Modules in which every surjective endomorphism has a δ-small kernel

Shahabaddin Ebrahimi Atani, Mehdi Khoramdel and Saboura Dolati Pishhesari

Communicated by R. Wisbauer

Abstract

In this paper, we introduce the notion of δ-Hopfian modules. We give some properties of these modules and provide a characterization of semisimple rings in terms of δ-Hopfian modules by proving that a ring R is semisimple if and only if every R-module is δ-Hopfian. Also, we show that for a ring $R, \delta(R)=J(R)$ if and only if for all R-modules, the conditions δ-Hopfian and generalized Hopfian are equivalent. Moreover, we prove that δ-Hopfian property is a Morita invariant. Further, the δ-Hopficity of modules over truncated polynomial and triangular matrix rings are considered.

Introduction

Throughout rings will have unity and modules will be unitary. Let M denote a right module over a ring R. The study of modules by properties of their endomorphisms has long been of interest. The concept of Hopfian groups was introduced by Baumslag in 1963 ([2]). In [8], Hiremath generalized this concept to general module theoretic setting. A right R-module M is called Hopfian, if any surjective endomorphism of M is an isomorphism. Later, the dual concept of Hopfian modules (co-Hopfian modules) was introduced. Hopfian and co-Hopfian modules (rings) have been investigated by several authors [4], [7], [14], [15] and [17]. Direct finiteness (or

2010 MSC: 16D10, 16D40, 16D90.
Key words and phrases: Dedekind finite modules, Hopfian modules, generalized Hopfian modules, δ-Hopfian modules.

Dedekind finiteness) evolved from the concepts of "finite projections" in operator algebras and "finite idempotents" in Baer rings (see [5, p. 74] and [9, p.10]). A module M is called Dedekind-finite, if $X=0$ is the only module for which $M \cong M \oplus X$. Equivalently, $f g=1$ implies $g f=1$ for each $f, g \in \operatorname{End}(M)$.

In [4], a proper generalization of Hopfian modules, called generalized Hopfian modules, was given. A right R-module M is called generalized Hopfian, if any surjective endomorphism of M has a small kernel. Recall that a submodule N of a module M is called small, denoted by $N \ll M$, if $N+X \neq M$ for all proper submodules X of M. In [4, Corollary 1.4], it is shown that the concepts of Dedekind finite modules, Hopfian modules and generalized Hopfian modules coincide for every (quasi-)projective module.

A submodule N of a module M is called δ-small in M, written $N<_{\delta} M$, provided $N+K \neq M$ for any proper submodule K of M with M / K singular (see [18]). In this paper, we introduce and study the notion of δ - Hopfian modules, which is a generalization of Hopfian modules and generalized Hopfian modules. We replace "small kernel" by " δ-small kernel". We discuss the following questions: When does a module have the property that every of its surjective endomorphisms has a δ-small kernel? Further, how can δ-Hopfian modules be used to characterize the base ring itself?

We summarize the contents of this article as follows. In Section 2, we give some equivalent properties and characterizations of δ-Hopfian modules. We characterize semisimple rings in terms of δ-Hopfian modules and show that a ring R is semisimple if and only if every R-module is δ-Hopfian. We prove that for a ring $R, \delta(R)=J(R)$ if and only if for all R-modules, the conditions δ-Hopfian and generalized Hopfian are equivalent. It is shown that a direct sum of δ-Hopfian modules and their endomorphism rings need not have the same property. Also, we prove that δ-Hopfian property is a Morita invariant.

In Section 3, we consider the δ-Hopfian property of $M[x]$ (as an $R[x]$-module) and $M[x] /\left(x^{n+1}\right)$ (as an $R[x] /\left(x^{n+1}\right)$-module). We characterize the structures of maximal submodules, essential submodules of $M[x] /\left(x^{n+1}\right)$. Also, we show that

$$
\delta\left(M[x] /\left(x^{n+1}\right)\right)=\operatorname{Rad}(M)+M x+M x^{2}+\cdots+M x^{n} .
$$

Moreover, we prove that if $M[x] /\left(x^{n+1}\right)$ is δ-Hopfian as an $R[x] /\left(x^{n+1}\right)$ module, then M is δ-Hopfian, but the converse is not true.

In Section 3, we characterize the generalized triangular matrix rings which are right δ-Hopfian and prove that if M is an (S, R)-bimodule, and
$T=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$, then $\delta\left(T_{T}\right)=\left(\begin{array}{cc}H & M \\ 0 & \delta\left(R_{R}\right)\end{array}\right)$, where,
$H=\delta\left(S_{S}\right) \cap\left\{I: I\right.$ is a maximal right ideal of S with $\left.\operatorname{ann}_{S}(M) \subseteq I\right\}$.
At the end of the paper, some open problems are given.
We now fix our notations and state a few well known preliminary results that will be needed. Let M be a right R-module. For submodules N and K of $M, N \leqslant K$ denotes that N is a submodule of $K, \operatorname{Rad}(M)$ denotes the Jacobson radical of M and $\operatorname{End}(M)$ denotes the ring of endomorphisms
 Also, for a module M and a set Λ, let $M^{(\Lambda)}$ denote the direct sum of $|\Lambda|$ copies of M, where $|\Lambda|$ is the cardinality of Λ. The symbols $J(R)$, $M_{n}(R)$ and $T_{n}(R)$ denote the Jacobson radical of R, the full ring of n-by-n matrices over R, and the ring of n -by-n upper triangular matrices over R, respectively. As in [18], we define $\delta(M)$ to be

$$
\operatorname{Rej}_{\mathbf{P}}(M)=\cap\{N \leqslant M: M / N \in \mathbf{P}\}
$$

where \mathbf{P} is the class of all singular simple modules.
Recall that a ring R is said to satisfy the rank condition if a right R-epimorphism $R^{m} \rightarrow R^{n}$ can exist only when $m \geqslant n$ (see [10]).

Lemma 1 ([18, Lemma 1.2]). Let N be a submodule of M. The following are equivalent:
(1) $N<_{\delta} M$.
(2) If $X+N=M$, then $M=X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq N$;
(3) If $X+N=M$ with M / X Goldie torsion, then $X=M$.

Lemma 2 ([18, Lemma 1.3]). Let M be a module.
(1) For submodules N, K, L of M with $K \subseteq N$, we have
(a) $N<_{\delta} M$ if and only if $K<_{\delta} M$ and $N / K<_{\delta} M / K$.
(b) $N+L<_{\delta} M$ if and only if $N<_{\delta} M$ and $L<_{\delta} M$.
(2) If $K<_{\delta} M$ and $f: M \rightarrow N$ is a homomorphism, then $f(K)<_{\delta} N$.
(3) Let $K_{1} \leqslant M_{1} \leqslant M, K_{2} \leqslant M_{2} \leqslant M$, and $M=M_{1} \oplus M_{2}$. Then $K_{1} \oplus K_{2}<_{\delta} M_{1} \oplus M_{2}$ if and only if $K_{1}<_{\delta} M_{1}$ and $K_{2}<_{\delta} M_{2}$.

Lemma 3 ([18, Lemma 1.5, Theorem 1.6]). Let R be a ring and M an R-module. Then $\delta(M)=\sum\left\{L \leqslant M: L<_{\delta} M\right\}$ and $\delta(R)$ equals the intersection of all essential maximal right ideals of R.

Lemma $4([3,5,10])$. Let $T=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$, where R and S are rings and M is an (S,R)-bimodule.
(1) Every right ideal of T has the form $\left(\begin{array}{cc}I & N \\ 0 & J\end{array}\right)$ such that $I \leqslant S_{S}$, $J \leqslant R_{R}$ and $I M \subseteq N$.
(2) Let $Q=\left(\begin{array}{cc}I & N \\ 0 & J\end{array}\right)$. Then Q is a maximal right ideal of T if and only if $N=M$ and either $I=S$ and J is a maximal right ideal of R or $J=R$ and I is a maximal right ideal of S.
(3) The right ideal $Q=\left(\begin{array}{cc}I & N \\ 0 & J\end{array}\right)$ of T is essential in T_{T} if and only if $N \leqslant{ }^{\text {ess }} M_{R}, J \leqslant{ }^{\text {ess }} R_{R}$ and $I \cap\left(\operatorname{ann}_{S}(M)\right) \leqslant{ }^{\text {ess }} \operatorname{ann}_{S}(M)$.

1. δ-Hopfian modules

Motivated by the definition of generalized Hopfian modules, we introduce the key definition of this paper.

