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Abstract. Let F be a field, A be a vector space over F and

G be a subgroup of GL(F,A). We say that G has a dense family

of subgroups, having finite central dimension, if for every pair of

subgroups H, K of G such that H 6 K and H is not maximal

in K there exists a subgroup L of finite central dimension such

that H 6 L 6 K. In this paper we study some locally soluble

linear groups with a dense family of subgroups, having finite central

dimension.

Introduction

We recall that a group G that is isomorphic to a group of automor-
phisms of a vector space A over a field F is called a linear group and we
denote the group of all such automorphisms by GL(F,A). If dimF (A),
the dimension of A over F , is finite, say n, then we say that G is a finite

dimensional linear group and it is then well-known that GL(F,A) can be
identified with the group of n× n matrices with entries in F . From the
outset, finite dimensional linear groups have played an important role in
group theory. This is partly due to the correspondence mentioned above,
but also because of the rich interplay between geometrical and algebraic
ideas associated with such groups.
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The study of the subgroups of GL(F,A) in the case when A is infinite
dimensional over F has been much more limited and normally requires
some additional restrictions. There is quite a large array of papers that
show the effectiveness of applying various natural restrictions for the study
of infinite dimensional linear groups (see survey articles [1–4]). One area
that proved to be quite effective was the study of linear groups that has
a very big family of subgroups, having finite central dimension.

Let G be a subgroup of GL(F,A) and Z = CA(G). It is not hard to
see that a subspace Z is G-invariant and G acts trivially on Z. Therefore,
we see that G actually acts on the quotient-space A/Z.

Let G be a subgroup of GL(F,A). Then the central dimension

of G is a dimension of the quotient-space A/ζG(A). In particular, if
dimF (A/ζG(A)) is finite, then we will say that G has finite central

dimension. According to the definition, linear groups, having finite central
dimension, quite close to finite dimensional linear groups. Therefore, it
was obvious to study the infinite dimensional linear groups, saturated by
subgroups of finite central dimension. Among the works on this subject,
we can highlight [1, 5–10].

Among the restrictions that contributed a significant role in the study
of both finite and infinite groups, we can highlight the restriction associated
with the presence of one or another family of dense subgroups in a group.
Let P be a some property. We say that a group G has a dense family of

subgroups, having property P, if for every pair of subgroups H, K of G
such that H 6 K and H is not maximal in K there exists a subgroup L,
having property P , such that H 6 L 6 K (we can note that L can match
with one of the subgroups H or K).

Groups with different natural dense family have been considered by
many authors (see, for example, [11–20]).

In this paper we will apply this restriction for a study of infinite
dimensional linear groups.

Let F be a field, A be a vector space over F and G be a subgroup of
GL(F,A). We say that G has a dense family of subgroups, having finite

central dimension, if for every pair of subgroups H, K of G such that
H 6 K and H is not maximal in K there exists a subgroup L of finite
central dimension such that H 6 L 6 K (we can note that L can match
with one of the subgroups H or K).

Note that infinite dimensional linear groups, whose proper subgroups
have finite central dimension, has this property. Locally soluble groups,
whose proper subgroups have finite central dimension, were studied in [5].
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Therefore, in this paper, the study of linear groups with a dense family of
subgroups, having finite central dimension, will be conducted under the
additional condition of their local solvability.

The main result of this paper is the following

Theorem 1. Let F be a field, A be a vector space over F , having infinite

dimension, and G be a locally soluble subgroup of GL(F,A). Suppose that

G has infinite central dimension. If G has a dense family of subgroups

having finite central dimension, then G is a group of one of following

types:

(i) G is cyclic or quasicyclic p-group for some prime p;
(ii) G = K ×L where K is cyclic or quasicyclic p-group for some prime

p and L is a group of prime order;

