f ′′

xyg
′

yh
′

x − f ′

xg
′′

yyh
′

x + f ′′

yyg
′

xh
′

x + f ′

yg
′′

xyh
′

x

+ g′′xxh
′

yf
′

y + g′xh
′′

yxf
′

y − g′′yxh
′

xf
′

y − g′yh
′′

xxf
′

y

− g′′xyh
′

yf
′

x − g′xh
′′

yyf
′

x + g′′yyh
′

xf
′

x + g′yh
′′

xyf
′

x

+ h′′xxf
′

yg
′

y + h′xf
′′

yxg
′

y − h′′yxf
′

xg
′

y − h′yf
′′

xxg
′

y

− h′′xyf
′

yg
′

x − h′xf
′′

yyg
′

x + h′′yyf
′

xg
′

x + h′yf
′′

xyg
′

x.

Clearly, f ′′

xy = f ′′

yx, g
′′

xy = g′′yx and h′′xy = h′′yx. Thus we obtain that

[[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0.

Finally,

[fg, h] = (fg)′xh
′

y − (fg)′yh
′

x = f ′

xgh
′

y + fg′xh
′

y − f ′

ygh
′

x − fg′yh
′

x

= (fg′xh
′

y − fg′yh
′

x) + (f ′

xgh
′

y − f ′

ygh
′

x)

= f(g′xh
′

y − g′yh
′

x) + g(f ′

xh
′

y − f ′

yh
′

x) = f [g, h] + g[f, h].

All these correspondences show that P is a Poisson algebra.
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Example 3. Let F be a field and P = F [x1, y1, . . . , xn, yn] be a poly-
nomial algebra. Put [xj , yj ] = 1, [xj , yk] = 0 whenever j 6= k, [xj , xk] =
[yj , yk] = 0 for all j, k, 1 6 j, k 6 n. Using Leibniz rule and the bilinearity
of the operation, we define [xmj , ysk], [x

m
j , xsk], [y

m
j , ysk]. As we have proved

[xmj , ysj ] = msxm−1

j ys−1

j [xj , yj ] for all positive integers m, s. In particular,

[xmj , ysj ] = msxm−1

j ys−1

j ,

[xmj , ysk] = 0

whenever j 6= k, and

[xmj , xsk] = [ymj , ysk] = 0

for all j, k, 1 6 j, k 6 n and for all positive integers m, s. Further

[xmk

k yskk , x
tj
j ] = xmk

k [yskk , x
tj
j ] + yskk [xmk

k , x
tj
j ]

= yskk [xmk

k , x
tj
j ]− xmk

k [x
tj
j , y

sk
k ].

If k = j, then

[xmk

k yskk , xtkk ] = −xmk

k [xtkk , yskk ] = −sktkx
mk

k xtk−1

k ysk−1

k

= −sktkx
mk+tk−1

k ysk−1

k .

If k 6= j, then [xmk

k yskk , x
tj
j ] = 0.

At the next step we will find [xmk

k yskk , y
rj
j ]. We have

[xmk

k yskk , y
rj
j ] = xmk

k [yskk , y
rj
j ] + yskk [xmk

k , y
rj
j ].

If k = j, then we obtain

[xmk

k yskk , yrkk ] = yskk [xmk

k , yrkk ] = mkrkx
mk−1

k ysk+rk−1

k

If k 6= j, then [xmk

k yskk , y
rj
j ] = 0.

The next step is the finding of [xmk

k yskk , x
tj
j y

rj
j ]. We have

[xmk

k yskk , x
tj
j y

rj
j ] = y

rj
j [xmk

k yskk , x
tj
j ] + x

tj
j [x

mk

k yskk , y
rj
j ].

If k = j, then we obtain

[xmk

k yskk , xtkk yrkk ] = yrkk (−sktkx
mk+tk−1

k ysk−1

k ) + xtkk (mkrkx
mk−1

k ysk+rk−1

k )

= (mkrk − sktk)x
mk+tk−1

k ysk+rk−1

k .

