А.Я.Григоренко¹, М.Ю.Борисенко¹, Е.В.Бойчук²

СВОБОДНЫЕ КОЛЕБАНИЯ НЕЗАМКНУТОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ЭЛЛИПТИЧЕСКОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ

¹Институт механики им. С.П. Тимошенко НАНУ, ул. Нестерова, 3, 03057, Киев, Украина; e-mail: ayagrigorenko1991@gmail.com; mechanics530@gmail.com; ²Николаевский национальный аграрный университет, ул. Георгия Гонгадзе, 9, 54020, Николаев, Украина; e-mail: boychuklena27@gmail.com

Abstract. The dynamic characteristics of a non-closed cylindrical shell with elliptical cross-section under the rigidly fixed of one and two ends are numerically determined. The system of computer-aided design and execution of engineering analysis by finite elements – FEMAP with solver NX NASTRAN – is used. A comparative analysis of the dependence of the natural frequencies on the opening angle relative to the major and minor semi-axes is carried out. The character of the first modes of free vibrations is investigated.

Key words: natural frequencies, mode shapes, open cylindrical shell with elliptical cross-section, finite element method, rigidly fixed.

Введение.

В разных отраслях производства широкое использование находят цилиндрические оболочки некругового поперечного сечения, которые могут иметь как замкнутый, так и незамкнутый контур с разной вариацией граничных условий. В связи с этим необходимо иметь информацию об их динамических характеристиках, в частности, про частоты и формы собственных колебаний, так как в реальных условиях эксплуатации необходимо избегать резонансных режимов, которые вызывают разрушение конструкции.

Решение задачи на определение собственных частот в рамках теории тонких оболочек возможно для объектов простой геометрической формы [5, 6, 10, 13 – 15, 18, 19, 21, 22, 24]. Также эту проблему можно решить с помощью использования бесконтактного экспериментального метода стробоголографической интерферометрии [3, 9, 11, 16, 17], при реализации которого необходимо изготовить реальную оболочку, качественно реализовать граничные условия и сам эксперимент, что в свою очередь ведет к значительным затратам времени и финансовых средств. Отметим, что данный экспериментальный метод можно применять не только к двумерной, но и трехмерной задачам динамики [11, 12]. В случаях сложной геометрической формы, например, оболочки эллиптического поперечного сечения с разным характером изменения толщины, целесообразно использовать метод конечных элементов (МКЭ) [1, 2, 7, 8, 12, 20, 23], результаты которого показывают хорошую сходимость с результатами эксперимента [3, 12], что подтверждает справедливость его применения, при этом численный метод не требует изготовления реального объекта исследования и значительно экономит время и финансы.

Данная статья посвящена численному определению динамических характеристик незамкнутой цилиндрической оболочки эллиптического поперечного сечения с вари-

ISSN0032–8243. Прикл. механика, 2020, **56**, № 4

ациями раскрытия оболочки – вдоль малой полуоси и вдоль большой полуоси, а также с двумя вариантами жесткого закрепления на торцах. Расчет частот и форм собственных колебаний проводился МКЭ, реализованного с помощью лицензированного программного комплекса FEMAP.

В мировой литературе изучению динамики незамкнутых оболочек или, как их еще называют, открытых оболочек уделено мало внимания. Рассмотрим одну из таких публикаций [4]. В рамках двух конечно-элементных реализаций исследованы собственные колебания тонкостенных открытых оболочек кругового поперечного сечения с разными граничными условиями и с разными углами раскрытия. В рассмотренном диапазоне изменения угла раскрытия наблюдается увеличение всех частот колебаний. Эта зависимость носит немонотонный характер. Типичным для неё является значительный рост частот при угле раскрытия $\varphi \in (60^\circ; 90^\circ)$. Одну из задач, решенных в [4], возьмем как тестовую.

§1. Основные соотношения МКЭ для задач о собственных колебаниях.

Динамические уравнения для МКЭ можно получить из системы уравнений Лагранжа II рода с *n* степенями свободы:

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\lambda}_i} \right) - \frac{\partial T}{\partial \lambda_i} = Q_i, \ i = 1, 2, \dots, n.$$
(1.1)

Используя дискретную форму функционала кинетической энергии

$$T = \frac{1}{2} \left\{ \dot{\lambda} \right\}_{i}^{T} M_{i} \left\{ \dot{\lambda} \right\}_{i},$$

уравнения Лагранжа (1.1) для оболочки при ее конечно-элементной аппроксимации с учетом отсутствия внешних сил (Q = 0) и демпфирования можно переписать в виде

$$[M]\{\ddot{\lambda}\} + [K]\{\lambda\} = \{0\}, \qquad (1.2)$$

где [M] – матрица масс конструкции; [K] – матрица жесткости; $\{\lambda\}$ – вектор узловых смещений.

