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Abstract. A thermal-magnetic-elastic problem for a thin current-carrying conical frus-
tum shell in a magnetic field is studied. The normal Cauchy form of nonlinear differential 
equations, which include in total eight basic unknown variables, are obtained by the variable 
replacement method. Using the Newmark’s stable finite equidifferent formulas and the qua-
si-linearization method, the nonlinear partial differential equations are reduced to a sequence 
of quasi-linear differential equations, which can be solved by the discrete-orthogonalization 
method. The temperature field in a thin conical frustum shell and the integral eigenvalues 
are derived after considering Joule’s heat effect in an electromagnetic field and the thermal 
equilibrium equation. The change of stresses, displacements, and temperatures in the thin 
current-carrying conical frustum shell with variation of the electromagnetic parameters is 
discussed. It is proved that the stresses, strains, and temperatures in thin shells can be con-
trolled by changing the electromagnetic and mechanical parameters by considering a specif-
ic example. These results are expected to be a theoretical reference for further analysis of 
this case. 
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1. Introduction. 
Applications of electromagnetic elastic structures are broad in modern technological 

fields, such as aerospace industry, electromagnetic emission, power supply equipment, 
magnetoacoustic processing, etc. The objects moving in the applied magnetic field will 
come under the interaction of an electromagnetic field, a temperature field, and a mechani-
cal field. The more complex mechanics behaviors have been shown, and the operations of 
the system are influenced. Therefore, the researches on the thermal-magnetic-elastic prob-
lem have both theoretically and practically important significance. In recent years, electro-
magnetic elastic mechanics has developed very quickly. Many important achievements have 
been obtained, such as Pao and Yeh [1] (1973); Ambartsumyan [2] (1977); Moon [3] 
(1984); Van de Ven [4] (1986); Ulitko, Mol’chenko, Kovalchuk [5] (1994); Mol’chenko, 
Grigorenko [6] (2010); Mol’chenko [7 – 12] (1989, 2012, 2013, 2014, 2015, 2016); Bian [13] 
(2015); Zheng, Zhang, Zhou [14] (2005); Qin [15, 16] (2003, 2009); Pratiher [17] (2011); 
Ootao, Ishihara [18] (2013); Kuang [19] (2014); Soni, Jain, Joshi [20] (2017); Moham-
madimehr, Rostami [21] (2018), and others. These research achievements laid a good foun-
dation for studies on electromagnetic elastic mechanics and its applications. However, these 
researches fasten mostly on the problems about the vibration and stability of magnetoelastic 
bodies, studies on magnetoelastic stress-strain problems of current-carrying plates and 
shells, especially, studies on a thermal-magnetic-elastic problem with considering tempera-
ture fields have rarely been seen. Therefore, the thermal-magnetic-elastic stress-strain analy-
sis for current-carrying plates and shells is recently one of the interested topics studied. 
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In this paper, a thermal-magnetic-elastic problem for a thin current-carrying conical 
frustum shell in a magnetic field is studied. Based on the nonlinear magnetoelastic kinetic 
equations, geometric equations, physical equations, and electrodynamics equations of a thin 
shell under the interaction of an electromagnetic field, a temperature field, and a mechanical 
field, the fundamental equations for the nonlinear stress-strain problem under the action of 
the coupling field are given. The temperature field in a thin conical frustum shell and the 
integral eigenvalues are derived after considering Joule’s heat effect in an electromagnetic 
field and the thermal equilibrium equation. The stresses, displacements, and temperatures of 
the thin conical frustum shell in a magnetic field are computed. The effect of the side cur-
rent, electromagnetic induction density, etc. on the stresses, displacements, and temperatures 
in the thin conical frustum shell is analyzed. 