Definition 1. Let M be an R-module. We say that M is δ-Hopfian $(\delta \mathrm{H}$ for short) if any surjective R-endomorphism of M has a δ-small kernel in M.

The next result gives several equivalent conditions for a $\delta \mathrm{H}$ module.
Theorem 1. Let M be an R-module. The following statements are equivalent:
(1) M is $\delta \mathrm{H}$;
(2) For any epimorphism $f: M \rightarrow M$, if $N<_{\delta} M$, then $f^{-1}(N)<_{\delta} M$;
(3) If $N \leqslant M$ and there is an R-epimorphism $M / N \rightarrow M$, then $N<_{\delta}$ M;
(4) If M / N is nonzero and singular for some $N \leqslant M$, then $f(N) \neq M$, for each R-surjective endomorphism f of M;
(5) There exists a fully invariant δ-small submodule N of M such that M / N is $\delta \mathrm{H}$;
(6) If $f: M \rightarrow M \oplus X$ is an epimorphism, where X is a module, then X is projective and semisimple.

Proof. (1) \Rightarrow (2) Assume that $f: M \rightarrow M$ is an epimorphism and $N \lll \delta$ M. Let $f^{-1}(N)+K=M$ for some $K \leqslant M$, where M / K is singular. Hence $N+f(K)=M$. As M / K is singular and $M / f(K)$ is an image of $M / K, M / f(K)$ is singular. Hence $N+f(K)=M$ and $N<_{\delta} M$, giving
$f(K)=M$. So $K+\operatorname{Ker}(f)=M$. Since M is $\delta \mathrm{H}, \operatorname{Ker}(f)<_{\delta} M$. Hence M / K is singular implies that $K=M$. Thus $f^{-1}(N) \ll_{\delta} M$.
$(2) \Rightarrow(3)$ Let $f: M / N \rightarrow M$ be an epimorphism. It is clear that $N \leqslant(f \pi)^{-1}(0)$, where $\pi: M \rightarrow M / N$ is the canonical epimorphism. By (2), $(f \pi)^{-1}(0) \ll_{\delta} M$, Hence by Lemma $2, N \ll_{\delta} M$.
$(3) \Rightarrow(4)$ Let N be a proper submodule of M such that M / N is singular and f a surjective endomorphism of M with $f(N)=M$. Then $N+\operatorname{Ker}(f)=M$. Hence $\operatorname{Ker}(f) \ll \delta M$ by (3), and so $N=M$, a contradiction.
(4) \Rightarrow (1) Let $f: M \rightarrow M$ be an epimorphism. If $M=N+\operatorname{Ker}(f)$, with M / N is singular, then $M=f(M)=f(N)$. Hence $N=M$ by (4). Thus $\operatorname{Ker}(f) \ll_{\delta} M$.
$(1) \Rightarrow(5)$ Take $N=0$.
(5) $\Rightarrow(1)$ Let M / N be $\delta \mathrm{H}$ for some fully invariant δ-small submodule N of M. If $f: M \rightarrow M$ is an epimorphism, then $\bar{f}: M / N \rightarrow M / N$ with $\bar{f}(m+N)=f(m)+N(m \in M)$ is an epimorphism. As M / N is $\delta \mathrm{H}, \operatorname{ker}(\bar{f}) \ll_{\delta} M / N$. Since $(\operatorname{Ker}(f)+N) / N \subseteq \operatorname{ker}(\bar{f}) \ll_{\delta} M / N$, $\operatorname{Ker}(f)+N<_{\delta} M$ by Lemma 2 . Hence $\operatorname{Ker}(f)<_{\delta} M$ by Lemma 2, and so M is $\delta \mathrm{H}$.
(1) \Rightarrow (6) Let $f: M \rightarrow M \oplus X$ be an epimorphism, $\pi: M \oplus X \rightarrow M$ the natural projection. It is clear that $\operatorname{Ker}(\pi f)=f^{-1}(0 \oplus X)$. By (1), M is $\delta \mathrm{H}$. Hence $\operatorname{Ker}(\pi f) \ll_{\delta} M$. Since f is an epimorphism, $f\left[f^{-1}(0 \oplus X)\right]=0 \oplus X$. Hence by Lemma $2,0 \oplus X=f(\operatorname{Ker}(\pi f))<_{\delta} M \oplus X$. Therefore $X<_{\delta} X$ by Lemma 2 . So, by Lemma $1, X$ is projective and semisimple.
$(6) \Rightarrow(1)$ Let f be a surjective endomorphism of M and $\operatorname{Ker}(f)+L=$ M for some $L \leqslant M$, where M / L is singular. Since

$$
\begin{aligned}
M / \operatorname{Ker}(f) \cap L & =\operatorname{Ker}(f) /(\operatorname{Ker}(f) \cap L) \oplus L /(\operatorname{Ker}(f) \cap L) \\
& \cong M / L \oplus M / \operatorname{Ker}(f) \cong M / L \oplus M
\end{aligned}
$$

the epimorphism $M \rightarrow M \oplus M / L$ exists. By (6), M / L is semisimple and projective. As M / L is singular, $M / L=0$. Thus $M=L$ and $\operatorname{Ker}(f)<_{\delta} M$.

Corollary 1. Let M be a $\delta \mathrm{H}$ module, $f \in \operatorname{End}(M)$ an epimorphism and $N \leqslant M$. Then $N<_{\delta} M$ if and only if $f(N)<_{\delta} M$ if and only if $f^{-1}(N) \lll \delta_{\delta} M$. Moreover $\delta(M)=\sum_{N \ll{ }_{\delta} M} f(N)=\sum_{N \ll \delta^{M}} f^{-1}(N)$.

Proposition 1. Let M be a $\delta \mathrm{H}$ module. If N is a direct summand of M, then N is $\delta \mathrm{H}$.

Definition 2. Let M and N be two R-modules. M is called δ-Hopfian $(\delta \mathrm{H}$, for short) relative to N, if for each epimorphism $f: M \rightarrow N, \operatorname{Ker}(f)<_{\delta} M$.

In view of the above definition, an R-module M is $\delta \mathrm{H}$ if and only if M is $\delta \mathrm{H}$ relative to M.

In the following, we characterize the δ-Hopfian modules in terms of their direct summands and factor modules.

Proposition 2. Let M and N be two R-modules. Then the following statements are equivalent:
(1) M is $\delta \mathrm{H}$ relative to N;
(2) for each $L \leqslant{ }^{\oplus} M, L$ is $\delta \mathrm{H}$ relative to N;
(3) for each $L \leqslant M, M / L$ is $\delta \mathrm{H}$ relative to N.

Proof. (1) \Rightarrow (2) Let $L \leqslant{ }^{\oplus} M$ say $M=L \oplus K$, where $K \leqslant M$ and $f: L \rightarrow M$ an epimorphism. Let $\pi: M \rightarrow L$ be the natural projection. Then $f \pi: M \rightarrow N$ is an epimorphism and so $\operatorname{Ker}(f \pi)<_{\delta} M$ by (1). It is clear that $\operatorname{Ker}(f \pi)=\operatorname{Ker}(f) \oplus K$. Thus $\operatorname{Ker}(f \pi)=\operatorname{Ker}(f) \oplus K<_{\delta} M$. By Lemma $2(3), \operatorname{Ker}(f) \ll_{\delta} L$.
(2) \Rightarrow (1) Take $L=M$.
$(1) \Rightarrow(3)$ Let $L \leqslant M$ and $f: M / L \rightarrow N$ be an epimorphism. Then $f \pi: M \rightarrow N$ is an epimorphism, where $\pi: M \rightarrow M / L$ is the natural homomorphism. As $\operatorname{Ker}(f \pi)=\pi^{-1}(\operatorname{Ker}(f))$ and $\operatorname{Ker}(f \pi)<_{\delta} M$, $\pi(\operatorname{Ker}(f \pi))=\operatorname{Ker}(f)<_{\delta} M / L$ by Lemma 2. Therefore M / L is $\delta \mathrm{H}$ relative to N.
$(3) \Rightarrow(1)$ Take $L=0$.
In the following, we present some characterizations of projective $\delta \mathrm{H}$ modules.