Уравнение (1.2) имеет решение в виде

$$\{\lambda\} = \{A\}\cos(\omega t + \beta), \qquad (1.3)$$

где $\{A\}$ – вектор амплитудных значений узловых перемещений, которые определяют форму собственных колебаний; ω – цикличная частота; β – фаза колебаний. Подставив (1.3) в (1.1) и сократив на $\cos(\omega t + \beta)$, получим систему алгебраических уравнений

$$(-\omega^2 [M] + [K]) \{A\} = \{0\}.$$
 (1.4)

В этой системе ненулевые значения компонентов $\{A\}$ возможны только при условии

$$\det\left(\left[K\right] - \omega^{2}\left[M\right]\right) = 0.$$
(1.5)

Если квадратные матрицы [M] и [K] – положительно определены, то характеристические уравнения (1.5) имеют N положительных решений – собственных частот ω_k , при этом возможны парные значения (N – количество неизвестных в системе алгебраических уравнений (1.4)). N значений собственных частот ω_k позволяет решение системы (1.4) представить в виде линейной комбинации из N выражений (1.3):

$$\{\lambda\} = \sum_{k=1}^{N} \{A_k\} \cos\left(\omega_k t + \beta_k\right).$$
(1.6)

Каждому значению ω_k соответствует определенное соотношение между амплитудами A_{ki} , т.е. все амплитуды вектора могут быть выражены через одну из них. Соотношения между амплитудами A_{ki} определяют k-ю собственную форму колебаний. Все степени свободы в процессе колебаний с собственной частотой ω_k совершают синхронное движение. Таким образом, конфигурация конструкции не меняет своей базисной формы, а меняются только амплитуды.

Поскольку величина компонентов собственных векторов $\{A_k\}$ может быть найдена неоднозначно, а с точностью до постоянного множителя, то необходимо их нормировать по правилу

$$\{A_k\}^T [M] \{A_k\} = 1.$$
 (1.7)

§2. Решение тестовой задачи.

Для проверки достоверности выбранной методики для исследования динамических характеристик незамкнутой цилиндрической оболочки решим тестовую задачу и сравним полученные результаты с результатами [4].

С помощью FEMAP была построена геометрия двух незамкнутых оболочек в виде цилиндрических поверхностей кругового поперечного сечения радиусом срединной поверхности R = 0,07725 м, отношением высоты к радиусу L/R = 2,99 м, толщиной $d = 1,5 \cdot 10^{-3} \text{ м}$, углом раскрытия $\varphi = 15^{\circ}$ и $\varphi = 90^{\circ}$, физико-механическими характеристиками: модуль Юнга E = 205 ГПа, коэффициент Пуассона v = 0,30, плотность $\rho = 7800 \text{ кг/m}^3$. Оболочки закреплялись по двум торцам с разными вариациями закрепления: F – свободный край $u \neq v \neq w \neq \varphi_x \neq \varphi_y \neq \varphi_z \neq 0$; С – жесткое закрепление $u = v = w = \varphi_x = \varphi_y = \varphi_z = 0$.

Результаты тестовой задачи, а именно первые десять частот собственных колебаний для двух вариантов раскрытия оболочки с двумя типами закрепления, получены с помощью FEMAP, а также другим автором, представлены в табл. 1 – 4, где ε – отклонение между расчетами. Частоты свободных колебаний незамкнутой круговой цилиндрической оболочки с углом раскрытия $\varphi = 15^{\circ}$ и граничными условиями C - F показаны в табл. 1, с граничными условиями C - C - в табл. 2.

NG-	<i>f</i> , 1	o. 9/	
JNO	[4]	FEMAP	ε, 70
1	260,61	257,89	1,04
2	262,07	259,36	1,03
3	611,38	614,09	0,44
4	618,01	620,44	0,39
5	726,81	714,69	1,67
6	734,63	719,57	2,05
7	774,45	775,59	0,15
8	839,86	842,52	0,32
9	995,23	999,48	0,43
10	1257,16	1262,89	0,46

Таблииа 1

T (
Гаолииа	2

			,
№	<i>f</i> ,]	a 9/	
	[4]	FEMAP	€, ∕0
1	659,35	644,95	2,18
2	659,45	645,04	2,19
3	1237,11	1200,43	2,96
4	1237,58	1200,44	3,00
5	1528,36	1520,81	0,49
6	1588,88	1583,05	0,37
7	1632,93	1625,60	0,45
8	1820,55	1808,32	0,67
9	1867,07	1858,60	0,45
10	1925,48	1859,60	3,42

Частоты свободных колебаний незамкнутой круговой цилиндрической оболочки с углом раскрытия $\varphi = 90^{\circ}$ и граничными условиями C - F представлены в табл. 3, с граничными условиями C - C - в табл. 4.