2. Fundamental Equations. 
Under the precondition of symmetrical loads, the thin conical frustum shell can be re-

garded axisymmetric. An orthogonal curvilinear coordinate system , ,s    is shown in  

Fig. 1. By satisfying the magnetoelastic supposition of the thin shell [7] and using elastic 
mechanics theories, Ohm’s law and Maxwell equations in electromagnetic basic theories, 
the fundamental equations for the thin conical frustum shell can be derived as follows: 

The magnetoelastic kinetic equations are given by 
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The electrodynamics equations are given by 

( )1
;

B rE

t r s
  

  
 

                                                      (4) 

1
( )

2
s s

s s

B B Bw u
E B B B

t t s rh


 
 

     
         

.                      (5) 

The relations between the displacements and the strains are given by 
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The relations between the internal forces and the strains are given by 

[ (1 ) ];s N s TN D          [ (1 ) ];N s TN D                       (8a, b) 

[ (1 ) ];s M s TM D          [ (1 ) ],M s TM D                       (9a, b) 

where   is the electrical conductivity of the material;   is the permeability of the material; 

h  is the thickness of the thin shell; t  is the time variable; r  is the radius of the section 

round;   is the angle between the normal of the neutral surface and the rotation axis; sB  
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and sB  are the values of sB  on the outer and inner surfaces of the thin conical frustum 

shell, respectively; s  and   are the strains in the corresponding directions; s  and   

are the bending strains; u , w , and s  are the displacements and the angle of rotation in the 

corresponding directions; E  is the electric field intensity in the  -direction; B  is the 

magnetic induction intensity in the  -direction; sF  and F  are the surface forces in the 

corresponding directions on the thin shell; sf  and f  are the Lorentz forces in the corre-

sponding directions;   is the mass density of the medium; sN , N , sQ , sM , and M  are 

the internal forces and moments in the corresponding directions in the thin conical frustum 

shell; 2( / (1 ))ND Eh    and 3 2( / [12(1 )])MD Eh    are the tensile and bending rigidi-

ties of the thin conical frustum shell, respectively; E  is elastic modulus;   is Poisson’s 
ratio; T  and T  are the integral eigenvalues of the temperature field T  along the thickness 

of the thin conical frustum shell, that is 
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where T  is the linear expansion coefficient of the material; ( , , , )T s t   is the tempera-

ture distributing function in the thin shell. 
For obtaining normal Cauchy form nonlinear partial differential equations, let u , w , 

s , sN , sQ , sM , B , and E  be the basic unknown variables. We obtain: 
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3. Computational Method. 
Equations (11) – (18) can be written as boundary-value problems: 
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where T{ , , , , , , , }s s s su w N Q M B E N  is eight-dimensional vector; 1D  and 2D  are 

given orthogonal matrixes that the ranks are 8k   and (8 ) 8 ( 8)k k   ; 1d  and 2d  are 

given vectors. 
Eq. (19) is a set of nonlinear partial differential equations with eight basic unknown var-

iables, the difficulties are how to solve directly the equations. First, Newmark’s stable finite 
equidifferent formulas [7] are used to find the derivatives with respect to time in Eqs. (11) – 
(18) for a time step length: 
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where t  is the time difference step length;   is the parameter of the scheme, when 

0,25,   Newmark’s arithmetic operators for linear dynamic system are unconditionally 

stable [22]. 
After differencing, Eqs. (11) – (18) can be expressed as 
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In order to solve the nonlinear problem described by Eq. (22), with an iterative method, 
thus, nonlinear problems can be turned into a series of linear problems. Taken iterative 
equations are [7] 
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where ( )( , )ksΓ N  is Jacobi’s matrix. 

