Modules in which every surjective endomorphism has a δ -small kernel

Shahabaddin Ebrahimi Atani, Mehdi Khoramdel and Saboura Dolati Pishhesari

Communicated by R. Wisbauer

ABSTRACT. In this paper, we introduce the notion of δ -Hopfian modules. We give some properties of these modules and provide a characterization of semisimple rings in terms of δ -Hopfian modules by proving that a ring R is semisimple if and only if every R-module is δ -Hopfian. Also, we show that for a ring R, $\delta(R) = J(R)$ if and only if for all R-modules, the conditions δ -Hopfian and generalized Hopfian are equivalent. Moreover, we prove that δ -Hopfian property is a Morita invariant. Further, the δ -Hopficity of modules over truncated polynomial and triangular matrix rings are considered.

Introduction

Throughout rings will have unity and modules will be unitary. Let M denote a right module over a ring R. The study of modules by properties of their endomorphisms has long been of interest. The concept of Hopfian groups was introduced by Baumslag in 1963 ([2]). In [8], Hiremath generalized this concept to general module theoretic setting. A right R-module M is called Hopfian, if any surjective endomorphism of M is an isomorphism. Later, the dual concept of Hopfian modules (co-Hopfian modules) was introduced. Hopfian and co-Hopfian modules (rings) have been investigated by several authors [4], [7], [14], [15] and [17]. Direct finiteness (or

²⁰¹⁰ MSC: 16D10, 16D40, 16D90.

Key words and phrases: Dedekind finite modules, Hopfian modules, generalized Hopfian modules, δ -Hopfian modules.

Dedekind finiteness) evolved from the concepts of "finite projections" in operator algebras and "finite idempotents" in Baer rings (see [5, p. 74] and [9, p.10]). A module M is called *Dedekind-finite*, if X = 0 is the only module for which $M \cong M \oplus X$. Equivalently, fg = 1 implies gf = 1 for each $f, g \in \text{End}(M)$.

In [4], a proper generalization of Hopfian modules, called generalized Hopfian modules, was given. A right *R*-module *M* is called generalized Hopfian, if any surjective endomorphism of *M* has a small kernel. Recall that a submodule *N* of a module *M* is called small, denoted by $N \ll M$, if $N + X \neq M$ for all proper submodules *X* of *M*. In [4, Corollary 1.4], it is shown that the concepts of Dedekind finite modules, Hopfian modules and generalized Hopfian modules coincide for every (quasi-)projective module.

A submodule N of a module M is called δ -small in M, written $N \ll_{\delta} M$, provided $N + K \neq M$ for any proper submodule K of M with M/Ksingular (see [18]). In this paper, we introduce and study the notion of δ - Hopfian modules, which is a generalization of Hopfian modules and generalized Hopfian modules. We replace "small kernel" by " δ -small kernel". We discuss the following questions: When does a module have the property that every of its surjective endomorphisms has a δ -small kernel? Further, how can δ -Hopfian modules be used to characterize the base ring itself?

We summarize the contents of this article as follows. In Section 2, we give some equivalent properties and characterizations of δ -Hopfian modules. We characterize semisimple rings in terms of δ -Hopfian modules and show that a ring R is semisimple if and only if every R-module is δ -Hopfian. We prove that for a ring R, $\delta(R) = J(R)$ if and only if for all R-modules, the conditions δ -Hopfian and generalized Hopfian are equivalent. It is shown that a direct sum of δ -Hopfian modules and their endomorphism rings need not have the same property. Also, we prove that δ -Hopfian property is a Morita invariant.

In Section 3, we consider the δ -Hopfian property of M[x] (as an R[x]-module) and $M[x]/(x^{n+1})$ (as an $R[x]/(x^{n+1})$ -module). We characterize the structures of maximal submodules, essential submodules of $M[x]/(x^{n+1})$. Also, we show that

$$\delta(M[x]/(x^{n+1})) = \operatorname{Rad}(M) + Mx + Mx^2 + \dots + Mx^n.$$

Moreover, we prove that if $M[x]/(x^{n+1})$ is δ -Hopfian as an $R[x]/(x^{n+1})$ -module, then M is δ -Hopfian, but the converse is not true.

In Section 3, we characterize the generalized triangular matrix rings which are right δ -Hopfian and prove that if M is an (S,R)-bimodule, and

$$T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix}$$
, then $\delta(T_T) = \begin{pmatrix} H & M \\ 0 & \delta(R_R) \end{pmatrix}$, where,

 $H = \delta(S_S) \cap \{I : I \text{ is a maximal right ideal of } S \text{ with } ann_S(M) \subseteq I\}.$

At the end of the paper, some open problems are given.

We now fix our notations and state a few well known preliminary results that will be needed. Let M be a right R-module. For submodules N and Kof $M, N \leq K$ denotes that N is a submodule of K, $\operatorname{Rad}(M)$ denotes the Jacobson radical of M and $\operatorname{End}(M)$ denotes the ring of endomorphisms of M. By $N \leq^{\operatorname{ess}} M$, we mean that N is an essential submodule of M. Also, for a module M and a set Λ , let $M^{(\Lambda)}$ denote the direct sum of $|\Lambda|$ copies of M, where $|\Lambda|$ is the cardinality of Λ . The symbols J(R), $M_n(R)$ and $T_n(R)$ denote the Jacobson radical of R, the full ring of n-by-n matrices over R, and the ring of n-by-n upper triangular matrices over R, respectively. As in [18], we define $\delta(M)$ to be

$$\operatorname{Rej}_{\mathbf{P}}(M) = \cap \{ N \leqslant M \colon M/N \in \mathbf{P} \},\$$

where \mathbf{P} is the class of all singular simple modules.

Recall that a ring R is said to satisfy the rank condition if a right R-epimorphism $\mathbb{R}^m \to \mathbb{R}^n$ can exist only when $m \ge n$ (see [10]).

Lemma 1 ([18, Lemma 1.2]). Let N be a submodule of M. The following are equivalent:

- (1) $N \ll_{\delta} M$.
- (2) If X + N = M, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq N$;
- (3) If X + N = M with M/X Goldie torsion, then X = M.

Lemma 2 ([18, Lemma 1.3]). Let M be a module.

- (1) For submodules N, K, L of M with $K \subseteq N$, we have (a) $N \ll_{\delta} M$ if and only if $K \ll_{\delta} M$ and $N/K \ll_{\delta} M/K$.
 - (b) $N + L \ll_{\delta} M$ if and only if $N \ll_{\delta} M$ and $L \ll_{\delta} M$.
- (2) If $K \ll_{\delta} M$ and $f: M \to N$ is a homomorphism, then $f(K) \ll_{\delta} N$.
- (3) Let $K_1 \leq M_1 \leq M$, $K_2 \leq M_2 \leq M$, and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2 \ll_{\delta} M_1 \oplus M_2$ if and only if $K_1 \ll_{\delta} M_1$ and $K_2 \ll_{\delta} M_2$.

Lemma 3 ([18, Lemma 1.5, Theorem 1.6]). Let R be a ring and M an R-module. Then $\delta(M) = \sum \{L \leq M : L \ll_{\delta} M\}$ and $\delta(R)$ equals the intersection of all essential maximal right ideals of R.

Lemma 4 ([3,5,10]). Let $T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix}$, where R and S are rings and M is an (S,R)-bimodule.

