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Abstract. Lie algebras are exactly the anticommutative
Leibniz algebras. In this article, we conduct a brief analysis of the
approach to Leibniz algebras which based on the concept of the
anti-center (Lie-center) and antinilpotency (Lie nilpotentency).

Let L be an algebra over a field F with the binary operations + and
[ · , · ]. Then L is called a Leibniz algebra (more precisely a left Leibniz

algebra) if it satisfies the Leibniz identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]] for all a, b, c ∈ A.

If L is a Lie algebra, then L is a Leibniz algebra. Conversely, if L is
a Leibniz algebra such that [a, a] = 0 for each element a ∈ L, then L is
a Lie algebra. Therefore, Lie algebras can be characterized as the Leibniz
algebras in which [a, a] = 0 for every element a. In other words, Lie
algebras can be described as anticommutative Leibniz algebras.

The following analogy comes up:

{abelian groups} ⇐⇒ {Lie algebras}

and

{non-abelian groups} ⇐⇒ {Leibniz algebras}.

It is immediately understandable that such an analogy can not be suffi-
ciently deep, since the properties of commutativity and anticommutativity
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differ significantly (they coincide in the case of algebras over a field of char-
acteristic 2). In this we convince ourselves by looking at cyclic subgroups
in groups and cyclic subalgebras in Leibniz algebras. Cyclic subgroups in
an arbitrary group are commutative, while cyclic subalgebras in Leibniz
algebras do not generally possess anticommutativity, as can be seen from
their description given in [1].

A Leibniz algebra L has one specific ideal. Denote by Leib(L) the
subspace generated by the elements [a, a], a ∈ L. It is possible to prove that
Leib(L) is an ideal of L. Moreover, L/Leib(L) is a Lie algebra. Conversely,
if H is an ideal of L such that L/H is a Lie algebra, then Leib(L) 6 H.
The ideal Leib(L) is called the Leibniz kernel of algebra L.

We can consider the Leibniz kernel as an analog of the derived subgroup
in a group. To this analogy, we will come again later. So, the difference
between Lie algebras and Leibniz algebras is that they have a non-zero
Leibniz kernel, just as the difference between abelian groups and non-
abelian groups is in the presence of non-trivial derived subgroups in the
latter.

Let us try to continue the analogy with the theory of groups. Along
with the derived subgroup in G, there is another characteristic subgroup-its
center ζ(G), that is, the set of all elements z such that zg = gz for each
element g ∈ G. Taking into account the fact that the difference between
Leibniz algebras and Lie algebras consists in the absence of anticommuta-
tivity, we naturally come to the next object in Leibniz algebras.

Let L be a Leibniz algebra. Put

α(L) = {z ∈ L | [a, z] = −[z, a] for every elements a ∈ L}.

This subset is called the anticenter of a Leibniz algebra L.
Clearly the anticenter is a subspace of L. It is also a subalgebra of L.

Indeed, let z, y ∈ α(L) and a be an arbitrary element of L. Then

[[z, y], a] = [z, [y, a]]− [y, [z, a]] = −[z, [a, y]] + [y, [a, z]]

= −[z, [a, y]]− [[a, z], y] = −([[a, z], y] + [z, [a, y]]) = −[a, [z, y]].

Moreover, the anticenter is an ideal of L. In fact, let z ∈ (L) and a be an
arbitrary element of A. For every element b ∈ A we have

[[z, a], b] = [z, [a, b]]− [a, [z, b] = −[[a, b], z] + [a, [b, z]]

= −[[a, b], z] + [[a, b], z] + [b, [a, z]] = [b, [a, z]] = −[b, [z, a]],

[[a, z], b] = [a, [z, b]]− [z, [a, b]] = −[a, [b, z]] + [[a, b], z]

= −[a, [b, z]] + [a, [b, z]]− [b, [a, z]] = −[b, [a, z]].
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Note that in [2] the term Lie-center of a Leibniz algebra is used. However,
the property of anticommutativity is inherent not only to Lie algebras,
therefore, instead of the term Lie-center, it seems to us preferable to use
a more general term anticenter.

Note also that if char(F ) = 2, then the anticenter of Leibniz algebra
coincides with the set

{z ∈ L | [a, z] = [z, a] for every element a ∈ L}.