If k 6= j, then [xmk

k yskk , x
tj
j y

rj
j ] = 0.
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Now we can find [xm1

1
ys1
1
xm2

2
ys2
2
. . . xmn

n ysnn , x
tj
j y

rj
j ]. We have

[xm1

1
ys1
1
xm2

2
ys2
2
. . . xmn

n ysnn , x
tj
j y

rj
j ]

= xm1

1
ys1
1
. . . x

mj−1

j−1
y
sj−1

j−1
x
mj+1

j+1
y
sj+1

j+1
. . . xmn

n ysnn [x
mj

j y
sj
j , x

tj
j y

rj
j ]

= (mjrj − sjtj)x
m1

1
ys1
1
. . . x

mj−1

j−1
y
sj−1

j−1

× x
mj+tj−1

j y
sj+rj−1

j x
mj+1

j+1
y
sj+1

j+1
. . . xmn

n ysnn .

Finally,

[xm1

1
ys1
1
xm2

2
ys2
2
. . . xmn

n ysnn , xt1
1
yr1
1
xt2
2
yr2
2
. . . xtnn yrnn ]

= xt2
2
yr2
2
. . . xtnn yrnn [xm1

1
ys1
1
xm2

2
ys2
2
. . . xmn

n ysnn , xt1
1
yr1
1
]

+ xt1
1
yr1
1
xt3
3
yr3
3
. . . xtnn yrnn [xm1

1
ys1
1
xm2

2
ys2
2
. . . xmn

n ysnn , xt2
2
yr2
2
] + . . .

+ xt1
1
yr1
1
. . . x

tn−1

n−1
y
rn−1

n−1
[xm1

1
ys1
1
xm2

2
ys2
2
. . . xmn

n ysnn , xtnn yrnn ]

= (m1r1 − s1t1)x
m1+t1−1

1
ys1+r1−1

1
xm2+t2
2

ys2+r2
2

. . . xmn+tn
n ysn+rn

n

+ (m2r2 − s2t2)x
m1+t1
1

ys1+r1
1

xm2+t2−1

2
ys2+r2−1

2

× xm3+t3
3

ys3+r3
3

. . . xmn+tn
n ysn+rn

n + . . .

+ (mnrn − sntn)x
m1+t1
1

ys1+r1
1

. . . x
mn−1+tn−1

n−1
y
sn−1+rn−1

n−1

× xmn+tn−1
n ysn+rn−1

n

= xm1+t1−1

1
ys1+r1−1

1
. . . xmn+tn−1

n ysn+rn−1
n ((m1r1 − s1t1)x2y2 . . . xnyn

+ (m2r2 − s2t2)x1y1x3y3 . . . xnyn + . . .

+ (mnrn − sntn)x1y1 . . . xn−1yn−1).

Every element of P is a linear combination of elements of the form
xm1

1
ys1
1
. . . xmn

n ysnn , so taking into account the fact that the operation [ , ]
preserves addition, we get the value [f, g] for every elements f, g ∈ P . In
the resulting algebra, we constructed the operation [ , ] in such a way
that the Leibniz rule holds for it.

Let S = {xj , yk| 1 6 j, k 6 n}. Consider all elements of the form

J = [[u, v], w] + [[v, w], u] + [[w, u], v],

where u, v, w ∈ S. By our definition, [u, v] = 0 or [u, v] = 1. It follows
that every commutators [[u, v], w], [[v, w], u], [[w, u], v] matches one of the
following [0, 0], [0, 1], [1, 0], [1, 1]. Since all these commutators are equal
to zero, J = 0. Using now Proposition 1, we obtain that P is a Poisson
algebra.
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Example 4. Let F be a field and L be a Lie algebra having a countable
basis {an| n ∈ N}. Let

[aj , ak] =
∑

n∈N

σjk,nan,

j, k ∈ N, where, as usual, it is assumed that all coefficients σjk,n, except
for a finite number, are equal to 0.