			Таблица 3
Мо	<i>f</i> , 1	0.94	
JNO	[4]	FEMAP	ε, 70
1	240,95	239,8	0,48
2	278,67	278,07	0,22
3	596,04	595,44	0,10
4	708,36	703,25	0,72
5	725,11	717,78	1,01
6	766,57	765,23	0,17
7	1118,24	1119,46	0,11
8	1208,12	1209,7	0,13
9	1320,31	1300,35	1,51
10	1321,39	1301,87	1,48

			1 аолица 4
№	<i>f</i> , 1	o. 9/	
	[4]	FEMAP	ε, 70
1	650,56	643,34	1,11
2	653,58	646,54	1,08
3	1217,90	1199,22	1,53
4	1220,21	1201,66	1,52
5	1564,40	1561,91	0,16
6	1608,37	1606,91	0,09
7	1891,72	1857,50	1,81
8	1893,00	1859,19	1,79
9	2005,99	2000,62	0,27
10	2317,75	2318,92	0,05
		,	,

Отметим, что автор не классифицирует полученные частоты по формам свободных колебаний, а просто приводит первые десять.

Анализируя полученные результаты тестовой задачи, можно наблюдать небольшое отклонение между двумя конечноэлементными реализациями, предложенными нами и автором [4], которое не превышает 3,5%.

Можно прийти к выводу, что достоверность полученных результатов, сейчас и в дальнейшем, обеспечивается использованием обоснованной математической модели, корректностью постановки задачи и практической сходимостью полученных результатов при использовании метода конечных элементов.

§3. Построение расчетной модели.

С помощью FEMAP была построена геометрия оболочки в виде цилиндрической поверхности эллиптического поперечного сечения с полуосями серединной поверхности: $a = 50,810 \cdot 10^{-3}$ м и $b = 36,285 \cdot 10^{-3}$ м, высотой h = 0,12 м, толщиной d = 0,002 м. В дальнейшем оболочка раскрывалась на заданный угол φ (рис. 1). В качестве материала задавалась сталь с характеристиками: модуль Юнга E = 212 ГПа, коэффициент Пуассона v = 0,30, плотность $\rho = 7800$ кг / м³. Оболочка исследовалась при жестко закрепленном одном и двум торцам.

Параметры моделирования выбраны в соответствии с характеристиками и размерами замкнутой некруговой цилиндрической оболочки постоянной толщины, которая исследовалась на частоты и формы свободных колебаний МКЭ [8] и методом стробоголографической интерферометрии [3].

Поскольку оболочка в поперечном сечении имеет форму эллипса, то есть необходимость рассмотреть разные способы ее раскрытия относительно большой (рис. 1, a) и малой полуосей (рис. 1, δ), так как в зависимости от этого будут меняться ее прочностные свойства, а соответственно и частоты свободных колебаний. В данном исследовании определим зависимость частоты свободных колебаний от величины раскрытия оболочки, которая будет определяться углом раскрытия φ в границах от 0°

до 90° с шагом 5° .

Так как оболочки постоянной толщины, то разбивку можно проводить как plateтак и solid-элементами, что повлияет на расчет несущественно [8]. Остановимся на выборе plate-элемента размером 1 мм (рис. 2).

Puc. 2

§4. Результаты численных расчетов.

Первые десять частот свободных колебаний, рассчитанных для некруговой цилиндрической оболочки, раскрытой относительно большой полуоси с жестко закрепленным одним торцом, в зависимости от угла раскрытия приведены в табл. 5. В табл. 6 приведены первые десять частот свободных колебаний некруговой цилиндрической оболочки, раскрытой относительно большой полуоси, закрепленной по двум торцам, в зависимости от угла раскрытия. Для сравнения приведены также частоты для замкнутой некруговой цилиндрической оболочки при соответствующих граничных условиях.