(iii) G = 〈a, b| |a| = 2n, |b| = 2, ab = at where t = 1 + 2n−1, n > 3〉;
(iv) G = 〈a, b| |a| = 2n, |b| = 2, ab = at where t = −1 + 2n−1, n > 3〉;
(v) G = 〈a, b| |a| = 2n, |b| = 2, ab = a−1〉;
(vi) G = 〈a, b| |a| = 2n, b2 = at where t = 2n−1, ab = a−1〉;
(vii) G = 〈a, b| |a| = pn, |b| = p, ab = at, t = 1+ pn−1, n > 2〉, p is an odd

prime;

(viii) G = 〈a〉⋋〈b〉, |a| = pn where p is an odd prime, |b| = q, q is a prime,

q 6= p;
(ix) G = B ⋋ 〈a〉, |a| = pn, B = CG(B) is an elementary abelian q-

subgroup, p and q are primes, p 6= q, B is a minimal normal subgroup

of G;

(x) G = K ⋋ 〈b〉, where K is a quasicyclic 2-subgroup, |b| = 2 and

xb = x−1 for each element x ∈ K;

(xi) G = K〈b〉, where K = 〈an| a
p
1
= 1, apn+1

= an, n ∈ N〉 is a quasi-

cyclic 2-subgroup, b2 = a1 and abn = a−1
n , n > 2;

(xii) G = K⋋〈b〉, where K is a quasicyclic p-subgroup, p is an odd prime,

K = CG(K), |b| = q is a prime such that p 6= q;
(xiii) G = Q⋋K, where K is a quasicyclic p-subgroup, Q = CG(Q) is an

elementary abelian q-subgroup, p, q are primes, p 6= q, Q is a minimal

normal subgroup of G.

1. Preliminary results

Lemma 1. Let F be a field, A be a vector space over F and G be a subgroup

of GL(F,A).

(i) If H, K are two subgroups of G such that H 6 K and K has finite

central dimension, then H has finite central dimension.
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(ii) If H, K are two subgroups of G, having finite central dimension, then

the both subgroups 〈H,K〉 and H ∩K have finite central dimension.

(iii) If G has finite central dimension and char(F ) = p is a prime, then

G includes a normal elementary abelian p-subgroup L such that

G/L is isomorphic to some subgroup of a group GL(n, F ) where

n = dimF (A/CA(G)).
(iv) If G has finite central dimension and char(F ) = 0, then G includes

a normal abelian torsion-free subgroup L such that G/L is isomorphic

to some subgroup of GL(n, F ) where n = dimF (A/CA(G)).

Proof. (i) If K has finite central dimension, then CA(K) has finite codi-
mension in a vector space A. An inclusion H 6 K implies that CA(K) 6
CA(H). It follows that CA(H) has finite codimension in A.

(ii) Clearly CA(〈H,K〉) and CA(H ∩ K) includes CA(H) ∩ CA(K).
Note that the last subspace has finite codimension in A. It follows that
codimF (CA(〈H,K〉)) and codimF (CA(H ∩K)) are finite.

(iii)–(iv) Let L = CG(A/CA(G)), then G/L is isomorphic to a subgroup
of GL(F,A/CA(G)) ∼= GL(n, F ) where n = centdimF (G). If x ∈ L, then
x(a) = a + c for some element c ∈ CA(G). In other words, x(a) − a =
(x− 1)(a) ∈ CA(G) for every element a ∈ A. If y is another element of L,
then

(xy)(a) = x(y(a)) = x(a+ (y − 1)(a)) = a+ (x− 1)(a) + (y − 1)(a).

In a similar way we obtain that (yx)(a) = a + (y − 1)(a) + (x − 1)(a).
Since it is true for every element a of A, xy = yx. If L is non-trivial, then
for every element 1 6= x ∈ L there is an element d ∈ A such that x(d) 6= d.
It follows that d1 = (x− 1)(d) 6= 0. We have

x2(d) = x(x(d)) = x(d+ d1) = x(d) + d1 = d+ d1 + d1 = d+ 2d1.