- (1) Every right ideal of T has the form $\begin{pmatrix} I & N \\ 0 & J \end{pmatrix}$ such that $I \leq S_S$, $J \leq R_R$ and $IM \subseteq N$.
- (2) Let $Q = \begin{pmatrix} I & N \\ 0 & J \end{pmatrix}$. Then Q is a maximal right ideal of T if and only if N = M and either I = S and J is a maximal right ideal of R or J = R and I is a maximal right ideal of S.
- (3) The right ideal $Q = \begin{pmatrix} I & N \\ 0 & J \end{pmatrix}$ of T is essential in T_T if and only if $N \leq^{\text{ess}} M_R, J \leq^{\text{ess}} R_R$ and $I \cap (\operatorname{ann}_S(M)) \leq^{\text{ess}} \operatorname{ann}_S(M).$

1. δ -Hopfian modules

Motivated by the definition of generalized Hopfian modules, we introduce the key definition of this paper.

Definition 1. Let M be an R-module. We say that M is δ -Hopfian (δ H for short) if any surjective R-endomorphism of M has a δ -small kernel in M.

The next result gives several equivalent conditions for a δH module.

Theorem 1. Let M be an R-module. The following statements are equivalent:

- (1) M is δH ;
- (2) For any epimorphism $f: M \to M$, if $N \ll_{\delta} M$, then $f^{-1}(N) \ll_{\delta} M$;
- (3) If $N \leq M$ and there is an R-epimorphism $M/N \to M$, then $N \ll_{\delta} M$;
- (4) If M/N is nonzero and singular for some $N \leq M$, then $f(N) \neq M$, for each *R*-surjective endomorphism *f* of *M*;
- (5) There exists a fully invariant δ-small submodule N of M such that M/N is δH;
- (6) If f: M → M ⊕ X is an epimorphism, where X is a module, then X is projective and semisimple.

Proof. (1) \Rightarrow (2) Assume that $f: M \to M$ is an epimorphism and $N \ll_{\delta} M$. Let $f^{-1}(N) + K = M$ for some $K \leq M$, where M/K is singular. Hence N + f(K) = M. As M/K is singular and M/f(K) is an image of M/K, M/f(K) is singular. Hence N + f(K) = M and $N \ll_{\delta} M$, giving f(K) = M. So K + Ker(f) = M. Since M is δH , $\text{Ker}(f) \ll_{\delta} M$. Hence M/K is singular implies that K = M. Thus $f^{-1}(N) \ll_{\delta} M$.

(2) \Rightarrow (3) Let $f: M/N \to M$ be an epimorphism. It is clear that $N \leq (f\pi)^{-1}(0)$, where $\pi: M \to M/N$ is the canonical epimorphism. By (2), $(f\pi)^{-1}(0) \ll_{\delta} M$, Hence by Lemma 2, $N \ll_{\delta} M$.

 $(3) \Rightarrow (4)$ Let N be a proper submodule of M such that M/N is singular and f a surjective endomorphism of M with f(N) = M. Then N + Ker(f) = M. Hence $\text{Ker}(f) \ll_{\delta} M$ by (3), and so N = M, a contradiction.

(4) \Rightarrow (1) Let $f: M \to M$ be an epimorphism. If M = N + Ker(f), with M/N is singular, then M = f(M) = f(N). Hence N = M by (4). Thus $\text{Ker}(f) \ll_{\delta} M$.

 $(1) \Rightarrow (5)$ Take N = 0.

(5) \Rightarrow (1) Let M/N be δH for some fully invariant δ -small submodule N of M. If $f: M \to M$ is an epimorphism, then $\bar{f}: M/N \to M/N$ with $\bar{f}(m+N) = f(m) + N$ ($m \in M$) is an epimorphism. As M/N is δH , ker(\bar{f}) $\ll_{\delta} M/N$. Since (Ker(f) + N)/ $N \subseteq$ ker(\bar{f}) $\ll_{\delta} M/N$, Ker(f) + $N \ll_{\delta} M$ by Lemma 2. Hence Ker(f) $\ll_{\delta} M$ by Lemma 2, and so M is δH .

 $(1) \Rightarrow (6)$ Let $f: M \to M \oplus X$ be an epimorphism, $\pi: M \oplus X \to M$ the natural projection. It is clear that $\operatorname{Ker}(\pi f) = f^{-1}(0 \oplus X)$. By (1), M is δ H. Hence $\operatorname{Ker}(\pi f) \ll_{\delta} M$. Since f is an epimorphism, $f[f^{-1}(0 \oplus X)] = 0 \oplus X$. Hence by Lemma 2, $0 \oplus X = f(\operatorname{Ker}(\pi f)) \ll_{\delta} M \oplus X$. Therefore $X \ll_{\delta} X$ by Lemma 2. So, by Lemma 1, X is projective and semisimple.

(6) \Rightarrow (1) Let f be a surjective endomorphism of M and Ker(f) + L = M for some $L \leq M$, where M/L is singular. Since

$$M/\operatorname{Ker}(f) \cap L = \operatorname{Ker}(f)/(\operatorname{Ker}(f) \cap L) \oplus L/(\operatorname{Ker}(f) \cap L)$$
$$\cong M/L \oplus M/\operatorname{Ker}(f) \cong M/L \oplus M,$$

the epimorphism $M \to M \oplus M/L$ exists. By (6), M/L is semisimple and projective. As M/L is singular, M/L = 0. Thus M = L and $\text{Ker}(f) \ll_{\delta} M$.

Corollary 1. Let M be a δH module, $f \in End(M)$ an epimorphism and $N \leq M$. Then $N \ll_{\delta} M$ if and only if $f(N) \ll_{\delta} M$ if and only if $f^{-1}(N) \ll_{\delta} M$. Moreover $\delta(M) = \sum_{N \ll_{\delta} M} f(N) = \sum_{N \ll_{\delta} M} f^{-1}(N)$.

Proposition 1. Let M be a δH module. If N is a direct summand of M, then N is δH .

Definition 2. Let M and N be two R-modules. M is called δ -Hopfian (δ H, for short) relative to N, if for each epimorphism $f: M \to N$, $\text{Ker}(f) \ll_{\delta} M$.

In view of the above definition, an *R*-module M is δ H if and only if M is δ H relative to M.

In the following, we characterize the δ -Hopfian modules in terms of their direct summands and factor modules.

Proposition 2. Let M and N be two R-modules. Then the following statements are equivalent:

- (1) M is δH relative to N;
- (2) for each $L \leq \oplus M$, L is δH relative to N;
- (3) for each $L \leq M$, M/L is δH relative to N.

Proof. (1) \Rightarrow (2) Let $L \leq^{\oplus} M$ say $M = L \oplus K$, where $K \leq M$ and $f: L \to M$ an epimorphism. Let $\pi: M \to L$ be the natural projection. Then $f\pi: M \to N$ is an epimorphism and so $\operatorname{Ker}(f\pi) \ll_{\delta} M$ by (1). It is clear that $\operatorname{Ker}(f\pi) = \operatorname{Ker}(f) \oplus K$. Thus $\operatorname{Ker}(f\pi) = \operatorname{Ker}(f) \oplus K \ll_{\delta} M$. By Lemma 2(3), $\operatorname{Ker}(f) \ll_{\delta} L$.