By using Eqs. (11) – (18), we have the linear iterative equations: 
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The Lorentz forces in Eqs. (26) – (33) can be written as 
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4. Electromagnetic Temperature Effect. 
By using the electrodynamics equations and generalized Ohm’s law, and considering 

the side electric current sclJ  and clJ , we obtain [7]: 
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Because of Joule’s heat effect in the electromagnetic field, the heat source is certainly 
produced in the current-carrying conical frustum. Considering the thin shell discussed and 
the electromagnetic field of low frequency, so the skin effect is not obvious. We can consid-
er approximately that the distribution of the electric current density is symmetrical in the 
thin shell. Thus, the heat source power can be expressed as [23] 
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Without considering external heat source and the local temperature effect of the conical 
frustum ends, considering only the heat exchange between the outer, inner surfaces of the 
conical frustum and the exterior. We consider that the distribution of the heat source power 
density along the thickness of the thin shell is symmetrical. At the neutral surface 0  , the 

heat flux 0q  ; at the outer surface 2h  , the heat flux 2q Q h , and wT T . 

Thus, the equation of the temperature distribution in the  -direction can be written as 
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where T  is the heat exchange coefficient of the material; c  is the specific heat capacity of 

the material; F  is the surface heat exchange coefficient of the material; wT  is the surface 

temperature of the thin shell; fT  is the temperature of the medium bordering upon the thin 

shell; wT  is the change rate of the surface temperature. 

Using Eqs. (10), (36), (37), and (38), we obtain: 
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The ( 1)k
T

  and ( 1)k
T

  are substituted in Eqs. (26) – (33), the thermal-magnetic-elastic 

coupling equations for the thin conical frustum shell are obtained. All unknown variables 
can be found by the discrete-orthogonalization method. 

5. Numerical Results and Discussion. 
Fig. 1 shows a thin cantilever conical frustum shell made of aluminum in a magnetic 

field  , 0, 0 .sBB  It bears the mechanical load  0, 0, ,FF  alternating electric current 

that the density is  0, , 0clJclJ  is exteriorly imported the shell. Let 71GPa;E   0,34;   
32670kg m ;   7 13,63 10 (Ω m) ;     61,256 10 H m;    934J ( k C);c g    

237 W ( m C);T     2235W ( m C );F     5 12,35 10 C ;T
     2sin A m ;clJ J t    

2 110 sec ;     2
0 0( ) tan N m ;F F s s     0 100;F    12;   32 10 m;h    

0 0,25 m;r   4;   0 0,35 m;s   0,85 m.Ns   

The boundary conditions are 

0s s : 0u  , 0w  , 0s  , 0,1 sin T;B t                          (41a-d) 

Ns s : 0sN  , 0sQ  , 0sM  , 0.B                              (42a-d) 

 
Fig. 1. A thin cantilever conical frustum shell in a magnetic field. 
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The initial conditions are 

0
( , ) 0

t
s t  N ;  

0 0 0 0
( , ) ( , ) ( , ) ( , ) 0;st t t t

u s t w s t s t B s t              (43a-e) 

0 0 0
( , ) ( , ) ( , ) 0.st t t

u s t w s t s t                                 (44a-c) 

In order to acquire stabilizing computational process, mass coordinate m s  is taken. 

Programming Eqs. (26) – (33) and conducting computations for the known data and the 
boundary and initial conditions yield the eight basic unknown variables u , w , s , sN , 

sQ , sM , B , and E . Then the relations and variation laws between the mechanical and 

electromagnetic variables can be determined by changing the relevant parameters. 

Fig. 2 shows the deflection distribution in the thin conical frustum shell for 
22 MA/mJ  , 0,1T,sB   and 11msec,t   the mechanical load being the same as above. 

According to Fig. 2, the coupling action effect of different loads can be seen. Fig. 3 and fig. 4 

 
Fig. 2. Effects of the coupling action on the deflection in the thin conical frustum shell. 

 
Fig. 3. Curves of the deflection distribution for 0,2T,sB   

 10 msec,t   and different values of .J  
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Fig. 4. The deflection at 0,6 ms   versus t  for 

0,2TsB   and different values of J . 

