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Abstract. Let G be a finite group. The main supergraph

S(G) is a graph with vertex set G in which two vertices x and

y are adjacent if and only if o(x) | o(y) or o(y) | o(x). In this

paper, we will show that G ∼= PSL(2, p) or PGL(2, p) if and only if

S(G) ∼= S(PSL(2, p)) or S( PGL(2, p)), respectively. Also, we will

show that if M is a sporadic simple group, then G ∼= M if only if

S(G) ∼= S(M).

Introduction

Let G be a finite group and x ∈ G. The order of x is denoted by
o(x). The set of all element orders of G is denoted by πe(G) and the
set of all prime divisors of |G| is denoted by π(G). It is clear that the
set πe(G) is closed and partially ordered by divisibility, and hence it is
uniquely determined by µ(G), the subset of its maximal elements. Set
mi = mi(G) = |{g ∈ G| o(g) = i}|. In this paper, we use p for denoting a
prime number unless specifically stated otherwise.

We define the graph S(G) with vertex set G such that two vertices x
and y are adjacent if and only if o(x) | o(y) or o(y) | o(x). This graph is
called the main supergraph of power graph G and was introduced in [13].
Power graph P(G) is a graph with the vertex set G, in which two distinct
elements are adjacent if one is a power of the other. The main properties
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of this graph were investigated by Cameron [9] and Chakrabarty et al. [10].
The proper main supergraph S∗(G) are defined as graphs constructed
from S(G) by removing the identity element of G. We write x ∼ y when
two vertices x and y are adjacent.

We say that groups G1 and G2 are of the same order type if and only
if mt(G1) = mt(G2) for all t. By the definition of the main supergraph,
it is clear that if G1 and G2 are groups with the same order type, then
S(G1) ∼= S(G2). The converse of this result is not generally correct. To
prove, we consider G1 = Z4×Z4 and G2 = Z4×Z2×Z2. Since G1 and G2

are 2-groups, we have S(G1) ∼= S(G2). But m4(G1) = 12 > 8 = m4(G2)
and m2(G1) = 3 < 7 = m2(G2).

In 1987, J. G. Thompson [16, Problem 12.37] posed the following
problem:

Thompson’s Problem. Suppose that G1 and G2 are two groups of the
same order type. If G1 is solvable, is it true that G2 is also necessarily
solvable?

Let nse(G) be the set of the number of elements of the same order in
G. If G1 and G2 are the same order type, then nse(G1) = nse(G2) and
|G1| = |G2|. Therefore, if a group G has been uniquely determined by its
order and nse(G), then Thompson’s problem is true for G. In [1, 4, 6], it
is proved that the group PSL(2, p), PGL(2, p), and the sporadic simple
groups characterizable by their nse and order. Consequently, there is no
solvable group that has the same order type as PSL(2, p), PGL(2, p), and
the sporadic simple groups.

Clearly, for two groups G1 and G2 that are the same order type,
S(G1) ∼= S(G2). So, if a group G has been uniquely determined by S(G),
then Thompson’s problem is true for G. In [5, 7, 8], the authors of this
paper proved that the alternating group of degree p, p + 1, p + 2, the
symmetric group of degree p, the small Ree group 2G2(3

2n+1), and the
Suzuki group are uniquely determined by their main supergraph. So, there
is no solvable group that has the same order type as these simple groups.
Also, in this paper, by the main supergraph, we show that there is no
solvable group that has the same order type as PSL(2, p), PGL(2, p), and
the sporadic simple groups.

We construct the prime graph of G, which is denoted by Γ(G), as
follows: the vertex set is π(G) and two distinct vertices p and q are joined
by an edge if and only if G has an element of order pq (p 6= q). Let t(G) be
the number of connected components of Γ(G) and let π1, π2, . . . , πt(G) be
the connected components of Γ(G). If 2 ∈ π(G), then we always suppose
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2 ∈ π1. If r ∈ π(G) and {r} is a connected component of Γ(G), then we
say r is an isolated vertex of the prime graph of G.

Throughout this paper we denote by φ the Euler’s totient function.
We denote by Gq a Sylow q-subgroup of G and nq(G) is the number of
Sylow q-subgroup of G, that is, nq(G) = |Sylq(G)|. The other notation
and terminology in this paper are standard, and the reader is referred to
[11] if necessary.

1. Preliminary results

In this section, we present some preliminary results which will turn
out to be useful in what follows. We start with a classical theorem of
Frobenius.

Lemma 1 ([12]). Let G be a finite group and m be a positive integer

dividing |G|. If Lm(G) = {g ∈ G|gm = 1}, then m | |Lm(G)|.