 $(2) \Rightarrow (1)$ Take L = M.

(1) \Rightarrow (3) Let $L \leq M$ and $f: M/L \to N$ be an epimorphism. Then $f\pi: M \to N$ is an epimorphism, where $\pi: M \to M/L$ is the natural homomorphism. As $\operatorname{Ker}(f\pi) = \pi^{-1}(\operatorname{Ker}(f))$ and $\operatorname{Ker}(f\pi) \ll_{\delta} M$, $\pi(\operatorname{Ker}(f\pi)) = \operatorname{Ker}(f) \ll_{\delta} M/L$ by Lemma 2. Therefore M/L is δ H relative to N.

$$(3) \Rightarrow (1)$$
 Take $L = 0$.

In the following, we present some characterizations of projective δH modules.

Theorem 2. Let M be a projective R-module. Then the following statements are equivalent:

- (1) M is δH ;
- (2) If $f \in \text{End}(M)$ has a right inverse, then Ker(f) is semisimple and projective;
- (3) If $f \in \text{End}(M)$ has a right inverse in End(M), then $\text{Ker}(f) \ll_{\delta} M$;
- (4) If $f \in \text{End}(M)$ has a right inverse g, then $(1 gf)M \ll_{\delta} M$.

Proof. Let $f \in \text{End}(M)$ be an epimorphism. Then there exists $g \in \text{End}(M)$ such that $fg = 1 \in \text{End}(M)$. It is clear that Ker(f) = (1-gf)M and $M = \text{Ker}(f) \oplus (gf)M$.

 $(1) \Rightarrow (2)$ Let $f \in \text{End}(M)$ have a right inverse in End(M). Then fg = 1 for some $g \in \text{End}(M)$. Thus f is an epimorphism and so $\text{Ker}(f) \ll_{\delta} M$. As Ker(f) = (1 - gf)M is a direct summand of M, it is semisimple and projective by Lemma 1.

 $(2) \Rightarrow (3)$ Let $f \in \text{End}(M)$ have a right inverse in End(M). Then by (2), Ker(f) is semisimple and projective. We show that $\text{Ker}(f) \ll_{\delta} M$. Let Ker(f) + L = M for some $L \leq M$. Since Ker(f) is semisimple, $(\text{Ker}(f) \cap L) \oplus T = \text{Ker}(f)$ for some $T \leq \text{Ker}(f)$. Therefore $T \oplus L = M$. As T is semisimple and projective, $\text{Ker}(f) \ll_{\delta} M$, by Lemma 1.

(3) \Rightarrow (4) Let $f \in \text{End}(M)$ have a right inverse g. Hence by (3), $\text{Ker}(f) = (1 - gf)M \ll_{\delta} M$.

(4) \Rightarrow (1) Let $f \in \text{End}(M)$ be an epimorphism. As M is projective, $f \in \text{End}(M)$ has a right inverse g and Ker(f) = (1 - gf)M. Therefore by (4), $\text{Ker}(f) \ll_{\delta} M$ and M is δ H. \Box

Next, we characterize the class of rings R for which every (free) R-module is δH .

Theorem 3. Let R be a ring. Then the following statements are equivalent:

- (1) Every R-module is δH ;
- (2) Every projective R-module is δH ;
- (3) Every free R-module is δH ;
- (4) R is semisimple.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ They are clear.

 $(3) \Rightarrow (4)$ By (3), $R^{(\mathbb{N})}$ is δ H. As $R^{(\mathbb{N})} \cong R^{(\mathbb{N})} \oplus R^{(\mathbb{N})}$, by Theorem 1, $R^{(\mathbb{N})}$ is semisimple. Hence R is semisimple.

 $(4) \Rightarrow (1)$ Let M be an R-module. Hence M is projective and for each surjective endomorphism f of M, Ker(f) is semisimple and projective. Hence by Theorem 2, M is δ H. \Box

It is clear that every generalized Hopfian module is δH . The following example shows that the converse is not true, in general. Also, it shows that a δH module need not be Dedekind-finite.

Example 1. Let R be a semisimple ring. Then by Theorem 3, $M = R^{(\mathbb{N})}$ is a δH R-module. Since $R^{(\mathbb{N})} \cong R^{(\mathbb{N})} \oplus R^{(\mathbb{N})}$ and $R^{(\mathbb{N})} \neq 0$, M is not a gH (Dedekind-finite) module (see [4, Corollary 1.4]).

The following lemma gives a source of examples of δH modules.

Lemma 5. Let M be a projective and semisimple R-module. Then M is δH .

Proof. If M be a projective and semisimple R-module, then $M \ll_{\delta} M$, by [12, Lemma 2.9] and so every surjective endomorphism of M has a δ -small kernel.

In the following, it is shown that every $\delta H R$ -module is gH if and only if $\delta(R) = J(R)$.

Theorem 4. Let R be a ring. Then the following statements are equivalent:

- (1) The class of δH R-modules coincide with the class of gH R-modules;
- (2) Every projective $\delta H R$ -module is gH;
- (3) Every maximal right ideal of R is essential in R_R ;
- (4) R has no non-zero semisimple projective R-module;
- (5) $\delta(R) = J(R)$.

Proof. $(1) \Rightarrow (2)$ Is clear.

 $(2) \Rightarrow (3)$ Let **m** be a maximal right ideal of R. It is clear that either **m** is essential in R_R or a direct summand of R_R . If **m** is a direct summand of R_R , then $M = (R/\mathbf{m})^{(\mathbb{N})}$ is projective and semisimple. Hence M is δ H by Lemma 5. Therefore by (2), M is gH. As $M \cong M \oplus M$, M = 0, by [4, Theorem 1.1]. This is a contradiction, and so **m** is essential in R_R .

 $(3) \Rightarrow (4)$ Is clear.

 $(4) \Rightarrow (1)$ Let M be a δ H module and $f: M \to M \oplus X$ an epimorphism. Since M is δ H, X is projective and semisimple by Theorem 1. Therefore X = 0, by (4), and so M is gH, by [4, Theorem 1.1].

 $(3) \Rightarrow (5)$ Is clear.

 $(5) \Rightarrow (3)$ Let R be a ring such that $\delta(R) = J(R)$. If **m** is a maximal right ideal of R such that $\mathbf{m} \leq^{\oplus} R_R$, say $R = \mathbf{m} \oplus \mathbf{m}'$ for some right ideal \mathbf{m}' of R, then $\mathbf{m}' \subseteq \operatorname{Soc}(R) \subseteq \delta(R) \subseteq J(R) \subseteq \mathbf{m}$, a contradiction. Therefore every maximal right ideal of R is essential in R_R . \Box

Lemma 6. Let R be a domain, which is not a division ring. Then $\delta(R) = J(R)$.

Proof. Let $x \in \delta(R)$. Then $xR \ll_{\delta} R$. We show that $xR \ll R$. Let xR + K = R for some $K \leq R_R$. By Lemma 1, there exists $Y \leq xR$ such that $Y \oplus K = R$. As R is a domain, Y = R or K = R. If Y = R, then xR = R. Hence $\delta(R) = R$, therefore R is semisimple by [18, Corollary 1.7]. Hence R is a division ring, a contradiction. Therefore K = R and so $xR \ll R$. It implies that $\delta(R) = J(R)$.