Theorem 2. Let M be a projective R-module. Then the following statements are equivalent:
(1) M is $\delta \mathrm{H}$;
(2) If $f \in \operatorname{End}(M)$ has a right inverse, then $\operatorname{Ker}(f)$ is semisimple and projective;
(3) If $f \in \operatorname{End}(M)$ has a right inverse in $\operatorname{End}(M)$, then $\operatorname{Ker}(f)<_{\delta} M$;
(4) If $f \in \operatorname{End}(M)$ has a right inverse g, then $(1-g f) M<_{\delta} M$.

Proof. Let $f \in \operatorname{End}(M)$ be an epimorphism. Then there exists $g \in$ $\operatorname{End}(M)$ such that $f g=1 \in \operatorname{End}(M)$. It is clear that $\operatorname{Ker}(f)=(1-g f) M$ and $M=\operatorname{Ker}(f) \oplus(g f) M$.
$(1) \Rightarrow(2)$ Let $f \in \operatorname{End}(M)$ have a right inverse in $\operatorname{End}(M)$. Then $f g=$ 1 for some $g \in \operatorname{End}(M)$. Thus f is an epimorphism and so $\operatorname{Ker}(f)<_{\delta} M$. As $\operatorname{Ker}(f)=(1-g f) M$ is a direct summand of M, it is semisimple and projective by Lemma 1 .
$(2) \Rightarrow(3)$ Let $f \in \operatorname{End}(M)$ have a right inverse in $\operatorname{End}(M)$. Then by (2), $\operatorname{Ker}(f)$ is semisimple and projective. We show that $\operatorname{Ker}(f)<_{\delta} M$. Let $\operatorname{Ker}(f)+L=M$ for some $L \leqslant M$. Since $\operatorname{Ker}(f)$ is semisimple, $(\operatorname{Ker}(f) \cap L) \oplus T=\operatorname{Ker}(f)$ for some $T \leqslant \operatorname{Ker}(f)$. Therefore $T \oplus L=M$. As T is semisimple and projective, $\operatorname{Ker}(f)<_{\delta} M$, by Lemma 1 .
$(3) \Rightarrow(4)$ Let $f \in \operatorname{End}(M)$ have a right inverse g. Hence by (3), $\operatorname{Ker}(f)=(1-g f) M<_{\delta} M$.
$(4) \Rightarrow(1)$ Let $f \in \operatorname{End}(M)$ be an epimorphism. As M is projective, $f \in \operatorname{End}(M)$ has a right inverse g and $\operatorname{Ker}(f)=(1-g f) M$. Therefore by (4), $\operatorname{Ker}(f)<_{\delta} M$ and M is $\delta \mathrm{H}$.

Next, we characterize the class of rings R for which every (free) R module is $\delta \mathrm{H}$.

Theorem 3. Let R be a ring. Then the following statements are equivalent:
(1) Every R-module is $\delta \mathrm{H}$;
(2) Every projective R-module is $\delta \mathrm{H}$;
(3) Every free R-module is $\delta \mathrm{H}$;
(4) R is semisimple.

Proof. (1) $\Rightarrow(2) \Rightarrow(3)$ They are clear.
$(3) \Rightarrow(4) \mathrm{By}(3), R^{(\mathbb{N})}$ is $\delta \mathrm{H}$. As $R^{(\mathbb{N})} \cong R^{(\mathbb{N})} \oplus R^{(\mathbb{N})}$, by Theorem 1 , $R^{(\mathbb{N})}$ is semisimple. Hence R is semisimple.
(4) $\Rightarrow(1)$ Let M be an R-module. Hence M is projective and for each surjective endomorphism f of $M, \operatorname{Ker}(f)$ is semisimple and projective. Hence by Theorem $2, M$ is $\delta \mathrm{H}$.

It is clear that every generalized Hopfian module is $\delta \mathrm{H}$. The following example shows that the converse is not true, in general. Also, it shows that a $\delta \mathrm{H}$ module need not be Dedekind-finite.

Example 1. Let R be a semisimple ring. Then by Theorem 3, $M=R^{(\mathbb{N})}$ is a $\delta \mathrm{H} R$-module. Since $R^{(\mathbb{N})} \cong R^{(\mathbb{N})} \oplus R^{(\mathbb{N})}$ and $R^{(\mathbb{N})} \neq 0, M$ is not a $g \mathrm{H}$ (Dedekind-finite) module (see [4, Corollary 1.4]).

The following lemma gives a source of examples of $\delta \mathrm{H}$ modules.
Lemma 5. Let M be a projective and semisimple R-module. Then M is $\delta \mathrm{H}$.

Proof. If M be a projective and semisimple R-module, then $M<_{\delta} M$, by [12, Lemma 2.9] and so every surjective endomorphism of M has a δ-small kernel.

In the following, it is shown that every $\delta \mathrm{H} R$-module is $g \mathrm{H}$ if and only if $\delta(R)=J(R)$.

Theorem 4. Let R be a ring. Then the following statements are equivalent:
(1) The class of $\delta \mathrm{H} R$-modules coincide with the class of $g \mathrm{H} R$-modules;
(2) Every projective $\delta \mathrm{H} R$-module is $g \mathrm{H}$;
(3) Every maximal right ideal of R is essential in R_{R};
(4) R has no non-zero semisimple projective R-module;
(5) $\delta(R)=J(R)$.

Proof. (1) $\Rightarrow(2)$ Is clear.
$(2) \Rightarrow(3)$ Let \mathbf{m} be a maximal right ideal of R. It is clear that either \mathbf{m} is essential in R_{R} or a direct summand of R_{R}. If \mathbf{m} is a direct summand of R_{R}, then $M=(R / \mathbf{m})^{(\mathbb{N})}$ is projective and semisimple. Hence M is $\delta \mathrm{H}$ by Lemma 5 . Therefore by (2), M is $g \mathrm{H}$. As $M \cong M \oplus M, M=0$, by [4, Theorem 1.1]. This is a contradiction, and so \mathbf{m} is essential in R_{R}.
$(3) \Rightarrow(4)$ Is clear.
$(4) \Rightarrow(1)$ Let M be a $\delta \mathrm{H}$ module and $f: M \rightarrow M \oplus X$ an epimorphism. Since M is $\delta \mathrm{H}, X$ is projective and semisimple by Theorem 1. Therefore $X=0$, by (4), and so M is $g \mathrm{H}$, by [4, Theorem 1.1].
$(3) \Rightarrow(5)$ Is clear.
(5) $\Rightarrow(3)$ Let R be a ring such that $\delta(R)=J(R)$. If \mathbf{m} is a maximal right ideal of R such that $\mathbf{m} \leqslant{ }^{\oplus} R_{R}$, say $R=\mathbf{m} \oplus \mathbf{m}^{\prime}$ for some right ideal \mathbf{m}^{\prime} of R, then $\mathbf{m}^{\prime} \subseteq \operatorname{Soc}(R) \subseteq \delta(R) \subseteq J(R) \subseteq \mathbf{m}$, a contradiction. Therefore every maximal right ideal of R is essential in R_{R}.

Lemma 6. Let R be a domain, which is not a division ring. Then $\delta(R)=$ $J(R)$.

Proof. Let $x \in \delta(R)$. Then $x R<_{\delta} R$. We show that $x R \ll R$. Let $x R+K=R$ for some $K \leqslant R_{R}$. By Lemma 1 , there exists $Y \leqslant x R$ such that $Y \oplus K=R$. As R is a domain, $Y=R$ or $K=R$. If $Y=R$, then $x R=R$. Hence $\delta(R)=R$, therefore R is semisimple by [18, Corollary 1.7]. Hence R is a division ring, a contradiction. Therefore $K=R$ and so $x R \ll R$. It implies that $\delta(R)=J(R)$.

A direct sum of $\delta \mathrm{H}$ modules need not be a $\delta \mathrm{H}$ module, as the following example shows.

Example 2. ([4, Remark 1.5], [10, Page 19, Exercise 18]) Let R be the K-algebra generated over a field K by $\{s, t, u, v, w, x, y, z\}$ with relations

$$
s x+u z=1, \quad s y+u w=0, \quad t x+v z=0 \quad \text { and } \quad t y+v w=1 .
$$

Then R is a domain which is not a division ring. Hence by Lemma 6, $\delta(R)=J(R)$. By [4, Remark 1.5], R is $g \mathrm{H}$, however R^{2} is not $g \mathrm{H}$. Therefore R is $\delta \mathrm{H}$, but R^{2} is not $\delta \mathrm{H}$.

The next result gives a condition that a direct sum of two $\delta \mathrm{H}$ modules is $\delta \mathrm{H}$.