 
Fig. 5. The deflection at 0,6 ms   versus t  for 

2MA/m3J  and different values of .sB  

 
Fig. 6. Effects of the temperature on the stress 

 in the thin conical frustum shell. 
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show the deflection distribution in the thin conical frustum shell ( 10 msec)t   and the varia-

tion of the deflection at 0,6 ms   with time for 0,2TsB   and different electric current 

density, respectively. The deflection in the thin shell increases with increase in the electric 
current density. Fig. 5 shows the variation of the deflection at 0,6 ms   with time for 

23MA/mJ   and different magnetic induction intensity. Initially, the deflection varies a 

little with increase in the magnetic induction intensity. As time goes on, the deflection rapid-
ly increases with the magnetic induction intensity. Fig. 6 shows the distribution of the nor-

mal stress s
  and s

  in the s -direction on the inner and outer surfaces of the shell for 
25MA/m ,J   0,3 T,sB   and 9 msec.t   According to Fig. 6, the effect of the temperature 

on the stress of the thin shell is relatively remarkable. Fig. 7 shows the distribution of the nor-

mal stresses s
  and s

  in the s -direction on the inner and outer surfaces of the shell for 

0,2T,sB   10 msec,t   and different electric current density. Fig 8 shows the distribution 

 

 
Fig. 7. Curves of the stresses s

  and s
  distribution for  

0,2T,sB   10 msec,t   and different values of .J  

 
Fig. 8. Curves of the stresses 

s  and 
s  distribution for 

2MA/m3J , msec10t , and different values of sB . 
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 of the normal stresses s
  and s

  in the s -direction on the inner and outer surfaces of the 

shell for 23MA/m ,J   10 msect  , and different magnetic induction intensity. Fig. 9 

shows the variation of the normal stress s
  in the s -direction on the outer surface at the 

fixed end ( 0,35m)s   with time for 23MA/mJ   and different magnetic induction inten-

sity. Initially, the stress varies a little with increase in the magnetic induction intensity. As 
time goes on, the stress rapidly increases with the magnetic induction intensity, peaking general-
ly at 29 msec.t   

 

Fig. 10 shows the distribution of the normal stress s
  and s

  in the s -direction on the 

inner and outer surfaces of the shell for 23MA/m ,J   0,2T,sB   10 msec,t   and differ-

ent thickness of the shell. According to Fig. 10, the effect of the thickness on the stress of 
the thin shell is very remarkable. 

 
Fig. 9. The normal stress 

s  at the fixed end ( 0,35m)s   

versus t  for 2MA/m3J  and different values of .sB  

 
Fig. 10. Curves of the stresses s

  and s
  distribution for  

2MA/m3J , T2.0sB , msec10t , and different values of h . 
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Fig. 11. The electric field intensity at the free end ( 0,85m)s   

versus t  for 0,2TsB   and different values of .J  

 
Fig. 12. Curves of the electric field intensity distribution for 

23MA/m ,J   18msect  , and different values of .sB  

 
Fig. 13. The Lorentz force f  at 0,6 ms   versus t  

for 0,2TsB   and different values of .J  
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Fig. 11 shows the variation of the electric field intensity E  at the free end ( 0,85m)s   

with time for 0,2TsB   and different electric current density. Initially, the value of the E  

is small, and the E  varies a little with increase in the electric current density. As time goes 

on, the E  rapidly increases with the electric current density and changing tempestuous. It 

predicates that coupling effect is increasingly stronger. Fig. 12 shows the distribution of the 

electric field intensity in the thin conical frustum shell for 23MA/mJ  , 18msect  , and 

different magnetic induction intensity. According to Fig. 12, the distribution of the electric 
field intensity in the thin shell is asymmetric. The electric field intensity varies tempestuous-
ly with increase in the magnetic induction intensity. Fig. 13 shows the variation of the Lo-
rentz force f  at 0,6 ms   with time for 0,2TsB   and different electric current densi-

ty. According to Fig. 13, as time goes on, the Lorentz force rapidly increases, peaking gen-
erally at 25msect  . The Lorentz force varies tempestuously with increase in the electric 

current density. Fig. 14 shows the temperature distribution in the thin conical frustum 
 