Using an ordinary induction, we obtain that xn(d) = d+ nd1. Thus we
can see that if char(F ) = p is a prime, then xp = 1. If char(F ) = 0, then
nd1 6= 0 for all positive integer n, so that xn 6= 1 for all positive integer n.
This means that L is a torsion-free subgroup.

Corollary 1. Let F be a field, A be a vector space over F , having infinite

dimension, and G be a subgroup of GL(F,A). If H, K are two subgroups

of G such that H 6 K and a subgroup H has infinite central dimension,

then K has infinite central dimension.
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Corollary 2. Let F be a field, A be a vector space over F , having infinite

dimension, and G be a subgroup of GL(F,A). If G has a dense family

of subgroups having finite central dimension, then every subgroup of G,

having infinite central dimension, is maximal.

Lemma 2. Let F be a field, A be a vector space over F , having infinite

dimension, and G be a subgroup of GL(F,A). Suppose that G includes the

subgroups B, K satisfying the following conditions:

(i) B is an infinite elementary abelian p-subgroup and K is a quasicyclic

p-subgroup for some prime p;
(ii) B is K-invariant;

(iii) B ∩K = 〈1〉.

If G has a dense family of subgroups, having finite central dimension, then

K has finite central dimension.

Proof. Being a soluble p-subgroup, BK is locally nilpotent. Since B is
infinite, it includes a proper non-trivial K-invariant subgroup (see, for
example, [21, Proposition 1.2.20]). It follows that K is a not maximal
subgroup of BK. In this case there exists a subgroup L, having infinite
central dimension, such that K 6 L 6 BK. Using Lemma 1 we obtain
that K has finite central dimension.

Corollary 3. Let F be a field, A be a vector space over F , having infinite

dimension, and G be a subgroup of GL(F,A). Suppose that G includes the

subgroups B, K satisfying the following conditions:

(i) B is an infinite elementary abelian p-subgroup and K is a quasicyclic

p-subgroup for some prime p;
(ii) B is K-invariant;

(iii) B ∩K is finite.

If G has a dense family of subgroups, having finite central dimension, then

K has finite central dimension.

Proof. Indeed, a subgroup B∩K is K-invariant and B/(B∩K) is infinite,
so that an intersection B/(B ∩ K) ∩ K/(B ∩ K) is trivial, and we can
apply Lemma 2.

Lemma 3. Let F be a field, A be a vector space over F , having infinite

dimension, and G be a subgroup of GL(F,A). Suppose that G includes the

subgroups B, K satisfying the following conditions:

(i) B is an infinite elementary abelian p-subgroup and K is a quasicyclic

q-subgroup where p, q are primes and p 6= q;



“adm-n1” — 2020/5/14 — 19:35 — page 122 — #130

122 Groups with subgroups of finite central dimension

(ii) B is K-invariant.

If G has a dense family of subgroups, having finite central dimension,

then either K has finite central dimension or B is a minimal K-invariant

subgroup.

Proof. Suppose that K has infinite central dimension. If we suppose that
B includes a proper non-trivial K-invariant subgroup C, then a subgroup
K is not maximal in BK. In this case there exists a subgroup L, having
infinite central dimension, such that K 6 L 6 BK. Using Lemma 1 we
obtain that K has finite central dimension. This contradiction shows that
B is a minimal K-invariant subgroup.

Lemma 4. Let F be a field, A be a vector space over F , having infinite

dimension, and G be a locally soluble subgroup of GL(F,A). Suppose that G
includes a subgroup K, having infinite central dimension. If G has a dense

family of subgroups, having finite central dimension, then K satisfies the

following conditions:

(i) K is quasicyclic or cyclic p-subgroup for some prime p;
(ii) every proper subgroup of K has finite central dimension;

(iii) K is a maximal subgroup of G.