Proposition 3. Let M_{1} and M_{2} be two R-modules. If for every $i \in\{1,2\}$, M_{i} is a fully invariant submodule of $M=M_{1} \oplus M_{2}$, then M is $\delta \mathrm{H}$ if and only if M_{i} is $\delta \mathrm{H}$ for each $i \in\{1,2\}$.

Proof. The necessity is clear from Proposition 1. For the sufficiency, let $f=\left(f_{i j}\right)$ be a surjective endomorphism of M, where $f_{i j} \in \operatorname{Hom}\left(M_{i}, M_{j}\right)$ and $i, j \in\{1,2\}$. By assumption, $\operatorname{Hom}\left(M_{i}, M_{j}\right)=0$ for every $i, j \in\{1,2\}$ with $i \neq j$. Since f is an epimorphism, $f_{i i}$ is a surjective endomorphism of M_{i} for each $i \in\{1,2\}$. As M_{i} is $\delta \mathrm{H}$ for each $i \in\{1,2\}, \operatorname{Ker}\left(f_{i i}\right)<_{\delta} M_{i}$. Since $\operatorname{Ker}(f)=\operatorname{Ker}\left(f_{11}\right) \oplus \operatorname{Ker}\left(f_{22}\right), \operatorname{Ker}(f)<_{\delta} M$ by Lemma 2(3). Hence M is $\delta \mathrm{H}$.

In the following example, it is shown that the $\delta \mathrm{H}$ property of a module dose not inherit by its endomorphism ring.

Example 3. Let M be an infinite dimensional vector space over a division ring K. Then by Theorem 3, M is $\delta \mathrm{H}$. Since $S \cong S^{2}$ by [5, Example 5.16] and S is not a semisimple ring, $S=\operatorname{End}(M)$ is not $\delta \mathrm{H}$, by Theorem 1 .

Theorem 5. Let M be a quasi-projective R-module. Then M is $\delta \mathrm{H}$ if and only if M / N is $\delta \mathrm{H}$ for any small submodule N of M.

Proof. Let M be $\delta \mathrm{H}, N \leqslant M$ and $f: M / N \rightarrow M / N$ be an epimorphism. Since M is quasi-projective, there exists a homomorphism $g: M \rightarrow M$ such that $\pi g=f \pi$, where $\pi: M \rightarrow M / N$ is the natural epimorphism. As $N \ll M, g$ is an epimorphism, by [16, 19.2]. Therefore $\operatorname{Ker}(g) \ll_{\delta} M$. Since $\pi g=f \pi, g(N) \leqslant N$ and $\operatorname{Ker}(f)=\left(g^{-1}(N)\right) / N$. As $N \ll M$ (and so $\left.N<_{\delta} M\right)$ and g is an epimorphism, $g^{-1}(N) \ll_{\delta} M$, by Theorem $1(2)$. Therefore $\operatorname{Ker}(f)<_{\delta} M / N$, by Lemma 2. Therefore M / N is $\delta \mathrm{H}$. The converse is clear by taking $N=0$.

Theorem 6. Let M be an R-module. If M satisfies a.c.c or d.c.c on non δ-small submodules, then M is a $\delta \mathrm{H}$ module.

Proof. Let M be a module that satisfies a.c.c. on non δ-small submodules and $f: M \rightarrow M$ an epimorphism. If $\operatorname{Ker}(f)$ is not δ-small in M, then $\operatorname{Ker}(f) \subseteq \operatorname{Ker}\left(f^{2}\right) \subseteq \operatorname{Ker}\left(f^{3}\right) \subseteq \ldots$ is an ascending chain of non δ-small submodules of M. Hence there exists $n \geqslant 1$ such that $\operatorname{Ker}\left(f^{n}\right)=\operatorname{Ker}\left(f^{n+i}\right)$ for each $i \geqslant 1$. By a usual argument, $\operatorname{Ker}(f)=0$, a contradiction. Therefore $\operatorname{Ker}(f)<_{\delta} M$ and so M is $\delta \mathrm{H}$.

Assume that M satisfies d.c.c on non δ-small submodules and M is not $\delta \mathrm{H}$. Hence there exists an epimorphism $f: M \rightarrow M$ such that $K=\operatorname{Ker}(f)$ is not a δ-small submodule of M. Therefore then each submodule L of M, which contains K, is not a δ-small submodule of M. As M is not δH, it is not Artinian. Hence $M / K \cong M$ is not Artinian and there is a descending chain $L_{1} / K \supset L_{2} / K \supset L_{3} / K \supset \ldots$ of submodules of M / K. Thus $L_{1} \supset L_{2} \supset L_{3} \supset \ldots$ is a descending chain of non δ-small submodule of M, a contradiction.

Proposition 4. Let R be a ring. If $R / \delta(R)$ is a semisimple ring, then every finitely generated right R-module M is $\delta \mathrm{H}$.

Proof. Assume that $R / \delta(R)$ is a semisimple ring, and M is a finitely generated right R-module. Hence $\delta(M)=\delta(R) M$ by [18, Theorem 1.8]. Therefore $M / \delta(M)$ is semisimple as an $R / \delta(R)$ - module, and so it is semisimple as R-module. Therefore $M / \delta(M)$ is $\delta \mathrm{H}$, by Theorem 6. As M is finitely generated, $\delta(M) \ll_{\delta} M$, and so M is $\delta \mathrm{H}$, by Theorem 1(5).

The following result shows $\delta \mathrm{H}$ property is preserved under Morita equivalences.
Theorem 7. δ-Hopfian is a Morita invariant property.
Proof. Let R and S be Morita equivalent rings with inverse category equivalences $\alpha: \operatorname{Mod}-R \rightarrow \operatorname{Mod}-S, \beta: \operatorname{Mod}-S \rightarrow \operatorname{Mod}-R$. Let M be a $\delta \mathrm{H} R$-module. We show that $\alpha(M)$ is a $\delta \mathrm{H} S$-module. Assume that $\phi: \alpha(M) \rightarrow \alpha(M) \oplus X$ be an S-module epimorphism where X is a right S module. Since any category equivalence preserves epimorphisms and direct sums, we have $\beta(\phi): \beta \alpha(M) \rightarrow \beta \alpha(M) \oplus \beta(X)$, as an epimorphism of right R-modules. As $\beta \alpha(M) \cong M$, we have an epimorphism $M \rightarrow M \oplus \beta(X)$ of R-modules. Therefore $\beta(X)$ is semisimple and projective as an R-module, by Theorem 1. Since any category equivalence preserves semisimple and projective properties, X is semisimple and projective as an S-module. Therefore $\alpha(M)$ is $\delta \mathrm{H}$.

Corollary 2. Let $n \geqslant 2$. Then the following statements are equivalent for a ring R :
(1) Every n-generated R-module is $\delta \mathrm{H}$;
(2) Every cyclic $M_{n}(R)$-module is $\delta \mathrm{H}$.

Proof. Let $P=R^{n}$ and $S=\operatorname{End}(P)$. Then, it is known that $\operatorname{Hom}_{R}(P,-)$: $N_{R} \rightarrow \operatorname{Hom}_{R}\left({ }_{S} P_{R}, N_{R}\right)$ defines a Morita equivalence between $\operatorname{Mod}-R$ and Mod- S with the inverse equivalence $-\otimes_{S} P: M_{S} \rightarrow M \otimes P$. Moreover, if N is an n-generated R-module, then $\operatorname{Hom}_{R}(P, N)$ is a cyclic S-module and for any cyclic S-module $M, M \otimes_{S} P$ is an n-generated R-module. By Theorem 7, a Morita equivalence preserves the $\delta \mathrm{H}$ property of modules. Therefore, every cyclic S-module is $\delta \mathrm{H}$ if and only if every n-generated R -module is $\delta \mathrm{H}$.

In the following, we characterize the rings R for which every finitely generated free R-module is $\delta \mathrm{H}$.

Corollary 3. Let R be a ring. Then the following statements are equivalent:
(1) Every finitely generated free R-module is $\delta \mathrm{H}$;
(2) Every finitely generated projective R-module is $\delta \mathrm{H}$;
(3) $M_{n}(R)$ is $\delta \mathrm{H}$ (as an $M_{n}(R)$-module) for each $n \geqslant 1$.