A direct sum of δH modules need not be a δH module, as the following example shows.

Example 2. ([4, Remark 1.5], [10, Page 19, Exercise 18]) Let R be the K-algebra generated over a field K by $\{s, t, u, v, w, x, y, z\}$ with relations

$$sx + uz = 1$$
, $sy + uw = 0$, $tx + vz = 0$ and $ty + vw = 1$.

Then R is a domain which is not a division ring. Hence by Lemma 6, $\delta(R) = J(R)$. By [4, Remark 1.5], R is gH, however R^2 is not gH. Therefore R is δ H, but R^2 is not δ H.

The next result gives a condition that a direct sum of two δH modules is δH .

Proposition 3. Let M_1 and M_2 be two *R*-modules. If for every $i \in \{1, 2\}$, M_i is a fully invariant submodule of $M = M_1 \oplus M_2$, then M is δH if and only if M_i is δH for each $i \in \{1, 2\}$.

Proof. The necessity is clear from Proposition 1. For the sufficiency, let $f = (f_{ij})$ be a surjective endomorphism of M, where $f_{ij} \in \text{Hom}(M_i, M_j)$ and $i, j \in \{1, 2\}$. By assumption, $\text{Hom}(M_i, M_j) = 0$ for every $i, j \in \{1, 2\}$ with $i \neq j$. Since f is an epimorphism, f_{ii} is a surjective endomorphism of M_i for each $i \in \{1, 2\}$. As M_i is δ H for each $i \in \{1, 2\}$, $\text{Ker}(f_{ii}) \ll_{\delta} M_i$. Since $\text{Ker}(f) = \text{Ker}(f_{11}) \oplus \text{Ker}(f_{22})$, $\text{Ker}(f) \ll_{\delta} M$ by Lemma 2(3). Hence M is δ H.

In the following example, it is shown that the δH property of a module dose not inherit by its endomorphism ring.

Example 3. Let M be an infinite dimensional vector space over a division ring K. Then by Theorem 3, M is δ H. Since $S \cong S^2$ by [5, Example 5.16] and S is not a semisimple ring, S = End(M) is not δ H, by Theorem 1.

Theorem 5. Let M be a quasi-projective R-module. Then M is δH if and only if M/N is δH for any small submodule N of M.

Proof. Let M be δH , $N \leq M$ and $f: M/N \to M/N$ be an epimorphism. Since M is quasi-projective, there exists a homomorphism $g: M \to M$ such that $\pi g = f\pi$, where $\pi: M \to M/N$ is the natural epimorphism. As $N \ll M, g$ is an epimorphism, by [16, 19.2]. Therefore $\operatorname{Ker}(g) \ll_{\delta} M$. Since $\pi g = f\pi, g(N) \leq N$ and $\operatorname{Ker}(f) = (g^{-1}(N))/N$. As $N \ll M$ (and so $N \ll_{\delta} M$) and g is an epimorphism, $g^{-1}(N) \ll_{\delta} M$, by Theorem 1(2). Therefore $\operatorname{Ker}(f) \ll_{\delta} M/N$, by Lemma 2. Therefore M/N is δH . The converse is clear by taking N = 0. **Theorem 6.** Let M be an R-module. If M satisfies a.c. c or d. c. c on non δ -small submodules, then M is a δ H module.

Proof. Let M be a module that satisfies a.c.c. on non δ -small submodules and $f: M \to M$ an epimorphism. If $\operatorname{Ker}(f)$ is not δ -small in M, then $\operatorname{Ker}(f) \subseteq \operatorname{Ker}(f^2) \subseteq \operatorname{Ker}(f^3) \subseteq \ldots$ is an ascending chain of non δ -small submodules of M. Hence there exists $n \ge 1$ such that $\operatorname{Ker}(f^n) = \operatorname{Ker}(f^{n+i})$ for each $i \ge 1$. By a usual argument, $\operatorname{Ker}(f) = 0$, a contradiction. Therefore $\operatorname{Ker}(f) \ll_{\delta} M$ and so M is δ H.

Assume that M satisfies d.c. on non δ -small submodules and M is not δ H. Hence there exists an epimorphism $f: M \to M$ such that K = Ker(f) is not a δ -small submodule of M. Therefore then each submodule L of M, which contains K, is not a δ -small submodule of M. As M is not δH , it is not Artinian. Hence $M/K \cong M$ is not Artinian and there is a descending chain $L_1/K \supset L_2/K \supset L_3/K \supset \ldots$ of submodules of M/K. Thus $L_1 \supset L_2 \supset L_3 \supset \ldots$ is a descending chain of non δ -small submodule of M, a contradiction.

Proposition 4. Let R be a ring. If $R/\delta(R)$ is a semisimple ring, then every finitely generated right R-module M is δH .

Proof. Assume that $R/\delta(R)$ is a semisimple ring, and M is a finitely generated right R-module. Hence $\delta(M) = \delta(R)M$ by [18, Theorem 1.8]. Therefore $M/\delta(M)$ is semisimple as an $R/\delta(R) - module$, and so it is semisimple as R-module. Therefore $M/\delta(M)$ is δ H, by Theorem 6. As M is finitely generated, $\delta(M) \ll_{\delta} M$, and so M is δ H, by Theorem 1(5). \Box

The following result shows δH property is preserved under Morita equivalences.

Theorem 7. δ -Hopfian is a Morita invariant property.

Proof. Let R and S be Morita equivalent rings with inverse category equivalences α : Mod- $R \to Mod-S$, β : Mod- $S \to Mod-R$. Let M be a δ H R-module. We show that $\alpha(M)$ is a δ H S-module. Assume that $\phi: \alpha(M) \to \alpha(M) \oplus X$ be an S-module epimorphism where X is a right Smodule. Since any category equivalence preserves epimorphisms and direct sums, we have $\beta(\phi): \beta\alpha(M) \to \beta\alpha(M) \oplus \beta(X)$, as an epimorphism of right R-modules. As $\beta\alpha(M) \cong M$, we have an epimorphism $M \to M \oplus \beta(X)$ of R-modules. Therefore $\beta(X)$ is semisimple and projective as an R-module, by Theorem 1. Since any category equivalence preserves semisimple and projective properties, X is semisimple and projective as an S-module. Therefore $\alpha(M)$ is δ H. **Corollary 2.** Let $n \ge 2$. Then the following statements are equivalent for a ring R:

- (1) Every n-generated R-module is δH ;
- (2) Every cyclic $M_n(R)$ -module is δH .

Proof. Let $P = R^n$ and $S = \operatorname{End}(P)$. Then, it is known that $\operatorname{Hom}_R(P, -)$: $N_R \to \operatorname{Hom}_R({}_SP_R, N_R)$ defines a Morita equivalence between Mod-R and Mod-S with the inverse equivalence $-\otimes_S P \colon M_S \to M \otimes P$. Moreover, if N is an n-generated R-module, then $\operatorname{Hom}_R(P, N)$ is a cyclic S-module and for any cyclic S-module $M, M \otimes_S P$ is an n-generated R-module. By Theorem 7, a Morita equivalence preserves the δ H property of modules. Therefore, every cyclic S-module is δ H if and only if every n-generated R-module is δ H. \Box

In the following, we characterize the rings R for which every finitely generated free R-module is δ H.