This set, in general, is not an ideal. Therefore, it is worthwhile to use
the considerations related to the anticentre over the field F such that
char(F ) 6= 2. In this paper, we shall further assume that char(F ) 6= 2.

In a Leibniz algebra L, the concept of a center is introduced as follows:
The center ζ(L) is the set of all elements z such that [z, x] = [x, z] = 0
for an arbitrary element x ∈ L. Clearly the center is an ideal of L. The
following concept is naturally connected with the center.

Let L be a Leibniz algebra over a field F,M be non-empty subset of
L and H be a subalgebra of L. Put

AnnH(M) = {a ∈ H | [a,M ] = 〈0〉 = [M,a]}.

The subset AnnH(M) is called the annihilator or the centralizer of M
in subalgebra H. It is not hard to see that the subset AnnH(M) is a
subalgebra of H. If M is an ideal of L, then AnnH(M) is also an ideal
of L. The center of L is the intersection of the annihilators of all elements
of L. It leads us to the following concept.

Let L be a Leibniz algebra over a field F,M be non-empty subset of
L and H be a subalgebra of L. Put

ACH(M) = {a ∈ H | [a, u] = −[u, a] for all x ∈ M}.

The subset ACH(M) is called the anticentralizer of M in subalgebra H.
It is clear that the anticenter of L is the intersection of the anticentralizers
of all elements of L. But on this all the good ends. Unlike annihilator, the
anticentralizer of subset is not always a subalgebra, so an anticentralizer
can no longer be such a good technical tool as a centralizer. This can be
seen from the following example.

Example 1. Let F be an arbitrary field, L be a vector space over F
having a basis {a, b, c, d}. Define the operation [ · , · ] on the elements of
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basis by the following rule:

[d, a] = −c, [d, b] = b+ c, [d, c] = −b,

[a, d] = b+ c, [b, d] = [c, d] = 0, [d, d] = b,

[a, a] = b, [a, b] = c, [a, c] = −b− c,

[c, a] = [b, a] = [b, c] = [c, b] = 0,

and expand it in a natural way on all elements of L. It is possible to prove
that L becomes a Leibniz algebra over F . Let’s find the anticentralizer of
an element a. Let x = σ1d+ σ2a+ σ3b+ σ4c ∈ ACL(a), then

0 = [a, x] + [x, a]

= [a, σ1d+ σ2a+ σ3b+ σ4c] + [σ1d+ σ2a+ σ3b+ σ4c, a]

= σ1(b+ c) + σ2b+ σ3c− σ4(b+ c)− σ1c+ σ2b

= (σ1 + σ2 + σ2 − σ4)b+ (σ1 + σ3 − σ4 − σ1)c.

Thus we obtain σ1 + 2σ2 − σ4 = 0, and σ1 + σ3 − σ4 − σ1 = 0, which
follows that σ4 = σ3 = γ, σ2 = τ , σ1 = γ − 2τ . Hence

ACL(a) = {(γ − 2τ)d+ τa+ γb+ γc | γ, τ ∈ F}.

Let x = (γ − 2τ)d+ τa+ γb+ γc, y = (β − 2ρ)d+ ρa+ βb+ βc. We will
find [x, y]. We have

[(γ − 2τ)d+ τa+ γb+ γc, (β − 2ρ)d+ ρa+ βb+ βc]

= (γ − 2τ)(β − 2ρ)b+ τ(β − 2ρ)(b+ c)− ρ(γ − 2τ)c+ τρb

+ (γ − 2τ)(b+ c) + τβc− β(γ − 2τ)b− τβ(b+ c)

= ((γ − 2τ)(β − 2ρ) + τ(β − 2ρ) + τρ+ (γ − 2τ)−β(γ−2τ)−τβ)b

+ (τ(β − 2ρ)− ρ(γ − 2τ) + (γ − 2τ) + τβ − τβ)c

= (γβ − 2τβ − 2ργ + 4τρ+ τβ − 2ρτ+τρ+γ−2τ−βγ+2τβ−τβ)b

+ (τβ − 2ρτ − ργ − 2τρ+ γ − 2τ)c

= (−2ργ + 3τρ+ γ − 2τ)b+ (τβ − 2ρτ − ργ − 2τρ+ γ − 2τ)c

Suppose now that [x, y] ∈ ACL(a), then must be

−2ργ + 3τρ+ γ − 2τ = τβ − 2ρτ − ργ − 2τρ+ γ − 2τ

which follows that −ργ + 5τρ− τβ = 0.
Put now γ = 0, τ = 1, x = −2d+ a, ρ = 0, β = 1, then the elements