Let P = F [xn| n ∈ N] be a polynomial algebra. Define an operation
[ , ] on P by the following rule. Put

[xj , xk] =
∑

n∈N

σjk,nxn,

j, k ∈ N. Now we define the commutators [xm1

1
xm2

2
. . . xmn

n , xt1
1
xt2
2
. . . xtkk ]

in the same way as it was done in the construction of the previous example.
The computations here are more cumbersome, so we will not present them
here. Every element of algebra P is a linear combination of the elements
of the type xm1

1
. . . xmn

n , so taking into account the fact that the operation
[ , ] preserves addition, we get the value of [f, g] for all elements f, g ∈ P .
In the resulting algebra, we constructed the operation [ , ] exactly in
such a way that it holds Leibniz rule. Since the elements {an| n ∈ N}
constitute a basis of the Lie algebra, for which the Jacobi identity holds.
This implies that the Jacobi identity holds for the elements {xn| n ∈ N}.
These elements generate P as an associative algebra. Proposition 1 implies
that P is a Poisson algebra.

Proposition 4. Let P be a Poisson algebra over a field F . Suppose that
A is a non-abelian subalgebra of P . If A is nilpotent, then A contains zero
divisors.

Proof. Let

A = γ1(A) > γ2(A) > . . . > γn(A) > γn+1(A) = 〈0〉

be the lower central series of A. Since A is not abelian, Z = γn(A) 6=
γn−1(A) = S. It follows that there are elements x ∈ S, y ∈ A such that
[x, y] 6= 0. Since x ∈ S = γn−1(A), [x, y] ∈ [γn−1(A), A] = γn(A) =
Z. An inclusion Z 6 ζ(A) shows that [[x, y], y] = 0. In a similar way,
[[x2, y], y] = 0.

Suppose first that F has a characteristic 0. Then

0 = [[x2, y], y] = [2x[x, y], y] = 2[x, y][x, y] + 2x[[x, y], y] = 2[x, y]2.

Since char(F ) 6= 2, it follows that [x, y]2 = 0.
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Suppose now that F has a prime characteristic p. As we have seen
above, [xn, y] = nxn−1[x, y] for arbitrary positive integer n. If there exists
a positive integer n such that xn = 0, then all is proved. Therefore we
can assume, that xn 6= 0 for every positive integer n. If we suppose that
there exists a positive integer n such that GCD(n, p) = 1 and [xn, y] = 0,
then xn−1[x, y] = 0, and again all is proved. Thus we will suppose that
[xn, y] 6= 0 for each positive integer n such that GCD(n, p) = 1. Choose a
positive integer k such that k > p+ 1 and GCD(k, p) = 1, then

0 = [[xk, y], y] = [kxk−1[x, y], y] = k[x, y][xk−1, y] + kxk−1[[x, y], y] =

= k[x, y][xk−1, y].

Since k − 1 > p, as we have noted above [xk−1, y] 6= 0. Thus the product
of two non-zero elements [x, y] and [xk−1, y] is zero, and at last all is
proved.

The Poisson algebra P is called locally nilpotent, if every finitely gen-
erated subalgebra of P is nilpotent.

Corollary 1. Let P be a Poisson algebra over a field F . Suppose that A
is a locally nilpotent subalgebra of P . If A does not contain zero divisors,
then A is abelian.

Proof. Indeed, suppose that A is not abelian. Then A has the elements
x, y such that [x, y] 6= 0. Let S be a subalgebra of A, generated by the
elements x, y. Then this subalgebra is not abelian. Then Proposition 4
shows that S, being nilpotent, must contain zero divisors, and we obtain
a contradiction. This contradiction shows that A is abelian.

Proposition 5. Let P be a Poisson algebra over a field F . Suppose that
char(F ) = p is a prime and F p = F . If S is a subalgebra of P , then the
subset Sp = {xp| x ∈ S} is a subalgebra of P , moreover, Sp 6 ζ(P ).

Proof. Let x ∈ Sp, and λ is an arbitrary element of a field F . Then x = ap

for some element a ∈ S. Equality F p = F implies that λ = µp for some
element µ ∈ F . Then λx = µpap = (µa)p ∈ Sp.

If y is another element of Sp, then y = bp for some element b ∈ S. If
p = 2, then −y = y and x− y = x+ y = ap + bp = (a+ b)p ∈ Sp. If p > 2,
then x− y = ap − bp = (a− b)p ∈ Sp. Further xy = apbp = (ab)p ∈ Sp.