									1.	nonniger e		
Ma	2	Угол раскрытия относительно большой полуоси φ , град										
JNO	замк.	0	5	10	15	20	25	30	35	40		
1	1727,83	846,03	811,37	781,02	747,90	716,77	692,02	674,06	662,82	658,03		
2	1776,46	863,84	824,14	784,38	756,17	736,45	720,55	706,89	694,15	681,65		
3	2071,15	1548,68	1547,21	1564,36	1569,32	1530,23	1504,60	1494,16	1499,90	1522,09		
4	2076,15	1721,82	1675,00	1619,25	1598,03	1645,16	1700,69	1755,22	1793,59	1803,11		
5	3282,66	1937,89	1999,70	2094,43	2196,94	2229,06	2182,87	2133,29	2091,93	2060,14		
6	3652,6	2447,41	2486,20	2406,98	2329,72	2261,73	2207,35	2160,31	2113,85	2074,02		
7	3655,38	2566,65	2513,73	2456,37	2378,94	2306,59	2244,98	2209,52	2220,21	2281,95		
8	4177,08	2648,21	2556,10	2461,50	2388,44	2417,80	2558,51	2735,09	2934,96	3156,39		
9	4478,99	2707,16	2712,80	2856,83	3050,10	3270,34	3515,15	3783,79	3931,53	3845,56		
10	4507,61	3279,28	3506,17	3755,49	4021,85	4092,37	4046,56	3998,27	3996,11	3943,19		
Ν.			Угол	і раскрытия	относитель	но большой	полуоси φ ,	град				
JNO	45	50	55	60	65	70	75	80	85	90		
1	659,15	657,42	646,73	637,90	631,66	628,70	629,66	635,25	646,25	663,53		
2	669,29	665,50	676,29	690,50	706,91	724,01	739,84	752,19	758,81	757,84		
3	1560,32	1613,63	1680,40	1680,84	1647,97	1622,51	1607,90	1607,96	1626,88	1668,86		
4	1786,43	1754,93	1717,81	1757,65	1838,60	1909,98	1961,21	1996,53	2023,09	2043,35		
5	2038,09	2019,97	2003,85	1993,79	1989,57	1991,47	1999,75	2015,10	2038,72	2071,40		
6	2042,98	2026,09	2025,05	2037,16	2068,51	2131,71	2236,05	2374,08	2524,86	2617,87		
7	2388,76	2529,97	2698,70	2892,33	3110,91	3244,37	3141,33	3042,50	2963,33	2974,57		
8	3399,07	3639,02	3551,85	3450,61	3347,88	3355,76	3628,08	3855,59	3894,82	3925,81		
9	3751,72	3678,05	3852,44	3841,68	3836,91	3838,39	3848,52	3867,26	3895,44	3929,65		
10	3902,14	3872,35	3853,56	3843,97	3839,72	3846,74	3863,96	3967,36	4305,04	4620,90		

Таблина	5
таолииа	Э

Первые две собственные частоты замкнутой (Замк.) некруговой цилиндрической оболочки жестко закрепленной по одному торцу больше в 2 раза в сравнении с соответствующими частотами идентичной оболочки с разрезом ($\varphi = 0^{\circ}$) вдоль образующей по большой полуоси и в 1,7 в случае жесткого закрепления двух торцов.

Частоты свободных колебаний (*f*_{чис}, Гц) оболочки, жестко закрепленной по одному торцу, раскрытой относительно большой полуоси представлены в табл. 5.

Частоты свободных колебаний ($f_{\text{чис}}$, Гц) оболочки, жестко закрепленной по двум торцам, раскрытой относительно большой полуоси, представлены в табл. 6

		~			
	α	n	711	110	^
- 1	u	υ.	uu	ии	U

NG.	2		Угол раскрытия относительно большой полуоси φ , град										
JNO	замк.	0	5	10	15	20	25	30	35	40			
1	4006,6	2314,79	2224,29	2128,27	2038,80	1961,96	1899,25	1848,58	1806,58	1773,57			
2	4024,02	2316,34	2224,60	2129,68	2041,50	1964,81	1900,80	1848,56	1810,65	1780,33			
3	4363,03	3924,69	3922,07	3892,74	3828,73	3791,19	3781,36	3797,75	3725,32	3666,44			
4	4391,89	4066,10	3977,63	3937,67	3948,51	3922,23	3865,00	3799,89	3726,27	3667,50			
5	5459,83	4271,18	4375,90	4305,46	4148,22	4009,30	3893,53	3800,39	3764,09	3743,30			
6	5687,79	4602,25	4467,77	4305,65	4148,63	4009,69	3893,68	3806,82	3835,45	3885,06			
7	6405,35	4611,75	4467,90	4442,61	4369,55	4385,22	4490,36	4656,99	4724,60	4705,36			
8	6416,52	4612,04	4549,17	4520,54	4678,80	4797,20	4812,28	4769,01	4868,87	5118,25			
9	6900,11	5253,54	5333,46	5456,02	5336,37	5320,28	5470,26	5741,81	6071,83	6055,24			
10	6947,53	5791,75	5626,75	5545,27	5827,49	6145,78	6341,28	6241,78	6139,01	6070,37			
N₂			Уго.	п раскрытия	относитель	но большой	полуоси ϕ ,	град					
	45	50	55	60	65	70	75	80	85	90			
1	1748,67	1731,38	1721,44	1715,49	1710,41	1709,86	1714,07	1723,57	1739,26	1761,67			
2	1756,68	1738,42	1724,82	1718,38	1721,65	1730,44	1743,36	1758,79	1775,06	1789,82			
3	3620,25	3584,50	3557,41	3539,22	3529,91	3529,90	3538,66	3555,52	3574,63	3597,36			
4	3620,87	3584,96	3559,32	3542,71	3534,59	3534,75	3542,04	3555,81	3581,02	3611,99			
5	3747,13	3776,71	3832,52	3914,64	3971,01	3969,34	3978,81	4006,15	4058,79	4145,32			
6	3932,74	3965,03	3977,66	3976,52	4022,88	4155,82	4309,82	4473,86	4621,61	4712,17			
7	4730,00	4813,91	4962,84	5173,24	5439,55	5684,86	5627,76	5596,60	5625,87	5766,63			
8	5397,06	5678,06	5827,39	5804,85	5748,71	5756,15	5868,83	5887,84	5916,51	5952,42			
9	5988,35	5938,21	5912,64	5885,05	5869,22	5868,68	5878,48	5895,09	5922,13	5956,01			
10	6004,35	5952,20	5918,72	5903,54	5881,95	5873,54	6138,45	6572,65	7075,32	7366,03			

