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Abstract. A thermal-magnetic-elastic problem for a thin current-carrying conical frus-
tum shell in a magnetic field is studied. The normal Cauchy form of nonlinear differential
equations, which include in total eight basic unknown variables, are obtained by the variable
replacement method. Using the Newmark’s stable finite equidifferent formulas and the qua-
si-linearization method, the nonlinear partial differential equations are reduced to a sequence
of quasi-linear differential equations, which can be solved by the discrete-orthogonalization
method. The temperature field in a thin conical frustum shell and the integral eigenvalues
are derived after considering Joule’s heat effect in an electromagnetic field and the thermal
equilibrium equation. The change of stresses, displacements, and temperatures in the thin
current-carrying conical frustum shell with variation of the electromagnetic parameters is
discussed. It is proved that the stresses, strains, and temperatures in thin shells can be con-
trolled by changing the electromagnetic and mechanical parameters by considering a specif-
ic example. These results are expected to be a theoretical reference for further analysis of
this case.
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1. Introduction.

Applications of electromagnetic elastic structures are broad in modern technological
fields, such as aerospace industry, electromagnetic emission, power supply equipment,
magnetoacoustic processing, etc. The objects moving in the applied magnetic field will
come under the interaction of an electromagnetic field, a temperature field, and a mechani-
cal field. The more complex mechanics behaviors have been shown, and the operations of
the system are influenced. Therefore, the researches on the thermal-magnetic-elastic prob-
lem have both theoretically and practically important significance. In recent years, electro-
magnetic elastic mechanics has developed very quickly. Many important achievements have
been obtained, such as Pao and Yeh [1] (1973); Ambartsumyan [2] (1977); Moon [3]
(1984); Van de Ven [4] (1986); Ulitko, Mol’chenko, Kovalchuk [5] (1994); Mol’chenko,
Grigorenko [6] (2010); Mol’chenko [7 — 12] (1989, 2012, 2013, 2014, 2015, 2016); Bian [13]
(2015); Zheng, Zhang, Zhou [14] (2005); Qin [15, 16] (2003, 2009); Pratiher [17] (2011);
Ootao, Ishihara [18] (2013); Kuang [19] (2014); Soni, Jain, Joshi [20] (2017); Moham-
madimehr, Rostami [21] (2018), and others. These research achievements laid a good foun-
dation for studies on electromagnetic elastic mechanics and its applications. However, these
researches fasten mostly on the problems about the vibration and stability of magnetoelastic
bodies, studies on magnetoelastic stress-strain problems of current-carrying plates and
shells, especially, studies on a thermal-magnetic-elastic problem with considering tempera-
ture fields have rarely been seen. Therefore, the thermal-magnetic-elastic stress-strain analy-
sis for current-carrying plates and shells is recently one of the interested topics studied.
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In this paper, a thermal-magnetic-elastic problem for a thin current-carrying conical
frustum shell in a magnetic field is studied. Based on the nonlinear magnetoelastic kinetic
equations, geometric equations, physical equations, and electrodynamics equations of a thin
shell under the interaction of an electromagnetic field, a temperature field, and a mechanical
field, the fundamental equations for the nonlinear stress-strain problem under the action of
the coupling field are given. The temperature field in a thin conical frustum shell and the
integral eigenvalues are derived after considering Joule’s heat effect in an electromagnetic
field and the thermal equilibrium equation. The stresses, displacements, and temperatures of
the thin conical frustum shell in a magnetic field are computed. The effect of the side cur-
rent, electromagnetic induction density, etc. on the stresses, displacements, and temperatures
in the thin conical frustum shell is analyzed.

2. Fundamental Equations.

Under the precondition of symmetrical loads, the thin conical frustum shell can be re-
garded axisymmetric. An orthogonal curvilinear coordinate system s,6,¢ is shown in

Fig. 1. By satisfying the magnetoelastic supposition of the thin shell [7] and using elastic
mechanics theories, Ohm’s law and Maxwell equations in electromagnetic basic theories,
the fundamental equations for the thin conical frustum shell can be derived as follows:

The magnetoelastic kinetic equations are given by
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The relations between the internal forces and the strains are given by
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where o is the electrical conductivity of the material; u is the permeability of the material;
h is the thickness of the thin shell; ¢ is the time variable; » is the radius of the section

round; ¢ is the angle between the normal of the neutral surface and the rotation axis; B
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and B, are the values of B, on the outer and inner surfaces of the thin conical frustum
shell, respectively; &, and &, are the strains in the corresponding directions; x, and x,
are the bending strains; u, w, and 6, are the displacements and the angle of rotation in the
corresponding directions; E, is the electric field intensity in the & -direction; B, is the
magnetic induction intensity in the ¢ -direction; F; and F are the surface forces in the
corresponding directions on the thin shell; pf; and pf, are the Lorentz forces in the corre-
sponding directions; o is the mass density of the medium; N, Ny, O,, M, ,and M, are
the internal forces and moments in the corresponding directions in the thin conical frustum
shell; Dy (= Eh/(1-v?)) and D,,(= Ek* /[12(1-v?)]) are the tensile and bending rigidi-
ties of the thin conical frustum shell, respectively; E is elastic modulus; v is Poisson’s
ratio; &; and k. are the integral eigenvalues of the temperature field 7' along the thickness
of the thin conical frustum shell, that is
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where o is the linear expansion coefficient of the material; 7'(s, 6, ¢, ¢) is the tempera-
ture distributing function in the thin shell.

For obtaining normal Cauchy form nonlinear partial differential equations, let u, w,
0,, Ny, Oy, Mg, B, and E, be the basic unknown variables. We obtain:
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3. Computational Method.
Equations (11) — (18) can be written as boundary-value problems:

a—N:F(s,N) (5o <s<sy); (19)
os
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where N = {u, w, t9S,NS,QS,MS,B;,Eé.}T is eight-dimensional vector; D, and D, are

given orthogonal matrixes that the ranks are kx8 and (8—k)x8 (k<8); d, and d, are
given vectors.

Eq. (19) is a set of nonlinear partial differential equations with eight basic unknown var-
iables, the difficulties are how to solve directly the equations. First, Newmark’s stable finite
equidifferent formulas [7] are used to find the derivatives with respect to time in Egs. (11) —
(18) for a time step length:
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where At is the time difference step length; S is the parameter of the scheme, when
f =0,25, Newmark’s arithmetic operators for linear dynamic system are unconditionally

stable [22].
After differencing, Egs. (11) — (18) can be expressed as
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In order to solve the nonlinear problem described by Eq. (22), with an iterative method,
thus, nonlinear problems can be turned into a series of linear problems. Taken iterative
equations are [7]
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where I'(s, N(k)) is Jacobi’s matrix.
By using Egs. (11) — (18), we have the linear iterative equations:
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The Lorentz forces in Egs. (26) — (33) can be written as
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4. Electromagnetic Temperature Effect.
By using the electrodynamics equations and generalized Ohm’s law, and considering
the side electric current J,,; and J,,;, we obtain [7]:
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Because of Joule’s heat effect in the electromagnetic field, the heat source is certainly
produced in the current-carrying conical frustum. Considering the thin shell discussed and
the electromagnetic field of low frequency, so the skin effect is not obvious. We can consid-
er approximately that the distribution of the electric current density is symmetrical in the
thin shell. Thus, the heat source power can be expressed as [23]

2 2, 2
0-086"" 08675170 (7
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Without considering external heat source and the local temperature effect of the conical
frustum ends, considering only the heat exchange between the outer, inner surfaces of the
conical frustum and the exterior. We consider that the distribution of the heat source power
density along the thickness of the thin shell is symmetrical. At the neutral surface { =0, the

heat flux g =0 ; at the outer surface ¢ =4/2, the heat flux g=Q#4/2,and T=T,,.
Thus, the equation of the temperature distribution in the ¢ -direction can be written as
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where A, is the heat exchange coefficient of the material; ¢ is the specific heat capacity of
the material; o is the surface heat exchange coefficient of the material; T, is the surface

temperature of the thin shell; 7, is the temperature of the medium bordering upon the thin

shell; T, is the change rate of the surface temperature.
Using Egs. (10), (36), (37), and (38), we obtain:
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The 5%1”1) and K‘1(~k+1) are substituted in Egs. (26) — (33), the thermal-magnetic-elastic

coupling equations for the thin conical frustum shell are obtained. All unknown variables
can be found by the discrete-orthogonalization method.

5. Numerical Results and Discussion.

Fig. 1 shows a thin cantilever conical frustum shell made of aluminum in a magnetic
field B= {BS, 0, 0}. It bears the mechanical load F = {O, 0, F, }, alternating electric current
that the density is J, = {0, J,,;, 0} is exteriorly imported the shell. Let £ =71GPa; v =0,34;
p=2670kg/m*; o=3,63x10"(Q m)”"; x=1,256x10°H/m; c¢=934J/(kg-°C);
Ar =237W/(m-°C); ap=235W/(m*-°C); a; =2,35x107°°C™; J,, =J,sinwt A/m?;
w=7rx10%sec”’; F, =F,+(s—s)) tana N/m2 ; Fy=—100; a=x/12; h=2x10"m;
7, =0,25m; ¢p=r/4; s,=0,35m; sy =0,85m.