x = −2d+ a and y = d+ b+ c belong to ACL(a), but [x, y] = −2b− c /∈
ACL(a).
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In Leibniz algebras the derived ideal [L,L] generated by all elements
[x, y], x, y ∈ L is dual to the center. From our analogy, we can consider
α(L) as an analogue of the center, while a subspace (L,L ), generated
by all elements (x, y) = [x, a] + [a, x], x, a ∈ L, can be considered as an
analog of the derived subgroup. At once, remark that this subspace is an
ideal. Moreover, if x, y, z ∈ L , then the element [[x, a] + [a, x], y] = 0 for
every element y ∈ L. Indeed

[[x, y] + [y, x], z] = [[x, y], z] + [[y, x], z]

= [x, [y, z]]− [y, [x, z]] + [y, [x, z]]− [x, [y, z]] = 0.

Further,

[z, [x, y] + [y, x]] = [z, [x, y]] + [z, [y, x]]

= [[z, x], y] + [x, [z, y]] + [[z, y], x] + [y, [z, x]]

= ([[z, x], y] + [y, [z, x]]) + ([x, [z, y]] + [[z, y], x]).

On the other hand, [a, a] + [a, a] = 2[a, a] ∈ (L,L), and char(F ) 6= 2
implies that [a, a] ∈ (L,L ), so that Leib(L) 6 (L,L). Since L/Leib(L)
is a Lie algebra, [x, a] + [a, x] ∈ Leib(L), so that Leib(L) = (L,L). Thus,
with this approach, the Leibniz kernel is dual to the anticenter. In this
connection, it is useful to recall the presence in Leibniz algebras another
important ideal, namely, the left center. If L is a Leibniz algebra, then put

ζ left(L) = {x ∈ L|[x, y] = 0 for each element y ∈ L}.

It is possible to prove that ζ left(L) is an ideal of L and Leib(L) 6 ζ left(L).

Starting from the anticenter, we define the upper anticentral series

〈0〉 = α0(L) 6 α1(L) 6 α2(L) 6 . . . 6 αλ(L)

6 αλ+1(L) 6 . . . 6 αγ(L) = α∞(L)

of a Leibniz algebra L by the following rule: α1(L) = α(L) is the anticenter
of L, and recursively, αλ+1(L)/αλ(L) = α(L/αλ(L)) for all ordinals λ,
and αµ(L) = ∪v<µαv(L) for the limit ordinals µ. By definition, each
term of this series is an ideal of L. The last term α∞(L) of this series
is called the upper hyperanticenter of L. A Leibniz algebra L is said to
be hyperanticentral if it coincides with the upper hypercenter. Denote
by al(L) the length of upper central series of L. If L is hyperanticentral
and al(L) is finite, then L is said to be antinilpotent.
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Let A,B be the ideals of L such that B 6 A. The factor A/B is called
anticentral, if A/B 6 α(L/B). By definition, the factor A/B is anticentral
if and only if [x, a] + [a, x] ∈ B for each a ∈ A and each x ∈ L.

If U, V the ideals of L, then denote by (U, V ) a subspace, generated
by all elements [u, v] + [v, u], u ∈ U, v ∈ V . As we have seen above,
[u, v] + [v, u] ∈ ζ left(L). Using the above arguments, we can show, that
(U, V ) is an ideal of L.

Note at once, that a factor A/B is anticentral if and only if (L,A) 6 B.
Now we can introduce an analog of the lower central series. Define the

lower anticentral series of L

L = κ1(L) > κ2(L) > . . . κα(L) > κα+1(L) > . . . κδ(L)

by the following rule: κ1(L) = L, κ2(L)=(L,L), and recursively κλ+1(L) =
(L, κλ(L)) for all ordinals λ and κµ(L) = ∩v<µκv(L) for the limit ordinals µ.
The last term κδ(L) is called the lower hypoanticenter of L. We have
κδ(L) = (L, κδ(L)).