Let c be an arbitrary element of P and a be an arbitrary element of S.
As we have proved [ap, c] = pap−1[a, c] = 0. It follows that Sp 6 ζ(P ).
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Corollary 2. Let P be a Poisson algebra over a field F . Suppose that
char(F ) = p is a prime and F p = F . Then the subset P p = {xp| x ∈ P}
is a subalgebra of P , moreover, P p 6 ζ(P ).

Corollary 3. Let P be a Poisson algebra over a field F . Suppose that
char(F ) = p is a prime and F p = F . If S is a finite-dimensional subalgebra
of P and S does not contain zero divisors, then S 6 ζ(P ).

Proof. Consider the mapping f : S → S defined by the rule: f(x) = xp for
all x ∈ S. We have Im(f) = Sp. By Proposition 5, Sp is a subalgebra of
P . Since S does not contains zero divisors, Ker(f) = 〈0〉. Thus S ∼=F Sp.
In particular, dimF (S) = dimF (S

p). It follows that S = Sp. Proposition 5
proves inclusion S = Sp 6 ζ(P ).

Corollary 4. Let P be a Poisson algebra over a field F . Suppose that
char(F ) = p is a prime and F p = F . If P is finite-dimensional and P
does not contain zero divisors, then P is abelian.

We note that every finite field F of characteristic p satisfies F p = F . It
implies that every locally finite field F of characteristic p satisfies F p = F .
Thus, we obtain

Corollary 5. Let P be a Poisson algebra over a finite field F . If P is
finite-dimensional and P does not contain zero divisors, then P is abelian.

Corollary 6. Let P be a Poisson algebra over a locally finite field F . If
P is finite-dimensional and P does not contain zero divisors, then P is
abelian.

Corollary 7. Let P be a Poisson algebra over a field F . Suppose that
char(F ) = p is a prime and F p = F . If S is a locally (finite-dimensional)
subalgebra of P and S does not contain zero divisors, then S 6 ζ(P ).

Proof. Indeed, every finitely generated subalgebra A of S has finite di-
mension. Then Corollary 3 implies that A 6 ζ(P ). Since it is true for
every finitely generated subalgebra of S, S 6 ζ(P ).

Corollary 8. Let P be a Poisson algebra over a field F . Suppose that
char(F ) = p is a prime and F p = F . If P is locally (finite-dimensional)
and P does not contain zero divisors, then P is abelian.

Corollary 9. Let P be a Poisson algebra over a finite field F . If P is
locally (finite-dimensional) and P does not contain zero divisors, then P
is abelian.

Corollary 10. Let P be a Poisson algebra over a locally finite field F .
If P is locally (finite-dimensional) and P does not contain zero divisors,
then P is abelian.
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2. The Poisson algebras that are finite-dimensional over

the upper hypercenter

Lemma 1. Let L be a Lie algebra over a field F . If j, k are positive
integers such that k > j, then [γj(L), ζk(L)] 6 ζk−j(L).

Proof. We will use induction on j. For j = 1 we have

[γ1(L), ζk(L)] = [L, ζk(L)] 6 ζk−1(L).

Suppose now that j > 1. We have already proved the inclusions

[γm(L), ζk(L)] 6 ζk−m(L)

for all m < j. Choose the arbitrary elements x ∈ L, y ∈ γj−1(L), z ∈ ζk(L).
We have

[[x, y], z] = [x, [y, z]]− [y, [x, z]].

Since [y, z] ∈ [γj−1(L), ζk(L)], the induction hypothesis implies that
[y, z] ∈ ζk−j+1(L), so that, [x, [y, z]] ∈ [L, ζk−j+1(L)] 6 ζk−j(L). Further,

[y, [x, z]] ∈ [γj−1(L), [L, ζk(L)]] 6 [γj−1(L), ζk−1(L)].

Since k − 1 > j − 1, using the induction hypothesis, we obtain that

[γj−1(L), ζk−1(L)] 6 ζk−1−j+1(L) = ζk−j(L).

It follows that [γj(L), ζk(L)] 6 ζk−j(L).