The boundary conditions are

s=s9:u=0,w=0,6,=0, B, =0,IsinexT; (41a-d)

s=sy: Ny=0,0,=0, M =0, B, =0. (42a-d)

Fig. 1. A thin cantilever conical frustum shell in a magnetic field.
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The initial conditions are

N(s, )|,y =05 (s, )|, =w(s,0)| _,=0(s.)| _, =B (s.0)|,_,=0; (43a-e)
ii(s,0)| _, =(s,0) | _, = 0,(s,0)| _, =0. (44a-c)

In order to acquire stabilizing computational process, mass coordinate m = ps is taken.

Programming Egs. (26) — (33) and conducting computations for the known data and the
boundary and initial conditions yield the eight basic unknown variables u, w, 6,, N,

O,, M, B, and E,. Then the relations and variation laws between the mechanical and
electromagnetic variables can be determined by changing the relevant parameters.

w, mm
O -

=2 -

-4 |~ —e— Mechanical load
—a— Electromagnetic load
—»— Mechantcal-electromagnetic coupling

—=&8— Mechanical-electromagnetic-thermal coupling™®

& | | | ! J
0,35 045 0,55 0,65 0,75  s.m

Fig. 2. Effects of the coupling action on the deflection in the thin conical frustum shell.

Fig. 2 shows the deflection distribution in the thin conical frustum shell for
Jy= 2MA/m?, B, =0,1T, and ¢f=11msec, the mechanical load being the same as above.
According to Fig. 2, the coupling action effect of different loads can be seen. Fig. 3 and fig. 4

w, mm
—e— = | MA/m®
—a— J,= 2 MA/m?
—*— =3 MA/m?®

I ! ] I
0,35 0,45 0,55 0.65 0,75 S5l

Fig. 3. Curves of the deflection distribution for B, =0,2T,

t =10msec, and different values of J,.
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—&— Jz=2 MA/m?
16 - —— Jy=3 MA/m?
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Fig. 4. The deflection at s =0,6m versus ¢ for
B, =0,2T and different values of J, .

W, mm
—— B=0,10T

—+— B=0,15T
4 B=020T
8
-12
16 b
20 AR NN NN DU SN NN N N

0 3 6 9 12 15 18 21 24 27 tmsec

Fig. 5. The deflection at s =0,6m versus ¢ for
J, =3MA/m’ and different values of B,.

o MPa
[~ —©— Considering temperature, o,
804 —e—— Considering temperature. o
60 o\ —*— Without considering temperature, o,

40 R Without considering temperature, o
- N

1 | ] | I J
0,35 0,45 0,55 0,65 0,75 S5, M

Fig. 6. Effects of the temperature on the stress
in the thin conical frustum shell.



show the deflection distribution in the thin conical frustum shell (z = 10msec) and the varia-
tion of the deflection at s =0,6m with time for B, =0,2T and different electric current
density, respectively. The deflection in the thin shell increases with increase in the electric
current density. Fig. 5 shows the variation of the deflection at s =0,6m with time for
Jy= 3MA/m* and different magnetic induction intensity. Initially, the deflection varies a

little with increase in the magnetic induction intensity. As time goes on, the deflection rapid-
ly increases with the magnetic induction intensity. Fig. 6 shows the distribution of the nor-

mal stress o, and o, in the s-direction on the inner and outer surfaces of the shell for
Jg= 5MA/m?, B,=0,3T, and t =9 msec. According to Fig. 6, the effect of the temperature
on the stress of the thin shell is relatively remarkable. Fig. 7 shows the distribution of the nor-
mal stresses o, and o, in the s-direction on the inner and outer surfaces of the shell for

B, =0,2T, t=10msec, and different electric current density. Fig 8 shows the distribution

—o— J,=1 MA/m*. o,
—— J=1 MA/m?, o,
—a&— J =3 MAM , g,
—a— Jg=3 MA/m* s 16
5= 5 MA/mf > gy

535 0,45 0,55 0,65 0,75 5, m

]

Fig. 7. Curves of the stresses o, and o, distribution for
B, =0,2T, t=10msec, and different values of J,.