Сравнения зависимостей первых четырех частот свободных колебаний некруговой цилиндрической оболочки с закрепленным одним торцом от угла раскрытия относительно большой полуоси, представлены на рис. 3, а для случая закрепленных двух торцов – на рис. 4. Первые две частоты соответствуют симметричной и антисимметричной форме колебаний свободных кромок вдоль разреза. Максимальное значение первой резонансной частоты наблюдается при угле раскрытия 0° относительно большой полуоси для двух случаев рассмотренных граничных условий.

Для оболочки, закрепленной по двум торцам, при угле раскрытия 30° и выше относительно большой полуоси третья и четвертая собственные частоты соответствуют колебаниям свободных кромок, а для углов раскрытия до 30° преобладают колебания вдоль контура оболочки. Для оболочки, закрепленной по одному торцу, наблюдаются расхождения значений третьей и четвертой частот до 20%.

Первые десять собственных частот некруговой цилиндрической оболочки, раскрытой относительно малой полуоси с жестко закрепленным одним торцом, в зависимости от угла раскрытия, приведены в табл. 7. В табл. 8 приведены первые десять собственных частот некруговой цилиндрической оболочки, раскрытой относительно малой полуоси, закрепленной по двум торцам, в зависимости от угла раскрытия. Для сравнения приведены частоты для замкнутой некруговой цилиндрической оболочки при соответствующих граничных условиях.

		~
	annina	
	uuuuu	
_		

No	Замк.	Угол раскрытия относительно малой полуоси φ , град								
110		0	5	10	15	20	25	30	35	40
1	1727,83	707,05	719,42	733,79	750,52	769,96	792,46	808,99	825,09	841,31
2	1776,46	719,31	732,59	746,74	761,64	777,10	792,95	818,29	847,47	879,47
3	2071,15	1657,3	1657,59	1662,46	1673,10	1690,99	1717,97	1756,35	1747,25	1705,35
4	2076,15	1821,93	1876,69	1935,11	1920,45	1879,15	1835,80	1791,42	1808,92	1878,96
5	3282,66	2021,17	1996,02	1963,16	2004,22	2073,12	2144,04	2215,14	2286,93	2360,95
6	3652,6	2043,80	2070,41	2100,06	2133,59	2171,69	2215,20	2264,76	2320,59	2379,42
7	3655,38	2107,47	2124,24	2155,20	2197,50	2253,03	2326,03	2420,84	2540,20	2542,61
8	4177,08	2417,33	2516,64	2623,22	2731,35	2813,05	2807,97	2737,63	2644,07	2685,75
9	4478,99	3237,41	3245,54	3174,01	3109,92	3082,67	3154,69	3307,25	3502,51	3538,38
10	4507,61	3317,77	3384,57	3545,52	3721,65	3896,37	3841,62	3748,16	3646,87	3733,61
№			Уго	ол раскрыти	я относител	ьно малой і	полуоси φ, г	рад		
	45	50	55	60	65	70	75	80	85	90
1	857,99	875,88	896,14	920,23	949,24	918,66	877,82	839,21	811,70	802,20
2	912,54	942,87	963,91	968,06	951,70	982,19	1011,70	1016,40	970,32	882,12
3	1669,49	1646,17	1645,47	1679,61	1758,08	1719,59	1600,78	1531,41	1546,37	1646,72
4	1970,22	2086,51	2139,42	2001,00	1858,04	1884,23	2056,45	2238,14	2116,39	1938,13
5	2385,37	2275,60	2237,06	2414,26	2614,32	2651,92	2489,41	2354,37	2554,31	2637,01
6	2437,99	2516,81	2594,22	2665,26	2719,97	2749,43	2770,11	2738,91	2689,23	2641,97
7	2492,52	2557,51	2642,22	2730,81	2827,17	2798,33	2830,87	2845,09	2827,58	2977,84
8	2858,79	3051,53	3108,14	2983,83	2840,68	3008,89	3323,87	3725,51	4207,50	4396,76
9	3424,02	3315,90	3376,25	3658,79	4017,83	4449,57	4607,07	4432,90	4342,86	4642,80
10	4003,44	4317,75	4589,97	4534,68	4501,87	4530,82	4649,52	4848,66	4953,29	4860,35

Первые две собственные частоты замкнутой (Замк.) некруговой цилиндрической оболочки, жестко закрепленной по одному торцу, больше в 2,4 – 2,5 раза в сравнении с соответствующими частотами идентичной оболочки с разрезом ($\varphi = 0^{\circ}$) вдоль образующей по малой полуоси и в 2,3 в случае жесткого закрепления двух торцов.