As we have seen above κ2(L) = (L,L) = Leib(L) = K. Furthermore,
κ3(L) = (L, κ2(L)). If x ∈ L, a ∈ K = κ2(L), then (x, a) = [x, a]+[a, x] =
[x, a], because Leib(L) 6 ζ left(L). It follows that κ3(L) = [L, κ2(L)] =
[L,Leib(L)].

If A is an ideal of L, then put γL1
(A) = A, γL2

(A) = [L,A], and
recursively γLn+1

(A) = [L, γL n(A)] for all positive integers n.
Thus we obtain κ1(L) = L, κ2(L) = Leib(L), κ3(L) = γL2

(Leib(L)),
κn+1(L) = γLn

(Leib(L)) for all positive integers n.
Suppose now that L has finite series of ideals

〈0〉 = A0 6 A1 6 A2 6 . . . 6 An = L.

This series is said to be anticentral, if every factor Aj/Aj−1 is anticentral,
1 6 j 6 n.

Proposition 1. Let L be an Leibniz algebra over a field F and

〈0〉 = C0 6 C1 6 . . . 6 Cn = L

be a finite anticentral series of L. Then

(i) κj(L) 6 Cn−j+1, so that κn+1(L) = 〈0〉.
(ii) Cj6αj

(L), so that αn(L) = L.

These statements were proved in [2] for right Leibniz algebras; for left
Leibniz algebras the proof is similar.
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Corollary. Let L be an antinilpotent Leibniz algebra. Then the length of

the lower anticentral series coincides with the length of the upper anticentral

series. Moreover, the length of these two series is the smallest among the

lengths of all anticentral series of L.

The length of the upper anticentral series (or lower anticentral series)
is called the class of antinilpotency of a Leibniz algebra L and denote
by ancl(L). In the article [2] it was called a Lie-nilpotent algebra and the
class of Lie-nilpotency. However, the concept of Lie-nilpotency arose much
earlier in the theory of associative rings, so in order to avoid confusion
it is better to use another term. In addition, as we have already noted,
the property of anticommutativity is inherent not only in Lie algebras,
therefore, we focus on it.

Note some properties of hyperanticentral Leibniz algebras.

Proposition 2. Let {Lλ | λ ∈ Λ} be a family of Leibniz algebra over a

field F .

(i) If n is a positive integer, then αn(Crλ∈Λ Lλ) = Crλ∈Λ αn(Lλ).
(ii) If ω is a first infinite ordinal, then αω(Crλ∈Λ Lλ) 6 Crλ∈Λ αω(Lλ).
(iii) If µ is an arbitrary ordinal, then αµ(⊕λ∈ΛLλ) = ⊕λ∈Λ αω(Lλ), in

particular, if every algebra Lλ is hyperanticentral, then the direct

sum ⊕λ∈ΛLλ also is hyperanticentral.

(iv) If every algebra Lλ is antinilpotent and there exists a positive integer

k such that ancl(Lλ) 6 k for all λ ∈ Λ, then the Cartesian product

Crλ∈Λ Lλ is alsoantinilpotent and ancl(Crλ∈Λ Lλ) 6 k.
(v) If every algebra Lλ is antinilpotent and the set Λ is finite, then

Crλ∈Λ Lλ = ⊕λ∈ΛLλ is antinilpotent, moreover ancl(⊕λ∈ΛLλ) 6

max{anclLλ) | λ ∈ Λ}.

Proof. Let

〈0〉 = Aλ 0 6 Aλ 1 6 . . . Aλ µ 6 Aλ µ+1 6 . . . Aλ γ(λ) = αλ∞(Lλ)

be the upper anticentral series of Lλ, λ ∈ Λ. Put L = Crλ∈Λ Lλ, K =
⊕λ∈ΛLλ.

(i) Let xλ ∈ Lλ, aλ ∈ Aλ 1, then [xλ, aλ] = −[aλ, xλ] for every λ ∈ Λ.
It follows that

[(xλ)λ∈Λ, (aλ)λ∈Λ] = ([xλ, aλ])λ∈Λ = (−[aλ, xλ])λ∈Λ

= −([aλ, xλ])λ∈Λ = −[(aλ)λ∈Λ, (xλ)λ∈Λ],
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which shows that Crλ∈ΛAλ 1 6 α(Crλ∈Λ Lλ). Conversely, let (xλ)λ∈Λ ∈ L,
(bλ)λ∈Λ ∈ α(L), then

([xλ, bλ])λ∈Λ = [(xλ)λ∈Λ, (bλ)λ∈Λ] = −[(bλ)λ∈Λ, (xλ)λ∈Λ]

= −([bλ, xλ])λ∈Λ = (−[bλ, xλ])λ∈Λ.