Lemma 2. Let L be a Lie algebra over a field F . Suppose that the factor-
algebra L/ζn(L) has a finite codimension d and let {e1 + ζn(L), . . . , ed +
ζn(L)} be a basis of L/ζn(L). Then γn+1(L) generated by the elements
[u1, . . . , un, un+1] where uj ∈ {e1, . . . , ed}, 1 6 j 6 n+ 1.

Proof. We use induction by n. Suppose first that n = 1 and put Z = ζ(L).
Then for every element x ∈ L we have x = λ1e1 + . . . + λded + zx for
suitable coefficients λ1, . . . , λd ∈ F and element zx ∈ Z.

Let y = µ1e1 + . . .+ µded + zy, µ1, . . . , µd ∈ F , zy ∈ Z. Then

[x, y] = [λ1e1 + . . .+ λded + zx, µ1e1 + . . .+ µded + zy]

=
∑

16j,k6d

λjµk[ej , ek].

As we can see, γ2(L) = [L,L] is a subalgebra generates by the ele-
ments [ej , ek], 1 6 j, k 6 d. More precisely, since [ej , ek] = −[ek, ej ]
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and [ej , ej ] = 0, 1 6 j, k 6 d, γ2(L) generates by the elements [ej , ek]
where 1 6 j < k 6 d.

Suppose now that n > 1 and that we have already proved that an ideal
γn(L/Z) generated by the elements [u1+Z, . . . , un+Z] = [u1, . . . , un]+Z,
where uj ∈ {e1, . . . , ed}, 1 6 j 6 n. Let x be an arbitrary element of L and
y be an arbitrary element of γn(L). Then y + Z ∈ γn(L) + Z = γn(L/Z),
so that y = [u1, . . . , un] + z for some element z ∈ Z. For element x we
obtain x = λ1e1 + . . .+ λded + cx for suitable coefficients λ1, . . . , λd ∈ F
and element cx ∈ ζn(L).

We have

[x, y] = [λ1e1 + . . .+ λded + cx, [u1, . . . , un] + z]

= λ1[e1, [u1, . . . , un]] + . . .+ λd[ed, [u1, . . . , un]] + [cx, [u1, . . . , un]].

Lemma 1 implies that [cx, [u1, . . . , un]] = 0, and the result is proved.

Proof of Theorem A. Put Z = ζ(P ). Then P = Z ⊕A for some subspace
A of P . Choose a basis {e1, . . . , ed} in the subspace A. Then for every
element x ∈ P we have x = λ1e1 + . . .+ λded + zx for suitable coefficients
λ1, . . . , λd ∈ F and element zx ∈ Z.

A subspace [P, P ] is an ideal of a Lie algebra P (+, [ , ]). Lemma 2
shows that [P, P ] generates as a subspace by the elements [ej , ek] where
1 6 j, k 6 d. More precisely, since [ej , ek] = −[ek, ej ] and [ej , ej ] = 0,
1 6 j, k 6 d, the subalgebra [P, P ] is generated by the elements [ej , ek]
where 1 6 j < k 6 d.

Consider an ideal K of an associative algebra P (+, ·) generated by
[P, P ]. Every its element has a form a1x1 + . . .+ arxr where a1, . . . , ar ∈
[P, P ], x1, . . . , xr are the arbitrary elements of P . Let x be an arbitrary
element of P , x = λ1e1+ . . .+λded+ zx where λ1, . . . , λd ∈ F and zx ∈ Z.
We have

[ej , ek]x = [ej , ek](λ1e1 + . . .+ λded + zx)

= λ1e1[ej , ek] + . . .+ λded[ej , ek] + zx[ej , ek].

Using Leibniz rule we obtain

[ej , ekzx] = ek[ej , zx] + zx[ej , ek] = zx[ej , ek].

For element ekzx we have the decomposition ekzx = ν1e1+ . . .+νded+zx,k.
Therefore

[ej , ekzx] = [ej , ν1e1 + . . .+ νded + zx,k] = ν1[ej , e1] + . . .+ νd[ej , ed].
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These equalities show that K as a vector space is generated by the elements
[ej , ek], es[ej , ek], 1 6 s 6 d, 1 6 j < k 6 d. It follows that K has a
dimension at most

1

2
d(d− 1) + d

(

1

2
d(d− 1)

)

=
1

2
d(d− 1)(d+ 1) =

1

2
d(d2 − 1).