Сравнения зависимостей первых четырех частот свободных колебаний некруговой цилиндрической оболочки с закрепленным одним торцом от угла раскрытия относительно малой полуоси, представлены на рис. 5, а для случая закрепленных двух торцов – на рис. 6. Первые две частоты соответствуют симметричной и антисимметричной форме колебаний свободных кромок вдоль разреза. Максимальное значение первой резонансной частоты наблюдается при угле раскрытия 65° относительно малой полуоси для оболочки с закрепленным одним торцом и 75° для оболочки с закрепленными двумя торцами.

Таблица 8

No	Замк.	Угол раскрытия относительно малой полуоси ϕ , град								
JNg		0	5	10	15	20	25	30	35	40
1	4006,6	1775,62	1797,08	1821,90	1850,52	1883,34	1921,33	1965,22	2015,79	2073,62
2	4024,02	1776,11	1797,51	1822,10	1850,74	1884,20	1923,05	1967,91	2019,28	2077,16
3	4363,03	3604,63	3634,94	3670,09	3711,16	3759,03	3815,13	3880,79	3957,70	4047,18
4	4391,89	3604,68	3635,00	3670,13	3711,21	3759,11	3815,31	3881,10	3958,11	4047,58
5	5459,83	4039,66	4058,57	4081,74	4109,56	4122,22	4107,07	4095,52	4090,20	4094,78
6	5687,79	4169,25	4167,56	4154,99	4138,86	4141,85	4177,30	4212,38	4240,07	4250,40
7	6405,35	4333,92	4418,33	4527,24	4656,16	4805,32	4920,64	4931,29	4953,41	5007,70
8	6416,52	4630,19	4724,69	4807,16	4868,12	4903,97	4976,64	5171,99	5388,93	5581,41
9	6900,11	5608,11	5620,32	5663,82	5751,84	5892,99	6070,46	5993,34	5910,95	5877,83
10	6947,53	5921,71	5983,22	6029,65	6079,36	6114,59	6087,04	6289,32	6405,09	6524,91
Ma	Угол раскрытия относительно малой полуоси φ , град									
JNg	45	50	55	60	65	70	75	80	85	90
1	2138,92	2208,02	2275,18	2337,60	2391,10	2433,34	2440,75	2400,80	2344,62	2289,75
2	2140,81	2210,70	2286,10	2358,73	2417,44	2447,92	2462,31	2469,88	2435,25	2339,68
3	4114,11	4153,86	4146,38	4099,24	4080,17	4118,93	4140,44	3997,91	3928,21	3991,92
4	4150,44	4197,65	4217,63	4296,12	4340,79	4281,23	4242,72	4457,42	4641,85	4406,59
5	4150,47	4265,78	4390,16	4516,03	4631,68	4716,91	4754,65	4750,29	4712,47	4588,17
6	4235,82	4266,79	4392,94	4520,47	4634,67	4722,83	4775,36	4775,79	4712,68	4636,21
7	5113,59	5284,69	5326,62	5209,44	5180,47	5335,56	5684,06	5436,13	5165,95	5476,31
8	5575,75	5460,98	5530,30	5860,18	6284,96	6302,64	5865,64	6192,53	6752,51	6368,91
9	6076,35	6429,17	6857,18	6973,90	6725,16	6829,60	7009,88	6971,91	6892,55	6901,54
10	6662,19	6817,10	6982,57	7055,67	6983,04	7035,75	7131,63	7186,46	7043,97	7263,19

Для закрепленной по двум торцам оболочки при угле раскрытия до 45° относительно малой полуоси третья и четвертая частоты соответствуют колебаниям свободных кромок, а для углов раскрытия 45° и выше преобладают колебания вдоль контура оболочки. Для оболочки, закрепленной по одному торцу, наблюдаются расхождения значений третьей и четвертой частот до 32%.

Puc. 6

Сравнение характера зависимостей первой резонансной частоты от угла раскрытия приведено на рис. 7. Влияние угла раскрытия больше в случае закрепления двух торцов. Характер зависимостей резонансной частоты от угла раскрытия относительно большой полуоси и относительно малой полуоси противоположный.

Первые четыре формы свободных колебаний незамкнутой цилиндрической оболочки со значением угла раскрытия $\varphi = 0^{\circ}$ вдоль большой полуоси для жестко закрепленного одного торца и двух торцов показаны на рис. 8 и 9, соответственно.