Corollary 3. Let R be a ring. Then the following statements are equivalent:

- (1) Every finitely generated free R-module is δH ;
- (2) Every finitely generated projective R-module is δH ;
- (3) $M_n(R)$ is δH (as an $M_n(R)$ -module) for each $n \ge 1$.

Proof. $(1) \Rightarrow (2)$ It is clear from Proposition 1.

 $(2) \Rightarrow (1)$ It is clear.

(1) \Leftrightarrow (3) Let *n* be a positive integer and $S = M_n(R)$. By the proof of Corollary 2 and Theorem 7, if \mathbb{R}^n is $\delta \mathbb{H}$, then $\operatorname{Hom}_R(\mathbb{R}^n, \mathbb{R}^n)$ is $\delta \mathbb{H}$ as an *S*-module. Conversely, if *S* is $\delta \mathbb{H}$ as an *S*-module, then $S \otimes_S \mathbb{R}^n$ is $\delta \mathbb{H}$ as an *R*-module.

2. Polynomial extensions of δ -Hopfian modules

Let M be an R-module. In this section we will briefly recall the definitions of the modules M[X] and $M[x]/(x^{n+1})$ from [13] and [17]. The elements of M[X] are formal sums of the form $m_0 + m_1x + \cdots + m_nx^n$ with $m_i \in M$ and $n \in \mathbb{N}$. We denote this sum by $\sum_{i=0}^n m_i x^i (m_0 x^0)$ is to be understood as the element of M). Addition is defined by adding the corresponding coefficients. The R[x]-module structure is given by

$$\left(\sum_{i=0}^{k} m_i x^i\right) \left(\sum_{i=0}^{t} r_i x^i\right) = \sum_{i=0}^{k+t} m'_i x^i,$$

where $m'_p = \sum_{i+j=p} m_i r_j$, $r_j \in R$ and $m_i \in M$. Any nonzero element β of M[x] can be written uniquely as $\sum_{i=k}^{l} m_i x^i$ with $l \ge k \ge 0$, $m_i \in M$, $m_k \ne 0$ and $m_l \ne 0$. In this case, we refer to k as the order of β , l as the degree of β , m_k as the initial coefficient of β , and m_l as the leading coefficient of β .

Let n be any non-negative integer and

$$I_{n+1} = \{0\} \cup \{\beta \mid 0 \neq \beta \in R[x], \text{ order of } \beta \ge n+1\}.$$

Then I_{n+1} is a two-sided ideal of R[x]. The quotient ring $R[x]/I_{n+1}$ will be called the truncated polynomial ring, truncated at degree n + 1. Since R has an identity element, I_{n+1} is the ideal generated by x^{n+1} . Even when R does not have an identity element, we will denote the ring $R[x]/I_{n+1}$ by $R[x]/(x^{n+1})$. Any element of $R[x]/(x^{n+1})$ can be uniquely written as $\sum_{i=0}^{t} r_i x^i$, with $r_i \in R$. Let $D_{n+1} = \{0\} \cup \{\beta \mid 0 \neq \beta \in M[x], \text{ order of } \beta \ge$ $n+1\}$. Then D_{n+1} is an R[x]-submodule of M[x]. Since $I_{n+1}M[x] \subseteq D_{n+1}$, we can see that $R[x]/(x^{n+1})$ acts on $M[x]/D_{n+1}$. We denote the module $M[x]/D_{n+1}$ by $M[x]/x^{n+1}$. The action of $R[x]/(x^{n+1})$ on $M[x]/x^{n+1}$ is given by

$$\left(\sum_{i=0}^{n} m_i x^i\right) \left(\sum_{i=0}^{n} r_i x^i\right) = \sum_{i=0}^{n} m'_i x^i,$$

where $m'_p = \sum_{i+j=p} m_i r_j$, $r_j \in R$ and $m_i \in M$. Any nonzero element β of $M[x]/D_{n+1}$ can be written uniquely as $\sum_{i=k}^n m_i x^i$ with $n \ge k \ge 0$, $m_i \in M$ and $m_k \ne 0$. In this case, k is called the order of β and m_k the initial coefficient of β .

Proposition 5. Let M be an R-module. If M[x] is δH as an R[x]-module, then M is δH .

Proof. Let M[x] be δH as an R[x]-module and f a surjective endomorphism of M. Assume that $\operatorname{Ker}(f) + K = M$, for some $K \leq M$, with M/K singular. Define $\overline{f}: M[x] \to M[x]$ by $\overline{f}(\sum_{j=0}^{n} m_j x^j) = \sum_{j=0}^{n} f(m_j) x^j$. It is easy to see that \overline{f} is a surjective endomorphism of M[x] and $\operatorname{Ker}(\overline{f}) = \operatorname{Ker}(f)[x]$. Hence $\operatorname{Ker}(\overline{f}) + K[x] = M[x]$. We show that M[x]/K[x] is a singular R[x]-module. Let $\beta = m_0 + m_1 x + \cdots + m_n x^n \in M[x]$. As M/K is singular, for each $0 \leq i \leq n$, there exists $I_i \leq \operatorname{ess} R$ such that $m_i I_i \subseteq K$. Put $I = \bigcap_{i=0}^n I_i$. Therefore $I \leq \operatorname{ess} R_R$ and $\beta I \subseteq K[x]$. We claim that $I[x] \leq \operatorname{ess} R[x]$. Let $\alpha = r_0 + r_1 x + \cdots + r_t x^t \in R[x]$, where $t \in \mathbb{N}$. If $r_0 \neq 0$, then $t_0 \in R$ exists such that $0 \neq r_0 t_0 \in I$ (because $I \leq \operatorname{ess} R_R$). Now, if $r_1 t_0 \neq 0$, then there exists $t_1 \in R$ such that $0 \neq r_1 t_0 t_1 \in I$. Continuing

this process, we get $r \in R$ such that $0 \neq \alpha r \in I[x]$ and $I[x] \leq e^{ss} R[x]$. As $\beta I \subseteq K[x], \beta I[x] \subseteq K[x]$. Thus M[x]/K[x] is singular. Since M[x] is δH , $\operatorname{Ker}(\bar{f}) \ll_{\delta} M[x]$. Therefore K[x] = M[x] and so M = K. This implies that $\operatorname{Ker}(f) \ll_{\delta} M$ and M is δH . \Box

The following example shows that the converse of proposition 5 is not correct.

Example 4. Let R be a semisimple ring, where R[x] is not semisimple, and $M = R^{(\mathbb{N})}$. As $M \cong M \oplus M$ and $M[x] \cong M \otimes_R R[x]$, we have $M[x] \cong M[x] \oplus M[x]$. Since R is semisimple, M is δH , by Theorem 3. As M[x] is not semisimple, M[x] is not δH , by Theorem 1.

Remark 1. Let *M* be an *R*-module and *N* a submodule of $M[x]/(x^{n+1})$ as an $R[x]/(x^{n+1})$ -module, where $n \ge 0$. Define

 $N_i = \{0\} \cup \{\text{initial coefficients of elements of order } i \in N\}$

for each $1 \leq i \leq n$. By [17], $N_i \leq M$ and $N_0 \subseteq N_1 \subseteq \cdots \subseteq N_n$.