In particular, have [xλ, aλ] = −[bλ, xλ] for each λ ∈ Λ. This means that
bλ ∈ α(Lλ) for each λ ∈ Λ, so that Crλ∈ΛAλ 1 = α(Crλ∈Λ Lλ).

Using similar arguments and ordinary induction we will prove an
equality Crλ∈ΛAλ n = αn(Crλ∈Λ Lλ).

(ii) Let (cλ)λ∈Λ ∈ αω(L). An equality αω(L) = ∪n∈Nαn(L) shows that
there exists a positive integer m such that (cλ)λ∈Λ ∈ αm(L). By above
proved, it follows that cλ ∈ αm(Lλ) 6 αω(Lλ) for each λ ∈ Λ. It proves
the inclusion αω(L) 6 Crλ∈Λ αω(Lλ).

(iii) Let (dλ)λ∈Λ ∈ ⊕λ∈Λαω(Lλ). There exists a subset Σ of Λ such
that Λ ∈ Σ is finite and dλ = 0 for all λ ∈ Σ. Let λ /∈ Σ. The fact that
dλ ∈ αω(Lλ) implies that there exists a positive integer t(λ) such that
dλ ∈ αt(λ)(Lλ). Let t = max{t(λ) | λ ∈ Λ ∈ Σ}, then dλ ∈ αt(Lλ) for each
λ ∈ Λ\Σ and therefore dλ ∈ αt(Lλ) for all λ ∈ Λ. It follows that (dλ)λ∈Λ ∈
αt(K) 6 αω(K), which proves the equality αω(K) = ⊕λ∈Λ αω(Lλ).

Using the above arguments and transfinite induction we obtain the
equality αµ(K) = ⊕λ∈Λ αµ(Lλ) for all ordinals µ.

(iv) follows from (i), and (v) follows from (v).

Proposition 3. Let L be a Leibniz algebra over a field F . Then

(i) If L is hyperanticentral, then every subalgebra of L is hyperanticentral

and every factor-algebra of L is hyperanticentral.

(ii) If L is antinilpotent, then every subalgebra of L is antinilpotent and

every factor-algebra of L is antinilpotent.

(iii) If A is a non-zero ideal of L such that A ∩ α∞(L) 6= 〈0〉, then

A ∩ α(L) 6= 〈0〉.
(iv) If A,B are antinilpotent ideals of L, then A + B is antinilpotent

ideal of L.

Proof. The assertion (i) and (ii) are obvious. We will prove (iii). Put
B = A∩α∞(L). There exists the least ordinal λ such that B∩αλ(L) 6= 〈0〉.
Clearly λ is a not limit ordinal, so that λ − 1 exists. If λ = 1, all is
proved. Therefore assume that λ > 1. Let 0 6= b ∈ B ∩ αλ(L). Then
[x, b] = −[b, x] + αλ−1(L), so that [x, b] = −[b, x] + y for some element
y ∈ αλ−1(L). Since B is an ideal of L, [x, b], [b, x] ∈ B. It follows that y ∈ B.
More precisely, y ∈ B ∩ αλ−1(L) = 〈0〉. Thus we obtain [x, b] = r − [b, x].



“adm-n3” — 2018/10/20 — 9:02 — page 105 — #111

L. Kurdachenko, N. Semko, I. Subbotin 105

Since it is true for each element x ∈ L, b ∈ α(L), and we obtain a
contradiction, which proves (iii).

(iv) If A ∩ B = 〈0〉, then using Proposition 2(v) we obtain that
A+B = A⊕B is antinilpotent. Assume now that A ∩B = C 6= 〈0〉. By
Proposition 2(ii) C has finite upper anticentral A-series

〈0〉 = C0 6 C1 6 . . . 6 Cn = C.