Proof. (1) \Rightarrow (2) It is clear from Proposition 1.
$(2) \Rightarrow(1)$ It is clear.
$(1) \Leftrightarrow(3)$ Let n be a positive integer and $S=M_{n}(R)$. By the proof of Corollary 2 and Theorem 7, if R^{n} is $\delta \mathrm{H}$, then $\operatorname{Hom}_{R}\left(R^{n}, R^{n}\right)$ is $\delta \mathrm{H}$ as an S-module. Conversely, if S is $\delta \mathrm{H}$ as an S-module, then $S \otimes_{S} R^{n}$ is $\delta \mathrm{H}$ as an R-module.

2. Polynomial extensions of $\boldsymbol{\delta}$-Hopfian modules

Let M be an R-module. In this section we will briefly recall the definitions of the modules $M[X]$ and $M[x] /\left(x^{n+1}\right)$ from [13] and [17]. The elements of $M[X]$ are formal sums of the form $m_{0}+m_{1} x+\cdots+m_{n} x^{n}$ with $m_{i} \in M$ and $n \in \mathbb{N}$. We denote this sum by $\sum_{i=0}^{n} m_{i} x^{i}\left(m_{0} x^{0}\right.$ is to be understood as the element of M). Addition is defined by adding the corresponding coefficients. The $R[x]$-module structure is given by

$$
\left(\sum_{i=0}^{k} m_{i} x^{i}\right)\left(\sum_{i=0}^{t} r_{i} x^{i}\right)=\sum_{i=0}^{k+t} m_{i}^{\prime} x^{i}
$$

where $m_{p}^{\prime}=\sum_{i+j=p} m_{i} r_{j}, r_{j} \in R$ and $m_{i} \in M$. Any nonzero element β of $M[x]$ can be written uniquely as $\sum_{i=k}^{l} m_{i} x^{i}$ with $l \geqslant k \geqslant 0, m_{i} \in M$, $m_{k} \neq 0$ and $m_{l} \neq 0$. In this case, we refer to k as the order of β, l as the degree of β, m_{k} as the initial coefficient of β, and m_{l} as the leading coefficient of β.

Let n be any non-negative integer and

$$
I_{n+1}=\{0\} \cup\{\beta \mid 0 \neq \beta \in R[x], \text { order of } \beta \geqslant n+1\}
$$

Then I_{n+1} is a two-sided ideal of $R[x]$. The quotient ring $R[x] / I_{n+1}$ will be called the truncated polynomial ring, truncated at degree $n+1$. Since R has an identity element, I_{n+1} is the ideal generated by x^{n+1}. Even when R does not have an identity element, we will denote the ring $R[x] / I_{n+1}$ by $R[x] /\left(x^{n+1}\right)$. Any element of $R[x] /\left(x^{n+1}\right)$ can be uniquely written as $\sum_{i=0}^{t} r_{i} x^{i}$, with $r_{i} \in R$. Let $D_{n+1}=\{0\} \cup\{\beta \mid 0 \neq \beta \in M[x]$, order of $\beta \geqslant$ $n+1\}$. Then D_{n+1} is an $R[x]$-submodule of $M[x]$. Since $I_{n+1} M[x] \subseteq D_{n+1}$, we can see that $R[x] /\left(x^{n+1}\right)$ acts on $M[x] / D_{n+1}$. We denote the module $M[x] / D_{n+1}$ by $M[x] / x^{n+1}$. The action of $R[x] /\left(x^{n+1}\right)$ on $M[x] / x^{n+1}$ is given by

$$
\left(\sum_{i=0}^{n} m_{i} x^{i}\right)\left(\sum_{i=0}^{n} r_{i} x^{i}\right)=\sum_{i=0}^{n} m_{i}^{\prime} x^{i}
$$

where $m_{p}^{\prime}=\sum_{i+j=p} m_{i} r_{j}, r_{j} \in R$ and $m_{i} \in M$. Any nonzero element β of $M[x] / D_{n+1}$ can be written uniquely as $\sum_{i=k}^{n} m_{i} x^{i}$ with $n \geqslant k \geqslant 0$, $m_{i} \in M$ and $m_{k} \neq 0$. In this case, k is called the order of β and m_{k} the initial coefficient of β.

Proposition 5. Let M be an R-module. If $M[x]$ is $\delta \mathrm{H}$ as an $R[x]$-module, then M is $\delta \mathrm{H}$.

Proof. Let $M[x]$ be $\delta \mathrm{H}$ as an $R[x]$-module and f a surjective endomorphism of M. Assume that $\operatorname{Ker}(f)+K=M$, for some $K \leqslant M$, with M / K singular. Define $\bar{f}: M[x] \rightarrow M[x]$ by $\bar{f}\left(\sum_{j=0}^{n} m_{j} x^{j}\right)=\sum_{j=0}^{n} f\left(m_{j}\right) x^{j}$. It is easy to see that \bar{f} is a surjective endomorphism of $M[x]$ and $\operatorname{Ker}(\bar{f})=$ $\operatorname{Ker}(f)[x]$. Hence $\operatorname{Ker}(\bar{f})+K[x]=M[x]$. We show that $M[x] / K[x]$ is a singular $R[x]$-module. Let $\beta=m_{0}+m_{1} x+\cdots+m_{n} x^{n} \in M[x]$. As M / K is singular, for each $0 \leqslant i \leqslant n$, there exists $I_{i} \leqslant^{\text {ess }} R$ such that $m_{i} I_{i} \subseteq K$. Put $I=\cap_{i=0}^{n} I_{i}$. Therefore $I \leqslant^{\text {ess }} R_{R}$ and $\beta I \subseteq K[x]$. We claim that $I[x] \leqslant{ }^{\text {ess }} R[x]$. Let $\alpha=r_{0}+r_{1} x+\cdots+r_{t} x^{t} \in R[x]$, where $t \in \mathbb{N}$. If $r_{0} \neq 0$, then $t_{0} \in R$ exists such that $0 \neq r_{0} t_{0} \in I$ (because $I \leqslant{ }^{\text {ess }} R_{R}$). Now, if $r_{1} t_{0} \neq 0$, then there exists $t_{1} \in R$ such that $0 \neq r_{1} t_{0} t_{1} \in I$. Continuing
this process, we get $r \in R$ such that $0 \neq \alpha r \in I[x]$ and $I[x] \leqslant{ }^{\text {ess }} R[x]$. As $\beta I \subseteq K[x], \beta I[x] \subseteq K[x]$. Thus $M[x] / K[x]$ is singular. Since $M[x]$ is $\delta \mathrm{H}$, $\operatorname{Ker}(\bar{f}) \ll_{\delta} M[x]$. Therefore $K[x]=M[x]$ and so $M=K$. This implies that $\operatorname{Ker}(f) \ll_{\delta} M$ and M is $\delta \mathrm{H}$.

The following example shows that the converse of proposition 5 is not correct.

Example 4. Let R be a semisimple ring, where $R[x]$ is not semisimple, and $M=R^{(\mathbb{N})}$. As $M \cong M \oplus M$ and $M[x] \cong M \otimes_{R} R[x]$, we have $M[x] \cong M[x] \oplus M[x]$. Since R is semisimple, M is $\delta \mathrm{H}$, by Theorem 3. As $M[x]$ is not semisimple, $M[x]$ is not $\delta \mathrm{H}$, by Theorem 1 .

Remark 1. Let M be an R-module and N a submodule of $M[x] /\left(x^{n+1}\right)$ as an $R[x] /\left(x^{n+1}\right)$-module, where $n \geqslant 0$. Define

$$
N_{i}=\{0\} \cup\{\text { initial coefficients of elements of order } i \text { in } N\}
$$

for each $1 \leqslant i \leqslant n$. By [17], $N_{i} \leqslant M$ and $N_{0} \subseteq N_{1} \subseteq \cdots \subseteq N_{n}$.
Definition 3. Let M be an R-module and N a submodule of $M[x] /\left(x^{n+1}\right)$ as an $R[x] /\left(x^{n+1}\right)$-module, where $n \geqslant 0$. Then we say that $N_{0} \subseteq N_{1} \subseteq$ $\cdots \subseteq N_{n}$ is the adjoint chain of N.

In the following, we show that for each submodule N of $M[x] /\left(x^{n+1}\right)$ as an $R[x] /\left(x^{n+1}\right)$-module, its adjoint chain plays an important role to find its properties. By the definition of $N_{i}(1 \leqslant i \leqslant n)$, it is clear that N_{i} is uniquely determined by N.