 
Fig. 14. Curves of the temperature distribution for 0,2T,sB   

19 msec,t   and different values of .J  

 
Fig. 15. The temperature at the free end ( 0,85m)s   

versus t  for 0,2TsB   and different values of .J  
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shell for 0,2T,sB   19 msect  , and different electric current density. According to Fig. 14, 

the value of the temperature at the fixed end ( 0,35m)s   is the highest. Fig. 15 shows the 

variation of the temperature at the free end ( 0,85m)s   with time for 0,2TsB   and dif-

ferent electric current density. Initially, the temperature varies a little with increase in the 
electric current density. As time goes on, the temperature rapidly increases with the electric 
current density. The results show that the temperature in the thin conical frustum shell can 
be controlled by changing the electric current density. Fig. 16 shows the temperature distri-

bution in the thin conical frustum shell for 25MA/m ,J   0,2T,sB   and different mo-

ment. Fig. 17 shows the temperature distribution in the thin conical frustum shell for 
23MA/mJ  , 0,2T,sB   7 msect  , and different thickness of the shell. According to 

Fig. 17, the effect of the thickness on the temperature of the thin shell is very remarkable. 
 

 
Fig. 16. Curves of the temperature distribution for 

25MA/m ,J   0,2T,sB  , and different moment. 

 
Fig. 17. Curves of the temperature distribution for 23MA/m ,J   

0,2T,sB   7 msec,t   and different values of .h  
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6. Conclusions. 
A thermal-magnetic-elastic problem for a thin current-carrying conical frustum shell in 

a magnetic field is studied. Using Newmark’s stable finite equidifferent formulas and the 
quasi-linearization method, we have reduced nonlinear partial differential equations with 
eight basic unknown variables to normal Cauchy form linear ordinary differential equations, 
which can be solved by the discrete-orthogonalization method. Numerical solutions for 
magnetoelastic stresses and deformations in a thin conical frustum shell under the interac-
tion of an electromagnetic field, a temperature field, and a mechanical field have been ob-
tained. This lays the analytical foundation for practical applications of the thermal-
magnetic-elastic problems on plates and shells. By the results, we now know that: 

(1) the effect of an electromagnetic field of low intensity on the temperatures, defor-
mations, and stresses of structures and components is weak, this effect becoming stronger 
with increase in the electromagnetic field intensity; it is shown that the thermal-magnetic-
elastic analysis on the structures and components in an electromagnetic field is necessary 
and very important; 

(2) the deformations and stresses in a thin conical frustum shell nonlinearly increase 
with the electric current density or magnetic induction intensity; 

(3) the stress, strain, and temperature in plates and shells can be controlled by changing 
the electromagnetic and mechanical parameters; 

(4) when the electric current density is large, the electromagnetic heat effect can not be 
ignored; when the electric current density is enough, the thermal stress will dominate. 
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РЕЗЮМЕ. Вивчено термомагнітопружну задачу для тонкої конічної зрізаної оболонки, що 

проводить струм і перебуває у магнітному полі. Отримано методом заміни змінних нелінійні дифе-
ренціальні рівняння нормального за Коші типу, які включають всього вісім невідомих змінних. За 
допомогою стійких скінченних формул Ньюмарка і методу квазілінеаризації нелінійні диференціаль-
ні рівняння з частинними похідними зведені до послідовності квазілінійних диференціальних рів-
нянь, які далі можуть розв’язуватися методом дискретної ортогоналізації. З розгляду теплового ефек-
ту Джоуля в електромагнітному полі і рівняння теплової рівноваги визначено температурне поле в 
тонкій конічній зрізаній оболонці і інтегральні власні значення. На спеціальному прикладі проаналі-
зовано зміну напружень, зміщень та температури зі зміною електромагнітних параметрів. Отримані 
результати матимуть теоретичне продовження в дослідженні поставленої задачі. 
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