aiMPa
100 —_— B.!'=031 T, O';
80 —e— B =0.1T, o

—a— B=0,3T, o,

100 1 | ! ! |
035 045 055 065 075 SmM

Fig. 8. Curves of the stresses o, and o] distribution for
J, =3MA/m’, ¢ =10msec, and different values of B, .
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of the normal stresses o, and o, in the s -direction on the inner and outer surfaces of the
shell for J, =3MA/m*, t=10msec, and different magnetic induction intensity. Fig. 9
shows the variation of the normal stress o in the s -direction on the outer surface at the

fixed end (s =0,35m) with time for J, =3 MA/m? and different magnetic induction inten-

sity. Initially, the stress varies a little with increase in the magnetic induction intensity. As
time goes on, the stress rapidly increases with the magnetic induction intensity, peaking general-
ly at # =29 msec.

o, MPa

—e— B,=0,1T

160
140
120
100
80
60

0 3 6 9 12 15 18 21 24 27 fLmsec

Fig. 9. The normal stress o at the fixed end (s =0,35m)

versus ¢ for J, =3MA/m® and different values of B..

Fig. 10 shows the distribution of the normal stress o, and o, in the s -direction on the

inner and outer surfaces of the shell for J, = 3MA/m? , B,=0,2T, t=10msec, and differ-

ent thickness of the shell. According to Fig. 10, the effect of the thickness on the stress of
the thin shell is very remarkable.

;- MPa

50 —e— hA=1mm, o,
40 —e— h=1mm, o,
30 —ﬁ—ngmm, oy
5 —*— A=3mm, o,
10

0
-10
-20

| l 1 i J

0,35 0,45 0,55 0,65 0,75 5, m

>

Fig. 10. Curves of the stresses o, and o, distribution for
J,=3MA/m’, B, =0.2T, ¢ =10msec, and different values of /4.
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—e—— J,= | MA/m’
—a— J=2 MA/m?
—— J,=3 MA/m?

0 3 6 9 12 15 18 21 24 27 Lmsec

Fig. 11. The electric field intensity at the free end (s =0,85m)
versus ¢ for B, =0,2T and different values of J,.

Eg,Wm
= —e— B,=0,1T
—a— B =02T
2 |- e B_;: {},3 T

| i J
035 045 055 065 075 Sm

3 | I

Fig. 12. Curves of the electric field intensity distribution for
Jy=3MA/m*, ¢=18msec, and different values of B,.

PJ., N/m?

~  —e— J,=0,1 MA/m?

ol —*— Jp =03 MA/m?
—%— J,=0,5 MA/m?

500

400
300
200
100
0
-100

0 3 6 9 12 15 18 21 24 27 rmsec
Fig. 13. The Lorentz force pf, at s =0,6m versus ¢
for B, =0,2T and different values of J,.
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Fig. 11 shows the variation of the electric field intensity £, at the free end (s =0,85m)
with time for B, =0,2T and different electric current density. Initially, the value of the E,
is small, and the E, varies a little with increase in the electric current density. As time goes
on, the E, rapidly increases with the electric current density and changing tempestuous. It
predicates that coupling effect is increasingly stronger. Fig. 12 shows the distribution of the
electric field intensity in the thin conical frustum shell for J, = 3MA/m? , t=18msec, and

different magnetic induction intensity. According to Fig. 12, the distribution of the electric
field intensity in the thin shell is asymmetric. The electric field intensity varies tempestuous-
ly with increase in the magnetic induction intensity. Fig. 13 shows the variation of the Lo-
rentz force pf, at s=0,6m with time for B, =0,2T and different electric current densi-
ty. According to Fig. 13, as time goes on, the Lorentz force rapidly increases, peaking gen-
erally at =25msec . The Lorentz force varies tempestuously with increase in the electric
current density. Fig. 14 shows the temperature distribution in the thin conical frustum

1.°C

; — J,9=3 MA/m?
—a— Jp=4 MA/m?
100 —— Jy= 5 MA/m?

75

50

25

0
0,35 045 0,55 0.65 0,75 S

Fig. 14. Curves of the temperature distribution for B, =0,2T,
t =19msec, and different values of J,.

e C
— —e— J, =3 MA/m?
—a— J, =4 MA/nY
—x— J,=5 MA/m’
27 -
18 -
9 |—
| | I | I l l | |

0 3 6 9 12 15 18 21 24 27 tmscc

Fig. 15. The temperature at the free end (s =0,85m)
versus ¢ for B, =0,2T and different values of J,.
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—8— (=10 msec
—a— (=15 msec
—»—— (=720 msec

& )
0 i | ] J
0,35 0,45 0,55 0,65 0,75 BRI

Fig. 16. Curves of the temperature distribution for
Jg=5 MA/m?, B, =0,2T,, and different moment.