Definition 3. Let M be an R-module and N a submodule of $M[x]/(x^{n+1})$ as an $R[x]/(x^{n+1})$ -module, where $n \ge 0$. Then we say that $N_0 \subseteq N_1 \subseteq \cdots \subseteq N_n$ is the adjoint chain of N.

In the following, we show that for each submodule N of $M[x]/(x^{n+1})$ as an $R[x]/(x^{n+1})$ -module, its adjoint chain plays an important role to find its properties. By the definition of N_i $(1 \le i \le n)$, it is clear that N_i is uniquely determined by N.

Lemma 7. Let N be a submodule of $M[x]/(x^{n+1})$ as an $R[x]/(x^{n+1})$ module, where $n \ge 0$. Then $N \le^{\text{ess}} M[x]/(x^{n+1})$ if and only if $N_n \le^{\text{ess}} M_R$.

Proof. Let $N \leq^{\text{ess}} M[x]/(x^{n+1})$ and $0 \neq m \in M$. Then there exists $r_0 + r_1x + \cdots + r_nx^n \in R[x]/(x^{n+1})$ such that $0 \neq m(r_0 + r_1x + \cdots + r_nx^n) \in N$. Let s be the order of $m(r_0 + r_1x + \cdots + r_nx^n)$. Hence $0 \neq mr_sx^s \in N_s \subseteq N_n$. Therefore $N_n \leq^{\text{ess}} M$.

Conversely, assume that $N_n \leq e^{ss} M$ and $m_s x^s + m_{s+1} x^{s+1} + \cdots + m_n x^n \in M[x]/(x^{n+1})$ of order s. Since $m_s \neq 0$ and $N_n \leq e^{ss} M$, there exists $r \in R$ such that $0 \neq m_s r \in N_n$. Therefore $0 \neq (m_s x^s + m_{s+1} x^{s+1} + \cdots + m_n x^n)(rx^{n-s}) = m_s rx^n$. Clearly $m_s rx^n \in N$ (by the definition of N_n). Therefore $N \leq e^{ss} M[x]/(x^{n+1})$.

Lemma 8. Let N be a submodule of $M[x]/(x^{n+1})$ as an $R[x]/(x^{n+1})$ module $(n \ge 0)$ and $N_0 \subseteq N_1 \subseteq \cdots \subseteq N_n$ the adjoint chain of N. Then N is a maximal submodule of $M[x]/(x^{n+1})$ if and only if N_0 is a maximal submodule of M and $N_i = M$ for each $1 \le i \le n$. Moreover, if N is a maximal submodule of $M[x]/(x^{n+1})$, then $N = N_0 + Mx + \cdots + Mx^n$.

Proof. Let N be a maximal submodule of $M[x]/(x^{n+1})$. Let $N_0 \subseteq N'_0$ for some $N'_0 \leq M$. Set

$$N' = \{m_0 + m_1 x + \dots + m_n x^n \in M[x]/(x^{n+1}) \colon m_0 \in N'_0, m_i \in M\}.$$

It is clear that $N' \leq M[x]/(x^{n+1})$ and $N \subseteq N'$. Since N is maximal, N = N' or $N' = M[x]/(x^{n+1})$. Therefore $N_0 = N'_0$ or $N'_0 = M$, where N'_0 is the first component of the adjoint chain of N'. This implies that N_0 is maximal in M. Also, maximality of N gives $N_i = M$ for each $1 \leq i \leq n$.

Conversely, assume that N_0 is a maximal submodule of M and $N_i = M$ for each $1 \leq i \leq n$. If there exists $N' \leq M[x]/(x^{n+1})$ such that $N \subseteq N'$, then $N_0 \subseteq N'_0$ and $N_i \subseteq N'_i$ for each $1 \leq i \leq n$, where $N'_0 \subseteq N'_1 \subseteq \cdots \subseteq N'_n$ is the adjoint chain of N'. As $N' \neq M[x]/(x^{n+1})$, $N_0 = N'_0$ and $N'_i = M$ for each $1 \leq i \leq n$. Therefore N = N' and N is a maximal submodule of $M[x]/(x^{n+1})$.

Now, it is clear that, if N is a maximal submodule of $M[x]/(x^{n+1})$, then $N = N_0 + Mx + \cdots + Mx^n$.

Now, we are ready to determine the $\delta(M[x]/(x^{n+1}))$ for a module M.

Theorem 8. Let M be an R-module. Then $\delta(M[x]/(x^{n+1})) = \operatorname{Rad}(M) + Mx + Mx^2 + \dots + Mx^n$.

Proof. By Lemmas 7 and 8, every maximal submodule of $M[x]/(x^{n+1})$ is essential. Hence

$$\delta(M[x]/(x^{n+1}))$$

$$= \bigcap \{N \leq M[x]/(x^{n+1}) \colon (M[x]/(x^{n+1}))/N \text{ is simple and singular} \}$$

$$= \bigcap \{N \colon N \text{ is maximal in } M[x]/(x^{n+1}) \}$$

$$= \operatorname{Rad}(M) + Mx + Mx^2 + \dots + Mx^n. \square$$

It is known that, if M is an R-module and $K \ll M$, then $K[x]/(x^{n+1}) \ll M[x]/(x^{n+1})$ as an $R[x]/(x^{n+1})$ -module, by [17, Lemma 2.1]. However, it is not true for δ -small submodules, as the following example shows.

Example 5. Let F be a field and $R = T_2(F)$, the ring of upper triangular matrices over F. Then $\delta(R_R) = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix}$ and $J(R) = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$. Let $I = \begin{pmatrix} 0 & 0 \\ 0 & F \end{pmatrix}$. Then $I \ll_{\delta} R$, because $I \subseteq \delta(R_R)$ and $\delta(R_R) \ll_{\delta} R$. However $I[x]/(x^{n+1})$ is not a δ -small right ideal of $R[x]/(x^{n+1})$, because $I[x]/(x^{n+1}) \notin \delta(R[x]/(x^{n+1})) = J(R) + Rx + \cdots + Rx^n$, by Theorem 8.

In [17, Theorem 2.2], it is shown that, if M is a gH R-module, then $M[x]/(x^{n+1})$ is gH as an $R[x]/(x^{n+1})$ -module, however it is not true that, if M is a δH R-module, then $M[x]/(x^{n+1})$ is δH as an $R[x]/(x^{n+1})$ -module, as the following example shows.

Example 6. Let R be a semisimple ring and $M = R^{(\mathbb{N})}$. Then M is δH by Theorem 3. Define $f: M \to M$ by $f((r_1, r_2, \ldots, r_n, \ldots)) = (r_2, r_3, \ldots, r_n, \ldots)$. Then f is an epimorphism and

$$\operatorname{Ker}(f) = \{ (r, 0, 0, 0, \dots) \in R^{(\mathbb{N})} \colon r \in R \}.$$

It is clear that $\alpha \colon M[x]/(x^{n+1}) \to M[x]/(x^{n+1})$ defined by

$$\alpha\left(\sum_{j=0}^{n} m_j x^j\right) = \sum_{j=0}^{n} f(m_j) x^j$$

is an $R[x]/(x^{n+1})$ -epimorphism and $\operatorname{Ker}(\alpha) = (\operatorname{Ker}(\alpha))[x]/(x^{n+1})$. If $\operatorname{Ker}(\alpha) \ll_{\delta} M[x]/(x^{n+1})$, then

$$\operatorname{Ker}(\alpha) \subseteq \delta(M[x]/(x^{n+1})) = \operatorname{Rad}(M) + Mx + Mx^2 + \dots + Mx^n$$

by Theorem 8. But $\operatorname{Rad}(M) = 0$ and $\operatorname{Ker}(\alpha) \not\subset \delta(M[x]/(x^{n+1}))$. Therefore $\operatorname{Ker}(\alpha)$ is not a δ -small submodule of $M[x]/(x^{n+1})$ and $M[x]/(x^{n+1})$ is not a δ H module.