The inclusion [K,K] 6 [P, P ] 6 K shows that K is a subalgebra of P .
Moreover, [K,P ] 6 [P, P ] 6 K, so that K is an ideal of Lie algebra
P (+, [ , ]).

Corollary 11. Let P be a Poisson algebra over a field F . Suppose that
char(F ) = p is a prime and F p = F . If P is finite-dimensional over the
center and P does not contain zero divisors, then P is abelian.

Proof. Theorem A implies that P includes a finite-dimensional ideal A
such that P/A is abelian. By Corollary 3, A 6 ζ(P ). Hence, P is nilpotent.
Using now Corollary 1 we obtain that P must be abelian.

Corollary 12. Let P be a Poisson algebra over a finite field F . If P is
finite-dimensional over the center and P does not contain zero divisors,
then P is abelian.

Corollary 13. Let P be a Poisson algebra over a locally finite field F .
If P is finite-dimensional over the center and P does not contain zero
divisors, then P is abelian.

Proof of Theorem B. Put Z = ζn(P ). Then P = Z⊕A for some subspace
A of P . Choose an arbitrary basis {e1, . . . , ed} in the subspace A. Then
for every element x ∈ P we have

x = λ1e1 + . . .+ λded + zx

for suitable coefficients λ1, . . . , λd ∈ F and element zx ∈ Z.
A subspace γn+1(P ) is an ideal of a Lie algebra P (+, [ , ]). Lemma 2

shows that γn+1(P ) generates as a subspace by [u1, . . . , un, un+1] where
uj ∈ {e1, . . . , ed}, 1 6 j 6 n+ 1. In particular, dimF (γn+1(P )) 6 dn+1.

Consider an ideal K of an associative algebra P (+, ·), generated by
γn+1(P ). Every its element has a form a1x1+ . . .+arxr where a1, . . . , ar ∈
γn+1(P ), x1, . . . , xr are the arbitrary elements of P . Let x be an arbitrary
element of P , x = λ1e1+ . . .+λded+ zx where λ1, . . . , λd ∈ F and zx ∈ Z.
We have

[u1, . . . , un+1]x = [u1, . . . , un+1](λ1e1 + . . .+ λded + zx)

= λ1e1[u1, . . . , un+1] + . . .+ λded[u1, . . . , un+1] + zx[u1, . . . , un+1].



“adm-n1” — 2021/4/10 — 20:38 — page 104 — #108

104 On extension of Baer results to Poisson algebras

Using Leibniz rule we obtain

[[u1, . . . , un], un+1zx] = un+1[[u1, . . . , un], zx] + zx[[u1, . . . , un], un+1].

Lemma 1 implies that [[u1, . . . , un], zx] = 0. Hence

zx[u1, . . . , un+1] = [[u1, . . . , un], un+1zx].

For element un+1zx we have decomposition un+1zx = ν1e1+. . .+νded+zx,n
where again zx,n ∈ Z, therefore

[[u1, . . . , un], un+1zx] = [[u1, . . . , un], ν1e1 + . . .+ νded + zx,n]

= ν1[[u1, . . . , un], e1] + . . .+ νd[[u1, . . . , un], ed] + [[u1, . . . , un], zx,n].

By Lemma 1, [[u1, . . . , un], zx,n] = 0. It follows that zx[u1, . . . , un+1] ∈
γn+1(P ). Thus we can see that K as a vector space is generated by
the elements [u1, . . . , un, un+1] and es[u1, . . . , un, un+1], uj ∈ {e1, . . . , ed},
1 6 j 6 n + 1, 1 6 s 6 d. It follows that dimF (K) 6 dn+1 + ddn+1 =
dn+1(1 + d).