Lemma 7. Let N be a submodule of $M[x] /\left(x^{n+1}\right)$ as an $R[x] /\left(x^{n+1}\right)$ module, where $n \geqslant 0$. Then $N \leqslant{ }^{\text {ess }} M[x] /\left(x^{n+1}\right)$ if and only if $N_{n} \leqslant$ ess M_{R}.

Proof. Let $\left.N \leqslant \begin{array}{c}\text { ess } \\ \hline\end{array} x\right] /\left(x^{n+1}\right)$ and $0 \neq m \in M$. Then there exists $r_{0}+$ $r_{1} x+\cdots+r_{n} x^{n} \in R[x] /\left(x^{n+1}\right)$ such that $0 \neq m\left(r_{0}+r_{1} x+\cdots+r_{n} x^{n}\right) \in N$. Let s be the order of $m\left(r_{0}+r_{1} x+\cdots+r_{n} x^{n}\right)$. Hence $0 \neq m r_{s} x^{s} \in N_{s} \subseteq N_{n}$. Therefore $N_{n} \leqslant{ }^{\text {ess }} M$.

Conversely, assume that $N_{n} \leqslant{ }^{\text {ess }} M$ and $m_{s} x^{s}+m_{s+1} x^{s+1}+\cdots+$ $m_{n} x^{n} \in M[x] /\left(x^{n+1}\right)$ of order s. Since $m_{s} \neq 0$ and $N_{n} \leqslant{ }^{\text {ess }} M$, there exists $r \in R$ such that $0 \neq m_{s} r \in N_{n}$. Therefore $0 \neq\left(m_{s} x^{s}+m_{s+1} x^{s+1}+\right.$ $\left.\cdots+m_{n} x^{n}\right)\left(r x^{n-s}\right)=m_{s} r x^{n}$. Clearly $m_{s} r x^{n} \in N$ (by the definition of $\left.N_{n}\right)$. Therefore $N \leqslant{ }^{\text {ess }} M[x] /\left(x^{n+1}\right)$.

Lemma 8. Let N be a submodule of $M[x] /\left(x^{n+1}\right)$ as an $R[x] /\left(x^{n+1}\right)$ module $(n \geqslant 0)$ and $N_{0} \subseteq N_{1} \subseteq \cdots \subseteq N_{n}$ the adjoint chain of N. Then N is a maximal submodule of $M[x] /\left(x^{n+1}\right)$ if and only if N_{0} is a maximal submodule of M and $N_{i}=M$ for each $1 \leqslant i \leqslant n$. Moreover, if N is a maximal submodule of $M[x] /\left(x^{n+1}\right)$, then $N=N_{0}+M x+\cdots+M x^{n}$.

Proof. Let N be a maximal submodule of $M[x] /\left(x^{n+1}\right)$. Let $N_{0} \subseteq N_{0}^{\prime}$ for some $N_{0}^{\prime} \leqslant M$. Set

$$
N^{\prime}=\left\{m_{0}+m_{1} x+\cdots+m_{n} x^{n} \in M[x] /\left(x^{n+1}\right): m_{0} \in N_{0}^{\prime}, m_{i} \in M\right\}
$$

It is clear that $N^{\prime} \leqslant M[x] /\left(x^{n+1}\right)$ and $N \subseteq N^{\prime}$. Since N is maximal, $N=N^{\prime}$ or $N^{\prime}=M[x] /\left(x^{n+1}\right)$. Therefore $N_{0}=N_{0}^{\prime}$ or $N_{0}^{\prime}=M$, where N_{0}^{\prime} is the first component of the adjoint chain of N^{\prime}. This implies that N_{0} is maximal in M. Also, maximality of N gives $N_{i}=M$ for each $1 \leqslant i \leqslant n$.

Conversely, assume that N_{0} is a maximal submodule of M and $N_{i}=M$ for each $1 \leqslant i \leqslant n$. If there exists $N^{\prime} \supsetneqq M[x] /\left(x^{n+1}\right)$ such that $N \subseteq N^{\prime}$, then $N_{0} \subseteq N_{0}^{\prime}$ and $N_{i} \subseteq N_{i}^{\prime}$ for each $1 \leqslant i \leqslant n$, where $N_{0}^{\prime} \subseteq N_{1}^{\prime} \subseteq \cdots \subseteq N_{n}^{\prime}$ is the adjoint chain of N^{\prime}. As $N^{\prime} \neq M[x] /\left(x^{n+1}\right), N_{0}=N_{0}^{\prime}$ and $N_{i}^{\prime}=M$ for each $1 \leqslant i \leqslant n$. Therefore $N=N^{\prime}$ and N is a maximal submodule of $M[x] /\left(x^{n+1}\right)$.

Now, it is clear that, if N is a maximal submodule of $M[x] /\left(x^{n+1}\right)$, then $N=N_{0}+M x+\cdots+M x^{n}$.

Now, we are ready to determine the $\delta\left(M[x] /\left(x^{n+1}\right)\right)$ for a module M.
Theorem 8. Let M be an R-module. Then $\delta\left(M[x] /\left(x^{n+1}\right)\right)=\operatorname{Rad}(M)+$ $M x+M x^{2}+\cdots+M x^{n}$.

Proof. By Lemmas 7 and 8, every maximal submodule of $M[x] /\left(x^{n+1}\right)$ is essential. Hence

$$
\begin{aligned}
\delta(M & {\left.[x] /\left(x^{n+1}\right)\right) } \\
& =\bigcap\left\{N \leqslant M[x] /\left(x^{n+1}\right):\left(M[x] /\left(x^{n+1}\right)\right) / N \text { is simple and singular }\right\} \\
& =\bigcap\left\{N: N \text { is maximal in } M[x] /\left(x^{n+1}\right)\right\} \\
& =\operatorname{Rad}(M)+M x+M x^{2}+\cdots+M x^{n} .
\end{aligned}
$$

It is known that, if M is an R-module and $K \ll M$, then $K[x] /\left(x^{n+1}\right) \ll$ $M[x] /\left(x^{n+1}\right)$ as an $R[x] /\left(x^{n+1}\right)$-module, by [17, Lemma 2.1]. However, it is not true for δ-small submodules, as the following example shows.

Example 5. Let F be a field and $R=T_{2}(F)$, the ring of upper triangular matrices over F. Then $\delta\left(R_{R}\right)=\left(\begin{array}{ll}0 & F \\ 0 & F\end{array}\right)$ and $J(R)=\left(\begin{array}{cc}0 & F \\ 0 & 0\end{array}\right)$. Let $I=\left(\begin{array}{ll}0 & 0 \\ 0 & F\end{array}\right)$. Then $I<_{\delta} R$, because $I \subseteq \delta\left(R_{R}\right)$ and $\delta\left(R_{R}\right)<_{\delta} R$. However $I[x] /\left(x^{n+1}\right)$ is not a δ-small right ideal of $R[x] /\left(x^{n+1}\right)$, because $I[x] /\left(x^{n+1}\right) \not \subset \delta\left(R[x] /\left(x^{n+1}\right)\right)=J(R)+R x+\cdots+R x^{n}$, by Theorem 8.

In [17, Theorem 2.2], it is shown that, if M is a $g \mathrm{H} R$-module, then $M[x] /\left(x^{n+1}\right)$ is $g \mathrm{H}$ as an $R[x] /\left(x^{n+1}\right)$-module, however it is not true that, if M is a $\delta \mathrm{H} R$-module, then $M[x] /\left(x^{n+1}\right)$ is $\delta \mathrm{H}$ as an $R[x] /\left(x^{n+1}\right)$-module, as the following example shows.

Example 6. Let R be a semisimple ring and $M=R^{(\mathbb{N})}$. Then M is $\delta \mathrm{H}$ by Theorem 3. Define $f: M \rightarrow M$ by $f\left(\left(r_{1}, r_{2}, \ldots, r_{n}, \ldots\right)\right)=$ $\left(r_{2}, r_{3}, \ldots, r_{n}, \ldots\right)$. Then f is an epimorphism and

$$
\operatorname{Ker}(f)=\left\{(r, 0,0,0, \ldots) \in R^{(\mathbb{N})}: r \in R\right\}
$$

It is clear that $\alpha: M[x] /\left(x^{n+1}\right) \rightarrow M[x] /\left(x^{n+1}\right)$ defined by

$$
\alpha\left(\sum_{j=0}^{n} m_{j} x^{j}\right)=\sum_{j=0}^{n} f\left(m_{j}\right) x^{j}
$$

is an $R[x] /\left(x^{n+1}\right)$-epimorphism and $\operatorname{Ker}(\alpha)=(\operatorname{Ker}(\alpha))[x] /\left(x^{n+1}\right)$. If $\operatorname{Ker}(\alpha) \ll_{\delta} M[x] /\left(x^{n+1}\right)$, then

$$
\operatorname{Ker}(\alpha) \subseteq \delta\left(M[x] /\left(x^{n+1}\right)\right)=\operatorname{Rad}(M)+M x+M x^{2}+\cdots+M x^{n}
$$

by Theorem 8 . $\operatorname{But} \operatorname{Rad}(M)=0$ and $\operatorname{Ker}(\alpha) \not \subset \delta\left(M[x] /\left(x^{n+1}\right)\right)$. Therefore $\operatorname{Ker}(\alpha)$ is not a δ-small submodule of $M[x] /\left(x^{n+1}\right)$ and $M[x] /\left(x^{n+1}\right)$ is not a $\delta \mathrm{H}$ module.