Proof. Corollary 2 shows that K is a maximal subgroup of G. Hence if
we suppose that K includes a proper subgroup H, having infinite central
dimension, then from Corollary 2 we obtain that a subgroup of H must
be maximal in G, what is impossible. This contradiction shows that every
proper subgroup of K has finite central dimension. If K is infinite, then
K is a quasicyclic p-subgroup for some prime p [5, Corollaries 5.4, 5.6].
Therefore consider a case when K is finite. Being finite, K is soluble.
Then D = [K,K] 6= K. If we suppose that a set Π(K/D) contains two
different primes, then K is a product of two proper normal subgroups. In
this case K has finite central dimension, as shows Lemma 1. Thus K/D
is a p-group for some prime p. If we suppose that K/D is not cyclic, then
again K is a product of two proper normal subgroups, which follows that
K has finite central dimension. This contradiction shows that K/D is
a cyclic p-subgroup. Let x be an element of K such that K/D = 〈xD〉.
Without loss of generality we may assume that x is a p-element. If we
suppose that 〈x〉 is a proper subgroup of K, then an equality K = 〈x〉D
together with Lemma 1 imply, that K has finite central dimension. This
contradiction proves that K = 〈x〉.
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2. Proof of the main theorem

If G is infinite and every proper subgroup of G has finite central
dimension, then G is a quasicyclic p-subgroup for some prime p [5, Corol-
laries 5.4, 5.6]. If G is finite and every proper subgroup of G has finite
central dimension, then using the arguments from a proof of Lemma 4,
we obtain that G is a cyclic p-subgroup for some prime p. In this case G
is a group of type (i).

Suppose now that G includes a proper subgroup K, having infinite
central dimension. Then Lemma 4 shows that K is a maximal subgroup
of G, every proper subgroup of K has finite central dimension and K is
a cyclic or quasicyclic p-subgroup for some prime p.

Consider first a case when K = 〈a〉 is a cyclic p-subgroup. Choose an
element x such that x 6∈ 〈a〉. The fact that 〈a〉 is a maximal subgroup of
G implies that G = 〈a, x〉. In particular, G is soluble. If ax = xa, then G
is abelian. In this case it is not hard to prove that G is a group of type
(ii). Therefore suppose that xa 6= ax. In this case G is non-abelian. Being
soluble, G has a finite series of normal subgroups

〈1〉 = S0 6 S1 6 . . . 6 Sn = G

whose factors are periodic abelian or torsion-free abelian, includes a normal
abelian subgroup U . There exists a number k such that Sk 6 〈a〉 but
〈a〉 does not include Sk+1. Then G = 〈a, Sk+1〉. If Sk+1/Sk is periodic,
then Sk+1 is periodic and therefore G is periodic. Being finitely generated
and soluble, G is finite. Assume that Sk+1/Sk is torsion-free abelian. An
equality G = 〈a, Sk+1〉 implies that Sk+1/Sk is finitely generated. Then
(Sk+1/Sk)

q = U/Sk for every prime q, so that 〈a〉 6= 〈a, U〉 6= 〈a, Sk+1〉, and
we obtain a contradiction with the maximality of 〈a〉. This contradiction
shows that G is finite. Consider a case when a subgroup 〈a〉 is normal
in G. Then |G/〈a〉| = q is a prime. If q = p, then G is a p-group, having
a maximal cyclic subgroup. The structure of such groups was described
(see, for example, [22, §1, Theorem 1.2]), so we come to the groups of
types (iii)–(vii).