Clearly every term of this series is an ideal in A+B. Consider a factor
Cj/Cj−1. Using again Proposition 2(ii) we obtain that it has a finite upper
B-series, that is, we obtain a finite series

Cj−1 = Dj−1 0 6 Dj−1 1 6 . . . 6 Dj−1m(j) = Cj

of ideals of A + B between Cj−1 and Cj , every factor of which is B-
anticentral, 1 6 j 6 n. Since a factor Cj/Cj−1 is A-anticentral, each
factor Dj−1 t/Dj−1 t−1 is (A + B)-anticentral, 1 6 t 6 m(j). Thus we
obtain a finite series

〈0〉 = D0 0 6 D0 1 6 . . . 6 D0m(0) = D1 0 6 D1 1 6 . . . 6 Dn−1m(n) = Cj

of ideal of A+B, whose factors are (A+B)-anticentral. It follows that
some term of the upper anticentral series of A+B, having finite number,
includes A ∩B. By above remarked (A+B)/(A ∩B) is antinilpotent. It
follows that A+B is also antinilpotent.

The above properties show a certain analogy between nilpotent and
antinilpotent Leibniz algebras. However, this analogy is very shallow. Thus
every chief central factor of Leibniz algebra L has dimension 1. On the
other hand, every chief factor of Lie algebra is anticentral, but it can have
infinite dimension. Further, finitely generated nilpotent Leibniz algebra
has finite dimension [7], Corollary 2.2. On the other hand, there are finitely
generated Lie algebras, which have infinite dimension.

Note the following analog. In the paper [5], Corollary B1, it was proved
that if a center of a Leibniz algebra has finite codimension, then a derived
ideal has finite dimension.

Proposition 4. Let L be a Leibniz algebra over a field F . If the anticenter

of L has finite codimension d, then the Leibniz kernel of L has finite

dimension at most d2.
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Proof. Let A = α(A), then L = A ⊕ B for some subspace B. Choose a
basis {aλ|λ ∈ Λ} in A and a basis {b1, . . . , bd} in B. If y is an arbitrary
element of L, then y = a+ Σ16j6d βjbj where a ∈ A, βj ∈ F, 1 6 j 6 d.
We have

[y, y] = [a+Σ16j6d βjbj , a+Σ16k6d βkbk]

= [a, a] + [a,Σ16k6d βkbkj ] + [Σ16j6d βjbj , a]

+ [Σ16j6d βjbj ,Σ16k6d βkbk].

Since a ∈ α(A), then [a, a] = 0 and [a,Σ16k6dβkbkj ]+[Σ16j6dβjbj , a] = 0,
so we obtain

[y, y] = Σ16j6d,16k6dβj βk[bj , bk].

It follows that Leib(L) generates by the following elements {[bj , bk]|1 6

j 6 d, 1 6 k 6 d}. In particular, dimF (Leib(L)) 6 d2.

We note at once that converse is not true. The following example
justifies this.

Example 2. Let F = Q be a field of all rational numbers and let Ln be
a vector space with a basis {an, cn}, n ∈ N. We can define an operation
[ · , · ] on Ln assumed that [an, an] = cn, [an, cn] = [cn, an] = [cn, cn] = 0,
and expanding this operation, using the property of bilinearity, to all
elements of Ln. It is not difficult to verify that such a particular operation
makes Ln a Leibniz algebra over Q, moreover, this algebra is nilpotent
and ncl(Ln) = 2.

Put A = ⊕n∈NLn and let B be a subspace of A, generated by the
elements cn − cn+1, n ∈ N. It is not hard to see, that B is a subalgebra of
A, moreover B 6 ζ(A), in particular, B is an ideal of A. Put L = A/B,
dn = an+B, n ∈ N, e = c1+B. We obtain [dn, dn] = e, [dn, e] = [e, dn] =
[e, e] = 0, [dn, dk] = 0 whenever n 6= k. It shows that ζ(L) = Fe and
L/ζ(L) is an abelian Leibniz algebra, so that L is an extraspecial Leibniz
algebra. Let x be an arbitrary element of L ζ(L), then x = Σn∈Λλndn+µe,
where Λ is a finite subset of N. Then

[x, x] = [Σn∈Λλndn + µe,Σk∈Λλkdk + µe] = (Σn∈Λλ
2
n)e.

Since x /∈ ζ(L), there exists a positive integer m such that λm 6= 0. It
follows that [x, x] 6= 0.