Lemma 2 ([2, Theorem 2.3]). Let p be a prime that is not a Mersenne

prime. If G is a group satisfying

(1) |G| = |PSL(2, p)|,
(2) |Sylp(G)| = |Sylp(PSL(2, p))|,

then G ∼= PSL(2, p).

Lemma 3 ([2, Theorem 2.5]). Let p be a Mersenne prime. If G is a group

satisfying

(1) |G| = |PSL(2, p)|,
(2) |Sylp(G)| = |Sylp(PSL(2, p))|, and

(3) p is an isolated vertex of the prime graph of G,

then G ∼= PSL(2, p) unless it is the case that p = 7 and G ∼= PΓL2(8).

Lemma 4 ([3, Theorem 1.1]). Let p be a prime and G be a group such

that |G| = |PGL(2, p)| and |NG(R)| = |NPGL(2,p)(S)|, where R ∈ Sylp(G)
and S ∈ Sylp(PGL(2, p)). Then the following assertions are true.

(1) If p is not a Mersenne prime, then G is isomorphic to PSL(2, p)×C2,

SL(2, p) or PGL(2, p).
(2) If p > 3 is a Mersenne prime and p is an isolated vertex of the prime

graph of G, then G ∼= PGL(2, p).

Lemma 5 ([15]). Let S be a sporadic simple group and p be the greatest

element of π(S). Then S is uniquely determined by |S| and np(S).
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Remark 1. Let mn = mn(G) be the number of elements of order n of
a finite group G. We note that mn = kφ(n), where k is the number of
cyclic subgroups of order n in G. If n | |G|, then by Lemma 1 we have
φ(n) | mn and n |

∑
d|nmd.

2. Main results

In this section, we prove that the groups PSL(2, p), PGL(2, p), and the
sporadic simple groups uniquely determined by their main supergraph.

Theorem 1. Let G be a finite group and p > 2 a prime number. If

S(PSL(2, p)) ∼= S(G), then G ∼= PSL(2, p).

Proof. By the definition of the main supergraph and our assumption, we
have |G| = |PSL(2, p)|. Also, by S(PSL(2, p)) ∼= S(G) and the definition
of the proper main supergraph, we have S∗(PSL(2, p)) ∼= S∗(G).

By [14, p. 213], µ(PSL(2, p)) = {(p−1)/2, p, (p+1)/2}. Thus PSL(2, p)
has not any element of order rp, where r ∈ π(G). By [1, Lemmas 2.3
and 2.4], PSL(2, p) contains exactly p2 − 1 elements of order p. It follows
that S∗(G) is a disconnected graph and at least one of the connected
components of this graph is a complete graph of order p2 − 1. Denote by
Kp2−1 a complete subgraph of order p2 − 1 in the graph S∗(G). We prove
that the vertices of Kp2−1 are elements of order p.

First, let x and y be two vertices of Kp2−1 such that o(x) = r, o(y) = s,
r, s ∈ π(G) and r 6= s. Since Kp2−1 is a complete graph, we have x ∼ y,
which is a contradiction. Let r be a prime and the vertices of Kp2−1 be all
of x ∈ G such that o(x) = r, r2,..., or rk (note that exp(Gr) = rk). Then
with considering n = |Gr| in Remark 2.1, |Gr| | (1+mr+mr2+...+mrk) =
1 + p2 − 1 = p2. It follows that r = p. Hence, the vertices of Kp2−1 are
x ∈ G such that o(x) = pk, where k > 1 is an integer.

Since |G| = p(p2−1)/2, we have p2 ∤ |G| and so p2 /∈ πe(G). Therefore,
the vertices of Kp2−1 is all of elements of order p in G. Thus mp(G) = p2−1.

Let pr ∈ πe(G), where r ∈ π(G)\{p}. Then there exists an element
x ∈ G such that o(x) = r and x is one of the vertices of Kp2−1, which is a
contradiction. Thus p is an isolated vertex of the prime graph of G.

By Remark 1, mp(G) = φ(p)np(G) = (p − 1)np(G) = p2 − 1, so
np(G) = p+ 1. By Lemmas 2 and 3, G ∼= PSL(2, p) unless it is the case
that p = 7. If p = 7, then G ∼= PSL(2, 7) or PΓL2(8). Let G ∼= PΓL2(8).
We have πe(PΓL2(8)) = {1, 2, 3, 6, 7}. So, S∗(PΓL2(8)) has two connected
components, but S∗(PSL(2, 7)) has three connected components, we get
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a contradiction by S∗(PSL(2, 7)) ∼= S∗(G). Therefore, G ∼= PSL(2, 7) for
the case p = 7. The proof is completed.