Suppose that a subgroup 〈a〉 is not normal in G. Being finite and
soluble, G has a finite series of normal subgroups

〈1〉 = S0 6 S1 6 . . . 6 Sn = G

whose factors are elementary abelian and G-chief. There exists a number
k such that Sk 6 〈a〉 but 〈a〉 does not include Sk+1. Then G = 〈a, Sk+1〉.
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If Sk+1/Sk is a p-group, then G is also p-group. But in finite p-group
each maximal subgroup is normal, this case has been considered above.
Thus Sk+1/Sk is an elementary abelian q-group, where q 6= p. Since 〈a〉 is
a maximal subgroup, then either NG(〈a〉) = 〈a〉 or NG(〈a〉) = G. On the
other hand, 〈a〉 is not normal, therefore a second case is impossible. An
equality NG(〈a〉) = 〈a〉 implies that G = B ⋋ 〈a〉, where B is a normal
Sylow p′-subgroup of G (see, for example, [23, Chapter 7, Theorem 4.3]),
〈a〉 is a p-group. Together with an equality G = 〈a, Sk+1〉 and the fact
that Sk+1/Sk is a G-chief elementary abelian q-factor it follows that B is
an elementary abelian q-subgroup and B is a minimal normal subgroup
of G. It shows that G is a group of type (ix).

Consider now a case when K is a quasicyclic p-subgroup. Lemma 4
shows that K is a maximal subgroup of G. If CG(K) 6= K, then CG(K) =
G. In this case K 6 ζ(G), in particular, K is normal in G. Then G/K has
prime order. In turn out, it follows that G is abelian. Since K is divisible,
G = K × L (see, for example, [24, Theorem 21.2]), where L ∼= G/K is
a group of prime order. Thus G is a group of type (ii).

Further we will suppose that CG(K) = K. For a subgroup NG(K) we
have also two possibility: NG(K) = G or NG(K) = K. Consider a first
case. Then K is maximal and normal in G, so that G/K is a group of
prime order. An equality CG(K) = K shows that G/K is isomorphic to
a subgroup of Aut(K). We have Aut(K) = C × J where |C| = 2 and J is
an additive group of 2-adic integer, whenever p = 2, or Aut(K) = C × J
where C is a cyclic group of order p−1 and J is an additive group of p-adic
integer, whenever p is an odd prime (see, for example, [25, Chapter 4,
Theorem 6.5]). Thus either |G/K| = 2 whenever p = 2, or |G/K| = q is
a prime, q 6= p whenever p is an odd prime.

Suppose that G is a 2-group and G/K is a group of order 2. If G
contains an element b of order 2 such that b 6∈ K, then G = K ⋋ 〈b〉 and
xb = x−1 for every element x ∈ K. In other words, G is a group of type
(x). Suppose now that for every element c 6∈ K the intersection 〈c〉 ∩K is
non-trivial. We have

K = 〈an| a
p
1
= 1, apn+1

= an, n ∈ N〉.

Let n > 2 and consider a subgroup 〈an, c〉. Then 〈an, c〉 has a cyclic
subgroup of index 2. From the description of the structure of finite p-groups,
having a maximal cyclic subgroup (see, for example, [22, §1, Theorem 1.2]),
we obtain that 〈an, c〉 has an element b such that b2 = a1 and abn = a−1

n .
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Thus we obtain that G = K〈b〉, where b2 = a1 and abn = a−1
n for all n > 2.

Thus G is a group of type (xi).

Suppose now that K is a p-subgroup where p > 2. As we have seen
above, in this case G/K is a group of prime order q and q 6= p. Then
G = K⋋ 〈b〉 (see, for example, [26, Theorem 2.4.5]), where b is an element
of order q, so that G is a group of type (xii).

Suppose now that a subgroup K is not normal in G. Moreover, with-
out loss of generality we may suppose that G does not include proper
normal subgroups, having infinite dimension (this case was considered
above). Since G is infinite and non-abelian, G includes a non-trivial proper
normal subgroup H (see, for example, [21, Proposition 1.2.18]). Suppose
that K does not include H, then G = HK. The fact that a subgroup
H has finite central dimension means that CA(H) has finite dimension
over F . The factor-group H/CH(A/CA(H)) is isomorphic to some sub-
group of GL(n, F ) where n = dimF (A/CA(H)). Being locally soluble,
H/CH(A/CA(H)) is soluble (see, for example, [27, Corollary 3.8]). As we
can see from the proof of Lemma 1, CH(A/CA(H)) is an abelian subgroup.
It follows that H is also soluble. An equality G = HK and the fact that
K is abelian imply that G is soluble. Then G has a finite series of normal
subgroups

〈1〉 = S0 6 S1 6 . . . 6 Sn = G

whose factors are abelian and G-chief. Moreover, we can assume that each
factor Sj+1/Sj is either periodic or torsion-free. There exists a number k
such that Sk 6 K but K does not include Sk+1. Then G = KSk+1.