Theorem 9. Let M be an R-module. If $M[x]/(x^{n+1})$ is δH as an $R[x]/(x^{n+1})$ -module, then M is δH .

Proof. Assume that $M[x]/(x^{n+1})$ is δH as an $R[x]/(x^{n+1})$ -module and $f: M \to M$ an R-epimorphism. Define $\alpha \colon M[x]/(x^{n+1}) \to M[x]/(x^{n+1})$ by

$$\alpha\left(\sum_{j=0}^n m_j x^j\right) = \sum_{j=0}^n f(m_j) x^j.$$

Then α is an $R[x]/(x^{n+1})$ -epimorphism and $\operatorname{Ker}(\alpha) = (\operatorname{Ker}(f))[x]/(x^{n+1})$. We show that $\operatorname{Ker}(f) \ll_{\delta} M$. Let H be a submodule of M such that $\operatorname{Ker}(f) + H = M$ with M/H singular. Hence

$$M[x]/(x^{n+1}) = (\text{Ker}(f))[x]/(x^{n+1}) + H[x]/(x^{n+1}).$$

We claim that $\frac{M[x]/(x^{n+1})}{H[x]/(x^{n+1})}$ is singular as $R[x]/(x^{n+1})$ -module. Let

$$m = m_0 + m_1 x + \dots + m_n x^n \in M[x]/(x^{n+1})$$

For each $0 \leq j \leq n$, there exists $I_j \leq e^{\text{ess}} R$ such that $m_j I_j \subseteq H$. Put $I = \bigcap_{i=1}^n I_j$. Then $I \leq e^{\text{ess}} R$ and so $I[x]/(x^{n+1}) \leq e^{\text{ess}} R[x]/(x^{n+1})$, by Lemma 7. As $m_j I \subseteq H$ for each $0 \leq j \leq n$, $m(I[x]/(x^{n+1})) \subseteq H[x]/(x^{n+1})$. Therefore $\frac{M[x]/(x^{n+1})}{H[x]/(x^{n+1})}$ is singular. As $\text{Ker}(\alpha) \ll_{\delta} M[x]/(x^{n+1})$, $H[x]/(x^{n+1}) = M[x]/(x^{n+1})$, and so H = M. Therefore $\text{Ker}(f) \ll_{\delta} M$ and M is δ H. \Box

3. Triangular matrix extensions

Throughout this section T will denote a 2-by-2 generalized (or formal) triangular matrix ring $\begin{pmatrix} S & M \\ 0 & R \end{pmatrix}$, where R and S are rings and M is an (S,R)-bimodule.

Proposition 6. Assume that M is an (S,R)-bimodule, and $T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix}$. Then $\delta(T_T) = \begin{pmatrix} H & M \\ 0 & \delta(R_R) \end{pmatrix}$, where

 $H = \delta(S_S) \cap \{I \colon I \text{ is a maximal right ideal of } S \text{ with } \operatorname{ann}_S(M) \subseteq I\}.$

Proof. By Lemma 4, every maximal essential right ideal of T has the form $\begin{pmatrix} S & M \\ 0 & J \end{pmatrix}$, where J is a maximal essential right ideal of R or $\begin{pmatrix} I & M \\ 0 & R \end{pmatrix}$, where I is a maximal right ideal with $I \cap \operatorname{ann}_{S}(M) \leq \operatorname{ess} (\operatorname{ann}_{S}(M))_{S}$. Therefore $\delta(T_{T}) = \begin{pmatrix} K & M \\ 0 & \delta(R_{R}) \end{pmatrix}$, where

 $K = \{I \leqslant S \colon I \text{ is a maximal right ideal of } S$ with $I \cap \operatorname{ann}_S(M) \leqslant^{\operatorname{ess}} (\operatorname{ann}_S(M))_S \}.$

We prove K = H. If $\operatorname{ann}_S(M) = 0$, then it is clear that $K = H = \delta(S_S)$. Assume that $\operatorname{ann}_S(M) \neq 0$. Let $x \in K$ and I be a maximal right ideal of S. If $\operatorname{ann}_S(M) \subseteq I$, then $\operatorname{ann}_S(M) = I \cap \operatorname{ann}_S(M) \leqslant^{\operatorname{ess}} (\operatorname{ann}_S(M))_S$. Therefore $x \in K$ implies that $x \in I$. If $I \leqslant^{\operatorname{ess}} S_S$, then $I \cap \operatorname{ann}_S(M) \leqslant^{\operatorname{ess}} (\operatorname{ann}_S(M))_S$. Hence $x \in I$. Therefore $x \in H$ and so $K \subseteq H$. For the reverse of the inclusion, let $x \in H$. Let I be a maximal right ideal of S such that $I \cap \operatorname{ann}_S(M) \leqslant^{\operatorname{ess}} (\operatorname{ann}_S(M))_S$. If $\operatorname{ann}_S(M) \subseteq I$, then $x \in I$. Assume that $\operatorname{ann}_S(M) \not\subset I$. Hence $\operatorname{ann}_S(M) + I = S$ and so $S/I \cong \operatorname{ann}_S(M)/(I \cap \operatorname{ann}_S(M))$. As $\operatorname{ann}_S(M) \neq 0$ and $\operatorname{ann}_S(M) \cap I \leqslant^{\operatorname{ess}} (\operatorname{ann}_S(M))_S$, we have $\operatorname{ann}_S(M) \cap I \neq 0$ and S/I is singular. Therefore $I \leqslant^{\operatorname{ess}} S_S$. Thus $x \in \delta(S)$ gives $x \in I$; hence K = H.

The next result gives a characterization for the δH condition for a 2-by-2 generalized triangular matrix ring.

Theorem 10. Assume that M is an (S,R)-bimodule, and $T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix}$. Then the following statements are equivalent:

- (1) T_T is δH .
- (2) (i) S_S is δH and if a ∈ S has the right inverse b, then 1 − ba ∈ I, for each maximal right ideal of R with ann_S(M) ⊆ I.
 (ii) R_R is δH.

Proof. (1) \Rightarrow (2) Let $a \in S$ have the right inverse $b \in S$. Then $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Since T is δH , $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} b & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \in \delta(T_T)$, by Theorem 2. Thus

 $1-ba \in \delta(S_S) \cap \{I : I \text{ is a maximal right ideal of } S \text{ with } ann_S(M) \subseteq I\},\$

by Proposition 6. Hence S_S is δH , by Theorem 2 and $1 - ba \in I$, for each maximal right ideal of S with $\operatorname{ann}_S(M) \subseteq I$.

(ii) It is similar to the proof of (i).