rec

—6— h = | mm
. —a— /i =3 mm
50
40
30

10

0
0,35 0,45 0,55 0,65 0,75 Folil

Fig. 17. Curves of the temperature distribution for J, =3 MA/m?,
B, =0,2T, t="7msec, and different values of 4.

shell for B, =0,2T, ¢=19msec, and different electric current density. According to Fig. 14,
the value of the temperature at the fixed end (s =0,35m) is the highest. Fig. 15 shows the
variation of the temperature at the free end (s =0,85m) with time for B, =0,2T and dif-

ferent electric current density. Initially, the temperature varies a little with increase in the
electric current density. As time goes on, the temperature rapidly increases with the electric
current density. The results show that the temperature in the thin conical frustum shell can
be controlled by changing the electric current density. Fig. 16 shows the temperature distri-

bution in the thin conical frustum shell for J, = SMA/mz, B, =0,2T, and different mo-
ment. Fig. 17 shows the temperature distribution in the thin conical frustum shell for
Jog= 3MA/m2, B, =0,2T, t=7msec, and different thickness of the shell. According to
Fig. 17, the effect of the thickness on the temperature of the thin shell is very remarkable.
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6. Conclusions.

A thermal-magnetic-elastic problem for a thin current-carrying conical frustum shell in
a magnetic field is studied. Using Newmark’s stable finite equidifferent formulas and the
quasi-linearization method, we have reduced nonlinear partial differential equations with
eight basic unknown variables to normal Cauchy form linear ordinary differential equations,
which can be solved by the discrete-orthogonalization method. Numerical solutions for
magnetoelastic stresses and deformations in a thin conical frustum shell under the interac-
tion of an electromagnetic field, a temperature field, and a mechanical field have been ob-
tained. This lays the analytical foundation for practical applications of the thermal-
magnetic-elastic problems on plates and shells. By the results, we now know that:

(1) the effect of an electromagnetic field of low intensity on the temperatures, defor-
mations, and stresses of structures and components is weak, this effect becoming stronger
with increase in the electromagnetic field intensity; it is shown that the thermal-magnetic-
elastic analysis on the structures and components in an electromagnetic field is necessary
and very important;

(2) the deformations and stresses in a thin conical frustum shell nonlinearly increase
with the electric current density or magnetic induction intensity;

(3) the stress, strain, and temperature in plates and shells can be controlled by changing
the electromagnetic and mechanical parameters;

(4) when the electric current density is large, the electromagnetic heat effect can not be
ignored; when the electric current density is enough, the thermal stress will dominate.
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PE3IOME. Bupueno tepmomarniTonpyxHy 3amady uis TOHKOi KOHIYHOI 3pi3aH0i 0GONOHKH, 110
IPOBOJUTE CTPYM 1 IepeOyBae y MarHiTHoMy mouti. OTpuMaHO METOAOM 3aMiHU 3MIHHUX HeNiHiiHI nude-
peHLialbHI piBHSIHHS HOpMasibHOro 3a Kouri Tumy, siki BKIIFOYaKOTh BCHOTO BiCIM HEBIJOMHX 3MIHHHX. 3a
JIONIOMOT010 CTIHKUX cKiHueHHHX (opmyn Hplomapka i MeToy KBasiliHeapu3auii HeliHiliHI qudepeHntiaib-
Hi PIBHSHHS 3 YaCTUHHHMH IIOXIJTHHMHM 3BEACHI O MOCHIZOBHOCTI KBa3UMIHIHHUX IUQepeHIiaIbHuX piB-
HSHB, SIK1 1aJli MOXKYTh PO3B’S3yBaTUCS METOIOM JUCKPETHOI OPTOTOHATI3AIII1. 3 PO3IIIsILy TEIIOBOro edek-
Ty JIXOyJsi B €NEKTPOMArHiTHOMY IIOJIi 1 PiBHSIHHS TEIUIOBOI PIBHOBard BH3HA4YEHO TEMIepaTypHE Hoie B
TOHKIH KOHIYHIH 3pi3aHiii 000NOHII 1 iHTerpasbHi BiIacHi 3HaueHHs. Ha cnemianbHOMy NMpHKIaji mpoaHai-
30BaHO 3MiHYy HaIpyXeHb, 3MilllCHb Ta TEMIICPATyPHU 3i 3MIHOIO €JICKTPOMArHiTHUX IapameTpiB. OTpuMaHi
pe3ynbTaTH MaTUMYTh TEOPETHYHE IPOJOBKEHHS B JOCIIKCHH] IOCTABICHOT 3a1a4i.
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