Suppose first that Sk+1/Sk is periodic. If we assume that Π(Sk+1/Sk)
contains at least two primes, then Sk+1/Sk = X1/Sk ×X2/Sk where the
both subgroups X1,X2 are G-invariant, Sk 6= X1 6= Sk+1, Sk 6= X2 6= Sk+1.
But in this case K is not maximal in G. This contradiction proves that
Sk+1/Sk is a q-group for some prime q. If we suppose that Ω1(Sk+1/Sk) 6=
Sk+1/Sk, then we again obtain a contradiction with a maximality of
K. It shows that Sk+1/Sk is an elementary abelian q-group. If q = p,
then G is a soluble p-group. In particular, G is locally nilpotent. But
in a locally nilpotent group each maximal subgroup is normal (see, for
example, [28, Theorem 18.1.3]), so that K is normal. This contradiction
shows that q 6= p. An inclusion Sk 6 K shows that in this case Sk is
a normal finite Sylow p-subgroup of Sk+1. Then Sk+1 = Sk ⋋ Q and
every complement to Sk in Sk+1 is conjugated with Q (see, for example,
[26, Theorem 2.4.5]), where Q is a Sylow q-subgroup of Sk+1. An equality
G = KSk+1 proves that Q is a Sylow q-subgroup of G. An isomorphism
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Q ∼= Sk+1/Sk shows that Q is an elementary abelian q-subgroup. Since
G/Sk+1 is a p-group, Sk+1 includes an arbitrary Sylow q-subgroup Q1 of
G. Being a maximal q-subgroup of G, Q1 is a Sylow q-subgroup of Sk+1.
An equality Sk+1 = QSk shows that Q has finite index in Sk+1. Then Q
includes a normal in Sk+1 subgroup R, having finite index in Sk+1. An
inclusion Q1 6 Sk+1 implies that RQ1 is a q-subgroup. Then RQ1 = Q1,
that is R 6 Q1. Since Sk+1/R if finite, the set of all Sylow q-subgroups
of G is finite. In this case all Sylow q-subgroup of G are conjugate (see,
for example, [26, Lemma 2.3.2]). Then NG(Q) has finite index in G, so
that index |K : NK(Q)| is finite. On the other hand, K does not include
proper subgroups of finite index. It follows that K = NK(Q). An equality
G = KSk+1 = K(SkQ) = KQ implies that Q is a normal subgroup of G.
Lemma 3 shows that Q is a minimal normal subgroup of G, so that G is
a group of type (xiii).

Suppose now that Sk+1/Sk is torsion-free. Let d ∈ Sk+1 \ Sk, D/Sk =
〈d〉GSk. Then D/Sk is a normal torsion-free abelian subgroup. The fact
that K is a maximal subgroup of G implies that DK = G. There exists
a prime r such that D1/Sk = (D/Sk)

r 6= D/Sk [29, Theorem 1.15].
But then K 6= D1K 6= DK = G, and we obtain a contradiction with
a maximality of K. This contradiction shows that Sk+1/Sk can not be
torsion-free.

Finally, suppose that K includes every proper normal subgroup of
G. Then the fact that K is not normal in G implies that G has a finite
maximal normal subgroup M . Being the chief factor of locally soluble
group, G/M is abelian, moreover, it is either elementary abelian or torsion-
free abelian (see, for example, [21, Proposition 1.2.18]). But then K/M
is normal in G, and we obtain a contradiction. This finally contradiction
proves a result.
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