Let x be an arbitrary element of P , x = λ1e1 + . . .+ λded + zx where
λ1, . . . , λd ∈ F and zx ∈ Z. Since γn+1(P ) is an ideal of Lie algebra
P (+, [ , ]), [[u1, . . . , un+1], x] ∈ γn+1(P ). Furthermore

[es[u1, . . . , un+1], x] = [es[u1, . . . , un+1], λ1e1 + . . .+ λded + zx]

= λ1[es[u1, . . . , un+1], e1] + . . .+ λd[es[u1, . . . , un+1], ed]

+ [es[u1, . . . , un+1], zx].

We have

[es[u1, . . . , un+1], ej ] = [u1, . . . , un+1][es, ej ] + es[[u1, . . . , un+1], ej ].

We note that [u1, . . . , un+1][es, ej ] ∈ K, [[u1, . . . , un+1], ej ] ∈ γn+1(P ), so
that es[[u1, . . . , un+1], ej ] ∈ K. Thus [es[u1, . . . , un+1], ej ] ∈ K. Now we
have

[es[u1, . . . , un+1], zx] = [u1, . . . , un+1][es, zx] + es[[u1, . . . , un+1], zx].

We note that [u1, . . . , un+1][es, zx] ∈ K and [[u1, . . . , un+1], zx] = 0 by
Lemma 1. Hence [es[u1, . . . , un+1], zx] ∈ K. These inclusion shows that K
also is an ideal of Lie algebra P (+, [ , ]). Then K is an ideal of Poisson
algebra P . Finally, inclusion γn+1(P ) 6 K shows that factor-algebra P/K
is nilpotent of nilpotency class at most n.
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Proof of Corollary B1. Theorem B implies that an algebra P includes a
finite-dimensional ideal A such that P/A is nilpotent. By Corollary 3,
A 6 ζ(P ). Hence, P is nilpotent. Using Corollary 1 we obtain that P
must be abelian.

Now we present our last result.

Theorem 1. Let P be a finitely generated Poisson algebra over a field F
and K be an ideal of P . If K has a finite codimension, then K is finitely
generated as an ideal.

Proof. Let M = {a1, . . . , an} be a finite subset generated P , and let
B be a subspace of P such that P = B ⊕ K. Let codimF (K) = d.
Then dimF (B) = d. Choose in B a basis {b1, . . . , bd}. Denote by prB
(respectively prK) the canonical projection of P on B (respectively on K).
Let E be the ideal, generated by the elements

{prK(aj), prK([aj , bm]), prK(ajbm)| 1 6 j 6 n, 1 6 m 6 d}.

By this choice, K includes E, and E is a finitely generated as an ideal of P .
If x is an arbitrary element of E +B, then x = u+ b where u ∈ E, b ∈ B.
Furthermore, b = α1b1 + . . .+ αdbd for suitable elements α1, . . . , αd ∈ F .
We have

[b, aj ] = [α1b1 + . . .+ αdbd, aj ] = α1[b1, aj ] + . . .+ αd[bd, aj ]

= α1(prK([b1, aj ]) + prB([b1, aj ])) + . . .

+ αd(prK([bd, aj ]) + prB([bd, aj ]))

= α1prK([b1, aj ]) + . . .+ αdprK([bd, aj ])

+ α1prB([b1, aj ]) + . . .+ αdprB([bd, aj ]),

baj = (α1b1 + . . .+ αdbd)aj = α1(b1aj) + . . .+ αd(bdaj)

= α1(prK(b1aj) + prB(b1aj)) + . . .+ αd(prK(bdaj) + prB(bdaj))

= α1prK(b1aj)+. . .+αdprK(bdaj)+α1prB(b1aj)+. . .+αdprB(bdaj).

The elements
∑

16m6d

(αmprK([bm, aj ]) + αmprB([bm, aj ]))

and
∑

16m6d

(αmprK(bmaj) + αmprB(bmaj))

clearly belong to E + B. It follows that E + B is an ideal of P . The
equality aj = prK(aj) + prB(aj) implies that aj ∈ E + B, 1 6 j 6 n. It



“adm-n1” — 2021/4/10 — 20:38 — page 106 — #110

106 On extension of Baer results to Poisson algebras

follows that E +B = P = K +B. The inclusion E 6 K and the equation
K ∩B = 〈0〉 imply that K = E. In particular, K is a finitely generated
as an ideal.
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