Puc. 8

Первые четыре формы свободных колебаний незамкнутой цилиндрической оболочки со значением угла раскрытия $\varphi = 0^{\circ}$ вдоль малой полуоси для жестко закрепленного одного торца и двух торцов показаны на рис. 10 и 11, соответственно.

Puc. 10

Первые четыре формы свободных колебаний незамкнутой цилиндрической оболочки со значением угла раскрытия $\varphi = 90^{\circ}$ вдоль большой полуоси для жестко закрепленного одного торца и двух торцов показаны на рис. 12 и 13, соответственно.

Puc. 12

Puc. 13

Puc. 14

Puc. 15

Первые четыре формы свободных колебаний незамкнутой цилиндрической оболочки со значением угла раскрытия $\varphi = 90^{\circ}$ вдоль малой полуоси для жестко закрепленного одного торца и двух торцов показаны на рис. 14 и 15, соответственно.

Заключение.

Проведен расчет резонансных частот свободных колебаний незамкнутой цилиндрической оболочки эллиптического поперечного сечения при разных углах раскрытия относительно большой и малой полуосей с жестко защемленным одним и двумя торцами методом конечных элементов, реализованным с помощью программного комплекса FEMAP.

Полученные численно частоты и формы свободных колебаний рассмотренной оболочки дают возможность сделать ряд выводов:

первые две собственные частоты замкнутой некруговой цилиндрической оболочки, жестко закрепленной по одному торцу больше в 2 раза в сравнении с соответствующими частотами идентичной оболочки с разрезом вдоль образующей по большой полуоси и в 2,4 – 2,5 раза с разрезом вдоль образующей по малой полуоси;

в случае закрепления двух торцов первые две собственные частоты замкнутой некруговой цилиндрической оболочки больше в 1,7 раза соответствующих частот некруговой цилиндрической оболочки с разрезом вдоль образующей по большой полуоси и в 2,3 раза с разрезом вдоль образующей по малой полуоси;

первые две частоты соответствуют симметричной и антисимметричной форме колебаний свободных кромок вдоль разреза;

максимальное значение первой резонансной частоты наблюдается при угле раскрытия 0° относительно большой полуоси для двух случаев рассмотренных граничных условий;

максимальное значение первой резонансной частоты наблюдается для оболочки с жестко закрепленным одним торцом при угле раскрытия 65° относительно малой полуоси, для закрепленной по двум торцам при угле раскрытия 75° относительно малой полуоси;

для закрепленной по двум торцам оболочки при угле раскрытия 30° и выше относительно большой полуоси третья и четвертая собственные частоты соответствуют колебаниям свободных кромок, а для углов раскрытия до 30° преобладают колебания вдоль контура оболочки;

для закрепленной по двум торцам оболочки при угле раскрытия до 45° относительно малой полуоси третья и четвертая частоты соответствуют колебаниям свободных кромок, а для углов раскрытия 90° и выше преобладают колебания вдоль контура оболочки;

для оболочки с жестко закрепленным одним торцом наблюдаются расхождения значений третьей и четвертой частот до 32% при раскрытии относительно малой полуоси и до 20% при раскрытии относительно большой полуоси;

в случае закрепленных двух торцов угол раскрытия влияет больше на изменение частоты;

характер зависимостей резонансной частоты от угла раскрытия относительно большой полуоси и относительно малой полуоси противоположный.

Научные исследования, результаты которых опубликованы в данной статье, выполнены за счет средств бюджетной программы «Поддержка приоритетных направлений научных исследований» (КПКВК 6541230).

РЕЗЮМЕ. Чисельно визначено динамічні характеристики незамкненої циліндричної оболонки еліптичного поперечного перерізу при жорсткому закріпленні одного і двох торців за допомогою системи автоматизованого конструювання і виконання інженерного аналізу методом скінченних елементів – FEMAP з розв'язувачем NASTRAN. Проведено порівняльний аналіз залежностей власних частот від кута розкриття відносно великої і малої півосей. Досліджено характер перших форм вільних коливань.