Theorem 2. Let G be a finite group and p > 2 a prime number. If

S(PGL(2, p)) ∼= S(G), then G ∼= PGL(2, p).

Proof. The proof of this theorem is similar to the proof of the Theorem 1.
Since some part of the proof is different from Theorem 1, we have repeated
the proof in the following.

By the definition of the main supergraph and our assumption, we have
|G| = |PGL(2, p)| and S∗(PGL(2, p)) ∼= S∗(G).

By [17, Lemma 2.1], µ(PGL(2, p)) = {p− 1, p, p+1}. Thus PGL(2, p)
has not any element rp, where r ∈ π(G). By [4, Lemma 2.4], G contains
exactly p2 − 1 elements of order p. It follows that S∗(G) is a disconnected
graph and at least one of the connected components of this graph is a
complete graph of order p2 − 1. Denote by Kp2−1 a complete subgraph of
order p2 − 1 in the graph S∗(G). We prove that the vertices of Kp2−1 are
elements of order p.

First, let x and y be two vertices of Kp2−1 such that o(x) = r, o(y) = s,
r, s ∈ π(G) and r 6= s. Since Kp2−1 is a complete graph, we have x ∼ y,
which is a contradiction. Let r be a prime and the vertices of Kp2−1 be
x ∈ G such that o(x) = r, r2,..., rk (note that exp(Gr) = rk). Then with
considering n = |Gr| in Remark 1, |Gr| | (1 +mr +mr2 + ... +mrk) =
1 + p2 − 1 = p2. It follows that r = p. Hence, the vertices of Kp2−1 are
x ∈ G such that o(x) = pk, where k > 1 is an integer.

Since |G| = p(p2−1), we have p2 ∤ |G| and so p2 /∈ πe(G). Therefore, the
vertices of Kp2−1 is all of elements of order p in G. Thus mp(G) = p2 − 1.

Let pr ∈ πe(G), where r ∈ π(G)\{p}. Then there exists an element x in
G such that o(x) = r and x is one of the vertices of Kp2−1, a contradiction.

By Remark 1, mp(G) = φ(p)np(G) = (p − 1)np(G) = p2 − 1, so
np(G) = p+ 1.

If p is not a Mersenne prime, then by Lemma 4 G is isomorphic to
PSL(2, p)×C2, SL(2, p) or PGL(2, p). Let G be isomorphic to PSL(2, p)×
C2 or SL(2, p). Then G has an element of order 2p, which is a contradiction.
Therefore, G ∼= PGL(2, p).

If p is a Mersenne prime, then by Lemma 4, G ∼= PGL(2, p).

Theorem 3. Let G be a finite group. If S(M) ∼= S(G) where M is a

sporadic simple group, then G ∼= M .

Proof. Since S(M) ∼= S(G), we have |G| = |M | and S∗(M) ∼= S∗(G). Let
p be the greatest element of π(M). By [11], p2 ∤ |G| and pr /∈ πe(M) for
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every r ∈ π(M). Thus S∗(M) ∼= S∗(G) is a disconnected graph and at
least one of the connected components of this graph is complete graph of
order t = mp(M). Denote by Kt a complete subgraph of order t in the
graph S∗(G). We will show that the vertices of Kt are elements of order p.

First, let x and y be two vertices of Kt such that o(x) = r, o(y) = s,
r, s ∈ π(G) and r 6= s. Since Kt is a complete graph, we have x ∼ y, a
contradiction. Let r be a prime and the vertices of Kt be all of x ∈ G such
that o(x) = r, r2,..., or rk (note that exp(Gr) = rk). Then by Remark 1,
|Gr| | (1+mr +mr2 + ...+mrk) = 1+ t. Now, it is easy to check (case by
case for all of sporadic simple group M) that r = p. Hence, the vertices
of Kt are x ∈ G such that o(x) = pk, where k > 1 is an integer.

Since p2 ∤ |G|, we have p2 /∈ πe(G). Therefore, the vertices of Kt is all
of elements of order p in G. Hence, mp(G) = mp(M). Remark 1 follows
that G and M have equal numbers of Sylow p-subgroups and by Lemma 5,
G is isomorphic to M and now the proof is completed.

By our example in the introduction, we have seen if S(G1) ∼= S(G2),
then it is not necessary that G1

∼= G2. But by Theorems 1 and 3, we have
just seen that sporadic simple groups and projective special linear simple
group PSL(2, p) uniquely determined by their main supergraph. So, we
can pose the following question:

Question. Let G be a finite group and M a non-abelian finite simple
group. Is it true that G ∼= M if only if S(G) ∼= S(M)?
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