Theorem 9. Let M be an R-module. If $M[x] /\left(x^{n+1}\right)$ is $\delta \mathrm{H}$ as an $R[x] /\left(x^{n+1}\right)$-module, then M is $\delta \mathrm{H}$.

Proof. Assume that $M[x] /\left(x^{n+1}\right)$ is $\delta \mathrm{H}$ as an $R[x] /\left(x^{n+1}\right)$-module and $f: M \rightarrow M$ an R-epimorphism. Define $\alpha: M[x] /\left(x^{n+1}\right) \rightarrow M[x] /\left(x^{n+1}\right)$ by

$$
\alpha\left(\sum_{j=0}^{n} m_{j} x^{j}\right)=\sum_{j=0}^{n} f\left(m_{j}\right) x^{j}
$$

Then α is an $R[x] /\left(x^{n+1}\right)$-epimorphism and $\operatorname{Ker}(\alpha)=(\operatorname{Ker}(f))[x] /\left(x^{n+1}\right)$. We show that $\operatorname{Ker}(f) \ll_{\delta} M$. Let H be a submodule of M such that $\operatorname{Ker}(f)+H=M$ with M / H singular. Hence

$$
M[x] /\left(x^{n+1}\right)=(\operatorname{Ker}(f))[x] /\left(x^{n+1}\right)+H[x] /\left(x^{n+1}\right)
$$

We claim that $\frac{M[x] /\left(x^{n+1}\right)}{H[x] /\left(x^{n+1}\right)}$ is singular as $R[x] /\left(x^{n+1}\right)$-module. Let

$$
m=m_{0}+m_{1} x+\cdots+m_{n} x^{n} \in M[x] /\left(x^{n+1}\right)
$$

For each $0 \leqslant j \leqslant n$, there exists $I_{j} \leqslant{ }^{\text {ess }} R$ such that $m_{j} I_{j} \subseteq H$. Put $I=$ $\cap_{i=1}^{n} I_{j}$. Then $I \leqslant^{\text {ess }} R$ and so $I[x] /\left(x^{n+1}\right) \leqslant{ }^{\text {ess }} R[x] /\left(x^{n+1}\right)$, by Lemma 7 . As $m_{j} I \subseteq H$ for each $0 \leqslant j \leqslant n, m\left(I[x] /\left(x^{n+1}\right)\right) \subseteq H[x] /\left(x^{n+1}\right)$. Therefore $\frac{M[x] /\left(x^{n+1}\right)}{H[x] /\left(x^{n+1}\right)}$ is singular. As $\operatorname{Ker}(\alpha) \ll_{\delta} M[x] /\left(x^{n+1}\right), H[x] /\left(x^{n+1}\right)=$ $M[x] /\left(x^{n+1}\right)$, and so $H=M$. Therefore $\operatorname{Ker}(f) \ll_{\delta} M$ and M is $\delta \mathrm{H}$.

3. Triangular matrix extensions

Throughout this section T will denote a 2 -by-2 generalized (or formal) triangular matrix ring $\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$, where R and S are rings and M is an (S, R)-bimodule.
Proposition 6. Assume that M is an (S,R)-bimodule, and $T=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$. Then $\delta\left(T_{T}\right)=\left(\begin{array}{cc}H & M \\ 0 & \delta\left(R_{R}\right)\end{array}\right)$, where

$$
H=\delta\left(S_{S}\right) \cap\left\{I: I \text { is a maximal right ideal of } S \text { with } \operatorname{ann}_{S}(M) \subseteq I\right\}
$$

Proof. By Lemma 4, every maximal essential right ideal of T has the form $\left(\begin{array}{cc}S & M \\ 0 & J\end{array}\right)$, where J is a maximal essential right ideal of R or $\left(\begin{array}{cc}I & M \\ 0 & R\end{array}\right)$, where I is a maximal right ideal with $I \cap \operatorname{ann}_{S}(M) \leqslant^{\text {ess }}\left(\operatorname{ann}_{S}(M)\right)_{S}$. Therefore $\delta\left(T_{T}\right)=\left(\begin{array}{cc}K & M \\ 0 & \delta\left(R_{R}\right)\end{array}\right)$, where

$$
\begin{aligned}
K=\{I \leqslant S: & I \text { is a maximal right ideal of } S \\
& \text { with } \left.I \cap \operatorname{ann}_{S}(M) \leqslant{ }^{\mathrm{ess}}\left(\operatorname{ann}_{S}(M)\right)_{S}\right\}
\end{aligned}
$$

We prove $K=H$. If $\operatorname{ann}_{S}(M)=0$, then it is clear that $K=H=\delta\left(S_{S}\right)$. Assume that $\operatorname{ann}_{S}(M) \neq 0$. Let $x \in K$ and I be a maximal right ideal
of S. If $\operatorname{ann}_{S}(M) \subseteq I$, then $\operatorname{ann}_{S}(M)=I \cap \operatorname{ann}_{S}(M) \leqslant^{\text {ess }}\left(\operatorname{ann}_{S}(M)\right)_{S}$. Therefore $x \in K$ implies that $x \in I$. If $I \leqslant{ }^{\text {ess }} S_{S}$, then $I \cap \operatorname{ann}_{S}(M) \leqslant$ ess $\left(\operatorname{ann}_{S}(M)\right)_{S}$. Hence $x \in I$. Therefore $x \in H$ and so $K \subseteq H$. For the reverse of the inclusion, let $x \in H$. Let I be a maximal right ideal of S such that $I \cap \operatorname{ann}_{S}(M) \leqslant^{\text {ess }}\left(\operatorname{ann}_{S}(M)\right)_{S}$. If $\operatorname{ann}_{S}(M) \subseteq I$, then $x \in I$. Assume that $\operatorname{ann}_{S}(M) \not \subset I$. Hence $\operatorname{ann}_{S}(M)+I=S$ and so $S / I \cong \operatorname{ann}_{S}(M) /(I \cap$ $\left.\operatorname{ann}_{S}(M)\right)$. As $\operatorname{ann}_{S}(M) \neq 0$ and $\operatorname{ann}_{S}(M) \cap I \leqslant$ ess $\left(\operatorname{ann}_{S}(M)\right)_{S}$, we have $\operatorname{ann}_{S}(M) \cap I \neq 0$ and S / I is singular. Therefore $I \leqslant{ }^{\text {ess }} S_{S}$. Thus $x \in \delta(S)$ gives $x \in I$; hence $K=H$.

The next result gives a characterization for the $\delta \mathrm{H}$ condition for a 2-by-2 generalized triangular matrix ring.

Theorem 10. Assume that M is an (S,R)-bimodule, and $T=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$. Then the following statements are equivalent:
(1) T_{T} is $\delta \mathrm{H}$.
(2) (i) S_{S} is $\delta \mathrm{H}$ and if $a \in S$ has the right inverse b, then $1-b a \in I$, for each maximal right ideal of R with $\operatorname{ann}_{S}(M) \subseteq I$.
(ii) R_{R} is $\delta \mathrm{H}$.