- Будак В.Д., Григоренко О.Я., Борисенко М.Ю., Бойчук О.В. Вплив ексцентриситету еліптичної оболонки на розподіл її динамічних характеристик // Вісник Київського нац. ун-ту ім. Тараса Шевченка, серія: «Фізико-математичні науки». – 2015. – 2. – С. 23 – 28.
- Будак В.Д., Григоренко О.Я., Борисенко М.Ю., Бойчук О.В. Про вільні коливання циліндричних оболонок кругового та некругового поперечного перерізу при різних граничних умовах // Вісник Запорізького нац. ун-ту, серія: «Фізико-математичні науки». – 2015. – № 2. – С. 20 – 28.
- Будак В.Д., Григоренко О.Я., Борисенко М.Ю., Пригода О.П., Бойчук О.В. Визначення власних частот тонкостінної оболонки некругового поперечного перерізу методом стробоголографічної інтерферометрії // Проблемы вычислительной механики и прочности конструкций. – 2015. – № 24. – С. 18 – 25.
- Лекомцев С.В. Конечно-элементные алгоритмы расчёта собственных колебаний трёхмерных оболочек // Вычислительная механика сплошных сред. – 2012. – 5, № 2. – С. 233 – 243.
- Arnold R.N., Warburton G.B. The flexural vibration of thin cylinders // Proc. Inst. Mech. Engs. 1953. 167 A, N 1. – P. 62 – 80.
- Baron M.L., Bleich H.H. Tables for frequencies and modes of free vibration of infinitely long thin cylindrical shells // J. Appl. Mech. – 1954. – 21, N 2. – P. 178 – 188.
- Budak V.D., Grigorenko A.Ya., Borisenko M.Yu., Boichuk E.V. Natural Frequencies and Modes of Noncircular Cylindrical Shells with Variable Thickness // Int. Appl. Mech. – 2017. – 53, N 2. – P. 167 – 172.
- Budak V.D., Grigorenko A.Ya., Borisenko M.Yu., Boychuk E.V. Determination of eigenfrequencies of an elliptic shell with constant thickness by the finite-element method // J. of Math. Sci. – 2016. – 212, N 2. – P. 182 – 192.
- Budak V.D., Grigorenko A.Ya., Khorishko V.V., Borisenko M.Yu. Holographic Interferometry Study of the Free Vibrations of Cylindrical Shells of Constant and Variable Thickness // Int. Appl. Mech. – 2014. – 50, N 1. – P. 68 – 74.
- Greenspon J.F. Vibration of thick cylindrical shells // J. Acoust. Soc. Amer. 1959. 31, N 12. P. 1682 – 1683.
- Grigorenko A., Zolotoi Yu., Prigoda A., Zhuk I., Khorishko V., Ovcharenko A. Experimental investigation of natural vibrations of a thick-walled cylindrical shell by the method of holographic interferometry // J. of Math. Sci. – 2013. – 194, N 3. – P. 239 – 244.
- Grigorenko A.Ya., Borisenko M.Yu., Boichuk E.V., Prigoda A.P. Numerical Determination of Natural Frequencies and Modes of the Vibrations of a Thick-Walled Cylindrical Shell // Int. Appl. Mech. – 2018. – 54, N 1. – P. 75 – 84.
- Grigorenko A.Ya., Parkhomenko O.Yu., Vasil'eva L.Ya., Borisenko M.Yu. Solution of the Problem of Free Vibrations of a Nonthin Orthotropic Shallow Shell of Variable Thickness in the Refined Statement // J. of Math. Sci. – 2017. – 229, N 3. – P. 253 – 268.
- Grigorenko A.Ya., Efimova T.L. Using Spline-Approximation to Solve Problems of Axisymmetric Free Vibration of Thick-Walled Orthotropic Cylinders // Int. Appl. Mech. – 2008. – 44, N 10. – P. 1137 – 1147.
- Grigorenko Ya.M., Rozhok L.S. Solving the Stress Problem for Hollow Cylinders with Corrugated Elliptical Cross Section // Int. Appl. Mech. 2004. 40, N 2. P. 169 175.
- Khadakker A.G. [et al.] Free vibrations of a cylindrical shell by holographic interferometry // J. Sound Vibr. – 1988. – 121, N 1. – P. 169 – 180.
- Lashkari M., Weingarten V.I. Vibrations of segmented shells // Experimental Mechanics. 1973. 13. P. 120 – 125.
- Leissa A.W. Vibration of Shells. Washington: NASA SP-288: US Government Printing Office, 1973. 438 p.
- 19. Markus S. The Mechanics of Vibrations of Cylindrical Shells. Amsterdam: Elsevier, 1988. 159 p.
- 20. *Mazuch T*. [et al.] Natural modes and frequencies of a thin clamped–free steel cylindrical storage tank partially filled with water: FEM and measurement // J. Sound and Vibr. – 1996. – **193**, N 3. – P. 669 – 690.
- Pellicano F. Vibration of circular cylindrical shells: theory and experiments // J. Sound and Vibr. 2007.
 303. P. 154 170.
- Stricklin J.A. [et al.] Nonlinear Dynamic Analysis of Shells of Revolution by Matrix Displacement Method // AIAA J. – 1971. – 9, N 4. – P. 629 – 636.
- 23. *Wang X.H., Xu B., Redekop D.* FEM free vibration and buckling analysis of stiffened toroidal shells // J. Thin-Wall Struct. 2006. **44**. P. 2 9.
- 24. Yu Y.Y. Free vibration of thin cylindrical shells having finite length with freely supported and clamped edges // J. Appl. Mech. 1955. 22, N 4. P. 547 552.

Поступила 12.03.2019

Утверждена в печать 03.03.2020

14