 $(2) \Rightarrow (1) \text{ Let } \begin{pmatrix} a & m \\ 0 & p \end{pmatrix} \begin{pmatrix} b & n \\ 0 & q \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ where } a, b \in S, p, q \in R$ and $m, n \in M$. Hence ab = 1 and pq = 1. By (1) and Proposition 6, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} b & n \\ 0 & q \end{pmatrix} \begin{pmatrix} a & m \\ 0 & p \end{pmatrix} \in \delta(T_T). \text{ Hence by Theorem 2, } T_T \text{ is } \delta \text{H.} \quad \Box$

Theorem 11. Let $T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix}$, where M is an (S,R)-bimodule. If M is a faithful left R-module, then T_T is δH if and only if S_S is Dedekind finite and R_R is δH .

Proof. By Proposition 10, $\delta(T_T) = \begin{pmatrix} H & M \\ 0 & \delta(R_R) \end{pmatrix}$, where

 $H = \delta(S_S) \cap \{I : I \text{ is a maximal right ideal of } S \text{ with } ann_S(M) \subseteq I\}.$

Since $\operatorname{ann}_S(M) = 0$, H = J(S). Let T_T be δH . If ab = 1 $(a, b \in S)$, then similar to the proof of Theorem 10, $1 - ba \in J(S)$, and so ba = 1. This implies that S is Dedekind-finite. Also, from Theorem 10, R_R is δH . The converse can be concluded from Theorem 10.

Since M_R is always a faithful left S-module for $S = \text{End}(M_R)$, we have the following corollary. It is known that an R-module M is Dedekind-finite if and only if $\text{End}_R(M)$ is a Dedekind-finite ring.

Corollary 4. Let $T = \begin{pmatrix} \operatorname{End}(M_R) & M \\ 0 & R \end{pmatrix}$. Then T_T is δH if and only if M is Dedekind-finite and R_R is δH .

Theorem 12. Assume R is a ring. Then the following are equivalent:

- (1) R_R is Dedekind-finite;
- (2) $T_n(R)$ is δH , for every positive integer n.

Proof. (1) \Rightarrow (2) We proceed by induction on n. Note that $T_{n+1}(R) = \begin{pmatrix} R & M \\ 0 & T_n(R) \end{pmatrix}$, where $M = (R, R, \dots, R)$ (n-tuple). For n = 2, if R is Dedekind-finite, then $T_2(R)$ is δH , by Theorem 11. Now, assume that R is Dedekind-finite and $T_n(R)$ is δH . Hence by Theorem 11, $T_{n+1}(R)$ is δH . (2) \Rightarrow (1) It is clear from Theorem 11.

Theorem 13. Let R be a ring and U(R) the countably upper triangular matrix ring over R. Then R is Dedekind-finite if and only if U(R) is δ H.

Proof. It is clear that $U(R) \cong \begin{pmatrix} R & M \\ 0 & U(R) \end{pmatrix}$, where $M = (R, R, \dots)$. Now, the result is clear from Theorem 11.

Motivated by [1, Proposition 2.14], we have the following theorem.

Theorem 14. Let ${}_{S}M_{R}$ be a nonzero (S, R)-bimodule such that M_{R}^{n} is δH for all $n \ge 1$. Then either M_{R} is semisimple and projective or one of the rings R or S satisfies the rank condition.

Proof. Assume that M_R is not projective or semisimple. Let $T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix}$ and $I = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$. Since M_R is not projective or semisimple, I_T is not projective or semisimple. By hypothesis, we can conclude that I_T^n is δH for each $n \ge 1$. Now we will show that the ring T satisfies the rank condition. Assume that T does not satisfy the rank condition and $f: T^p \to T^q$ is an epimorphism with q > p. Thus $f(I^p) = f(T^pI) = f(T^p)I = T^qI = I^q$. Hence $f: I^p \to I^p \oplus I^{q-p}$ is an epimorphism. Since I_T^n is δH for each $n \ge 1$, I^{q-p} is semisimple and projective as T-module, by Theorem 1. But then I should be projective and semisimple, which is not. Hence T satisfies the rank condition. Therefore one of the rings R or S satisfies the rank condition, by [6, Proposition 4.1].

Open Problems. (1) What is the structure of rings whose finitely generated right modules are δH ?

(2) Does Theorem 5 hold for δ -small submodules? (That is, let M be a quasi-projective R-module. Then M is δ H if and only if so is M/N for any δ -small submodule N of M).

Acknowledgment

The authors express their deep gratitude to the referee for her/his helpful suggestions for the improvement of this work.

References

- Sh. Asgari, A. Haghany, and M. R. Vedadi, *Quasi Co-Hopfian Modules and Applications*, Comm Algebra, 36(2008), 1801–1816.
- [2] G. Baumslag, *Hopficity and abelian groups*, in: J. Irwin, E.A. Walker (Eds.), Topics in Abelian Groups, Scott Foresmann and Company, 1963, 331–335.
- [3] G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Generalized triangular matrix rings and the fully invariant extending property, Rocky Mountain J. Math., 32(2002), 1299–1319.
- [4] A. Ghorbani, A. Haghany, Generalized Hopfian modules, J. Algebra, 255(2) (2002), 324–341.
- [5] K.R. Goodearl, Von Neumann Regular Rings, Monographs and studies in mathematics, 1979.
- [6] A. Haghany, K. Varadarajan, IBN and related properties for rings. Acta Math. Hung. 93 (2002), 251–261.
- [7] A. Haghany, M.R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra 243 (2001) 765–779.

- [8] V. Hiremath, Hopfian rings and Hopfian modules, Indian J. Pure Appl. Math. 17 (1986) 895–900.
- [9] I. Kaplansky, *Rings of Operators*. New York-Amsterdam: W. A. Benjamin, Inc. (1968).
- [10] T.Y. Lam, Lectures on modules and rings, New York: Springer-Verlag, 1998.
- [11] R. Triback, Finitely generated δ-supplemented modules are amply δ-supplemented, Bull. Aust. Math. Soc. 86 (2012), 430–439.
- [12] R. Triback, On δ-Local Modules and Amply δ-Supplemented Modules, Journal of Algebra and Its Applications Vol. 12, No. 2 (2013) 1250144.
- [13] K. Varadarajan, A generalization of Hilbert's basis theorem. Comm. Algebra 10(20) (1982), 2191–2204.
- [14] K. Varadarajan, Hopfian and co-Hopfian objects. Publications Matemàtiques 36(1992), 293–317.
- [15] K. Varadarajan, On Hopfian rings. Acta Math. Hungar. 83(1-2) (1999), 17-26.
- [16] R. Wisbauer, Foundations of Module and Ring Theory. Gordon and Breach Science Publishers, 1991.
- [17] G. Yang, Z. Liu, Notes on Generalized Hopfian and Weakly Co-Hopfian Modules, Comm. Algebra, 38(2010), 3556–3566.
- [18] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloquium, 7 (3) (2000), 305–318.

CONTACT INFORMATION

S. Ebrahimi Atani,	Department of Mathematics, University of
M. Khoramdel,	Guilan, P.O.Box 1914, Rasht, Iran
S. Dolati Pishhesari	E-Mail(s): ebrahimi@guilan.ac.ir,
	mehdikhoramdel@gmail.com,
	${\tt saboura_dolati@yahoo.com}$

Received by the editors: 15.12.2016 and in final form 18.10.2018.