Proof. (1) $\Rightarrow(2)$ Let $a \in S$ have the right inverse $b \in S$. Then $\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}b & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Since T is $\delta \mathrm{H},\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{ll}b & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \in$ $\delta\left(T_{T}\right)$, by Theorem 2. Thus
$1-b a \in \delta\left(S_{S}\right) \cap\left\{I: I\right.$ is a maximal right ideal of S with $\left.\operatorname{ann}_{S}(M) \subseteq I\right\}$,
by Proposition 6. Hence S_{S} is $\delta \mathrm{H}$, by Theorem 2 and $1-b a \in I$, for each maximal right ideal of S with $\operatorname{ann}_{S}(M) \subseteq I$.
(ii) It is similar to the proof of (i).
$(2) \Rightarrow(1)$ Let $\left(\begin{array}{ll}a & m \\ 0 & p\end{array}\right)\left(\begin{array}{ll}b & n \\ 0 & q\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, where $a, b \in S, p, q \in R$ and $m, n \in M$. Hence $a b=1$ and $p q=1$. By (1) and Proposition 6, $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{cc}b & n \\ 0 & q\end{array}\right)\left(\begin{array}{cc}a & m \\ 0 & p\end{array}\right) \in \delta\left(T_{T}\right)$. Hence by Theorem $2, T_{T}$ is $\delta \mathrm{H}$.

Theorem 11. Let $T=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$, where M is an (S, R)-bimodule. If M is a faithful left R-module, then T_{T} is $\delta \mathrm{H}$ if and only if S_{S} is Dedekind finite and R_{R} is $\delta \mathrm{H}$.

Proof. By Proposition $10, \delta\left(T_{T}\right)=\left(\begin{array}{cc}H & M \\ 0 & \delta\left(R_{R}\right)\end{array}\right)$, where
$H=\delta\left(S_{S}\right) \cap\left\{I: I\right.$ is a maximal right ideal of S with $\left.\operatorname{ann}_{S}(M) \subseteq I\right\}$.
Since $\operatorname{ann}_{S}(M)=0, H=J(S)$. Let T_{T} be δ H. If $a b=1(a, b \in S)$, then similar to the proof of Theorem $10,1-b a \in J(S)$, and so $b a=1$. This implies that S is Dedekind-finite. Also, from Theorem $10, R_{R}$ is $\delta \mathrm{H}$. The converse can be concluded from Theorem 10.

Since M_{R} is always a faithful left S-module for $S=\operatorname{End}\left(M_{R}\right)$, we have the following corollary. It is known that an R-module M is Dedekind-finite if and only if $\operatorname{End}_{R}(M)$ is a Dedekind-finite ring.

Corollary 4. Let $T=\left(\begin{array}{cc}\operatorname{End}\left(M_{R}\right) & M \\ 0 & R\end{array}\right)$. Then T_{T} is $\delta \mathrm{H}$ if and only if M is Dedekind-finite and R_{R} is $\delta \mathrm{H}$.

Theorem 12. Assume R is a ring. Then the following are equivalent:
(1) R_{R} is Dedekind-finite;
(2) $T_{n}(R)$ is $\delta \mathrm{H}$, for every positive integer n.

Proof. (1) \Rightarrow (2) We proceed by induction on n. Note that $T_{n+1}(R)=$ $\left(\begin{array}{cc}R & M \\ 0 & T_{n}(R)\end{array}\right)$, where $M=(R, R, \ldots, R)$ (n-tuple). For $n=2$, if R is Dedekind-finite, then $T_{2}(R)$ is $\delta \mathrm{H}$, by Theorem 11 . Now, assume that R is Dedekind-finite and $T_{n}(R)$ is $\delta \mathrm{H}$. Hence by Theorem $11, T_{n+1}(R)$ is $\delta \mathrm{H}$. $(2) \Rightarrow(1)$ It is clear from Theorem 11 .

Theorem 13. Let R be a ring and $U(R)$ the countably upper triangular matrix ring over R. Then R is Dedekind-finite if and only if $U(R)$ is $\delta \mathrm{H}$.

Proof. It is clear that $U(R) \cong\left(\begin{array}{cc}R & M \\ 0 & U(R)\end{array}\right)$, where $M=(R, R, \ldots)$. Now, the result is clear from Theorem 11.

Motivated by [1, Proposition 2.14], we have the following theorem.
Theorem 14. Let ${ }_{S} M_{R}$ be a nonzero (S, R)-bimodule such that M_{R}^{n} is $\delta \mathrm{H}$ for all $n \geqslant 1$. Then either M_{R} is semisimple and projective or one of the rings R or S satisfies the rank condition.

Proof. Assume that M_{R} is not projective or semisimple. Let $T=\left(\begin{array}{cc}S & M \\ 0 & R\end{array}\right)$ and $I=\left(\begin{array}{cc}0 & M \\ 0 & 0\end{array}\right)$. Since M_{R} is not projective or semisimple, I_{T} is not projective or semisimple. By hypothesis, we can conclude that I_{T}^{n} is $\delta \mathrm{H}$ for each $n \geqslant 1$. Now we will show that the ring T satisfies the rank condition. Assume that T does not satisfy the rank condition and $f: T^{p} \rightarrow T^{q}$ is an epimorphism with $q>p$. Thus $f\left(I^{p}\right)=f\left(T^{p} I\right)=f\left(T^{p}\right) I=T^{q} I=I^{q}$. Hence $f: I^{p} \rightarrow I^{p} \oplus I^{q-p}$ is an epimorphism. Since I_{T}^{n} is $\delta \mathrm{H}$ for each $n \geqslant 1$, I^{q-p} is semisimple and projective as T-module, by Theorem 1. But then I should be projective and semisimple, which is not. Hence T satisfies the rank condition. Therefore one of the rings R or S satisfies the rank condition, by [6, Proposition 4.1].

Open Problems. (1) What is the structure of rings whose finitely generated right modules are $\delta \mathrm{H}$?
(2) Does Theorem 5 hold for δ-small submodules? (That is, let M be a quasi-projective R-module. Then M is $\delta \mathrm{H}$ if and only if so is M / N for any δ-small submodule N of M).

Acknowledgment

The authors express their deep gratitude to the referee for her/his helpful suggestions for the improvement of this work.

References

[1] Sh. Asgari, A. Haghany, and M. R. Vedadi, Quasi Co-Hopfian Modules and Applications, Comm Algebra, 36(2008), 1801-1816.
[2] G. Baumslag, Hopficity and abelian groups, in: J. Irwin, E.A. Walker (Eds.), Topics in Abelian Groups, Scott Foresmann and Company, 1963, 331-335.
[3] G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Generalized triangular matrix rings and the fully invariant extending property, Rocky Mountain J. Math., 32(2002), 1299-1319.
[4] A. Ghorbani, A. Haghany, Generalized Hopfian modules, J. Algebra, 255(2) (2002), 324-341.
[5] K.R. Goodearl, Von Neumann Regular Rings, Monographs and studies in mathematics, 1979.
[6] A. Haghany, K. Varadarajan, IBN and related properties for rings. Acta Math. Hung. 93 (2002), 251-261.
[7] A. Haghany, M.R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra 243 (2001) 765-779.
[8] V. Hiremath, Hopfian rings and Hopfian modules, Indian J. Pure Appl. Math. 17 (1986) 895-900.
[9] I. Kaplansky, Rings of Operators. New York-Amsterdam: W. A. Benjamin, Inc. (1968).
[10] T.Y. Lam, Lectures on modules and rings, New York: Springer-Verlag, 1998.
[11] R. Triback, Finitely generated δ-supplemented modules are amply δ-supplemented, Bull. Aust. Math. Soc. 86 (2012), 430-439.
[12] R. Triback, On δ-Local Modules and Amply δ-Supplemented Modules, Journal of Algebra and Its Applications Vol. 12, No. 2 (2013) 1250144.
[13] K. Varadarajan, A generalization of Hilbert's basis theorem. Comm. Algebra 10(20) (1982), 2191-2204.
[14] K. Varadarajan, Hopfian and co-Hopfian objects. Publicacions Matemàtiques 36(1992), 293-317.
[15] K. Varadarajan, On Hopfian rings. Acta Math. Hungar. 83(1-2) (1999), 17-26.
[16] R. Wisbauer, Foundations of Module and Ring Theory. Gordon and Breach Science Publishers, 1991.
[17] G. Yang, Z. Liu, Notes on Generalized Hopfian and Weakly Co-Hopfian Modules, Comm. Algebra, 38(2010), 3556-3566.
[18] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloquium, 7 (3) (2000), 305-318.

Contact information

S. Ebrahimi Atani, Department of Mathematics, University of M. Khoramdel, Guilan, P.O.Box 1914, Rasht, Iran
S. Dolati Pishhesari E-Mail(s): ebrahimi@guilan.ac.ir, mehdikhoramdel@gmail.com, saboura_dolati@yahoo.com

Received by the editors: 15.12.2016
and in final form 18.10.2018.