The fact that L/ζ(L) is abelian implies that L/ζ(L) is a Lie algebra,
so that, ζ(L) = Leib(L). Clearly, ζ(L) 6 α(L). If we suppose that ζ(L) 6=
α(L), then there exists an element y ∈ α(L)\ζ(L). The fact that y ∈ α(L)
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implies that [y, y] = 0. On the other hand, by above proved the fact
that y 6= ζ(L) implies that [y, y] /∈ 0, and we obtain a contradiction.
This contradiction proves the equality ζ(L) = α(L). Thus Leib(L) has a
dimension 1, but α(L) = Leib(L) has infinite codimension.

In conclusion, we give a result arising from another, more familiar
analogy. Above we already noted one of the results of the paper [5],
Corollary B1, which states that if the center of a Leibniz algebra has finite
codimension, then the derived ideal has finite dimension. This result is
analogous to the following known group-theoretical result.

If the center of a group G has finite index, then the derived subgroup of G
is finite.

This theorem first appeared in the work of B.H. Neumann [8]. Never-
theless, very often it is called the Schur theorem (see [6] on this subject).
The inversion of this theorem is false both for groups and for Leibniz
algebras. Nevertheless, if the derived subgroup of a group is finite, then
the second hypercenter of G has finite index [3]. The same situation holds
for the Leibniz algebras, as our following result shows.

Theorem 1. Let L be a Leibniz algebra over a field F . Suppose that the

derived ideal of L has finite dimension d. Then the second hypercenter

of L has finite codimension at most 2d2(1 + 2d).

Proof. Put D = [G,G]. Then L/Annleft(D) is isomorphic to some subalge-
bra of Der(D) (the algebra of all derivations of the subalgebra D), see [5],
Proposition 3.2, for example. In particular, dimF (L/Ann

left(D)) 6 d2.

For every element a ∈ L consider the mapping ra : D → D defined by
the rule ra(x) = [x, a], x ∈ D. This mapping is linear and βra = rβa and
ra + rb = ra+b for all a, b ∈ L and β ∈ F (see, for example, [4], p. 131). It
follows that the mapping f : L → EndF (D) defined by the rule f(a) =
ra, a ∈ L is linear. Thus we obtain that L/Ker(f) ∼= Im(f) 6 EndF (D).
Clearly, Ker(f) = Annright(D), so that dimF (L/Ann

right(D)) 6 d2. Since
Annleft(D)∩Annright(D) = Ann(D), we obtain that dimF (L/Ann(D)) =
k 6 2d2. The fact that D is an ideal implies that Ann(D) is ideal (see, for
example, [4], p. 132).

Put A = Ann(D), B = [A,A]. If a1, a2 are arbitrary elements of A
and x is an arbitrary element of L, then we have

[[a1, a2], x] = [a1, [a2, x]]− [a1, [a1, x]] = 0
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and

[x, [a1, a2]] = [[x, a1], a2]] + [a1, [x, a2]] = 0.

It shows that the center of L includes B.

If x is an arbitrary element of L, then the mappings a → [x, a], a ∈
A, and a → [a, x], a ∈ A, are linear and their kernels are respectively
Annright(x)∩A and Annleft(x)∩A. Since [x, a] ∈ D and dimF (D) = d, we
obtain that dimF (A/(Ann

right(x)∩A) 6 d, dimF (A/(Ann
left(x)∩A) 6 d.

It follows that dimF (A/(Ann(x) ∩A) 6 2d.

Choose the elements x1, . . . , xk such that a set {x1+A, . . . , xk +A} is
a basis of L/A. Put C = Ann(x1)∩ . . .∩Ann(xk)∩A, then dimF (A/C) 6
2kd 6 4d3. It follows that dimF (L/C) 6 2d2 + 4d3 = 2d2(1 + 2d).

By above proved the factor (A+ ζ(L))/ζ(L) is abelian, so that and
(C+ ζ(L))/ζ(L) is abelian, in particular, [A,C], [C,A] 6 ζ(L). The choice
of C yields that [xj , C] = [C, xj ] = 〈0〉, 1 6 j 6 k. The equality Fx1+ . . .+
Fxk + A = L shows that (C + ζ(L))/ζ(L) 6 ζ(L/ζ(L)), i.e C 6 ζ2(L).
Thus we obtain that dimF (L/ζ2(L)) is finite, moreover, dimF (L/ζ2(L)) 6
2d2(1 + 2d).
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