УДК 544.18.143

В.В.Соловьев, Л.А.Черненко

КВАНТОВО-ХИМИЧЕСКОЕ ИЗУЧЕНИЕ МЕХАНИЗМА ВЗАИМОДЕЙСТВИЯ АНИОНА NbF7²⁻ С КАТИОНАМИ Li⁺, Ca²⁺ и Mg²⁺ НА ФОНЕ НИОБИЙСОДЕРЖАЩИХ РАСПЛАВОВ *

На основании анализа результатов проведения ab initio квантово-химических расчетов изучен механизм катион-анионного взаимодействия в объемной фазе ниобийсодержащих расплавов. Обнаружена специфичность катион-анионных взаимодействий аниона NbF₇^{2–} с катионами расплава, которая доказывает, что внешнесферная катионизация аниона NbF₇^{2–} дополнительно стимулирует проявление донорных свойств центрального атома аниона (атома Nb), а главную "нагрузку" в этом процессе принимают на себя *d*-орбитали атома Nb, превращая его наряду с катионами в вероятный центр "электронной атаки" в последующих реакциях электровосстановления. Установлено образование устойчивых металлокомплексов вида { M^{m+} [NbF₇]^{2–}}^{(m-2)+}.

ВВЕДЕНИЕ. В работах по электрохимическому изучению поведения ниобия на фоне галогенидных расплавов [1, 2] было высказано предположение о металлокомплексном характере электровосстановления аниона NbF_7^{2-} , а экспериментальные результаты были обоснованы квантово-химической оценкой возможности образования металлокомплексов аниона NbF₇²⁻ [3-4]. Вместе с тем при проведении электрохимических исследований [1, 2] в качестве фонового электролита применяли эвтектическую смесь K,Na/ Cl, катионы которой не обладают ярко выраженными кислотными свойствами, по сравнению, например, с катионами более сильного поляризующего действия (Li^+ , Ca^{2+} , Mg^{2+} , Al^{3+} и др.), которые способны не только обусловливать, но и существенно усиливать электрохимическую активность анионов сложного строения (NO₃⁻, CO₃²⁻, TiF₆²⁻, BF₄⁻, WO₄²⁻, MoO₄²⁻ и т.д.) [5—15].

Поэтому представляется целесообразным детально изучить возможность образования металлокомплексов по результатам сравнительного квантово-химического исследования взаимодействий nM^{m+} ... NbF₇²⁻ (M = K⁺, Na⁺, Li⁺, Ca²⁺, Mg²⁺), реализующихся в расплавах соответствующих солей, с обязательной конкретизацией особенностей поляризации аниона NbF₇²⁻ под влиянием различного катионного окружения. Такой подход позволяет не только на электронном уровне установить и обосновать механизм взаимодействия аниона ${\rm NbF_7}^{2-}$ с катионами различного удельного заряда, но и дает возможность прогнозировать формирование различных по типу и форме электрохимически активных частиц [5].

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Квантово-химические расчеты проводили неэмпирическим методом молекулярных орбиталей в рамках программного пакета GAMESS/Firefly (базис SBK и MINI+ndfunc) [16, 17]. Визуализацию результатов расчетов, представленных в работе, осуществляли с помощью программы ChemCraft [18].

На первоначальной стадии расчета была проведена полная оптимизация энергетических, зарядовых и геометрических характеристик аниона NbF₇²⁻ (рис. 1, табл. 1). Поиск абсолютного минимума полной энергии, соответствующего максимуму энергии взаимодействий M^{m+} ... NbF₇²⁻, проводили путем оптимизации их геометрических и энергетических параметров.

Анализ результатов предварительно проведенных расчетов показал, что полная энергия аниона NbF₇²⁻ ($E = -586.82 \cdot 10^{-3}$ кДж/моль) больше суммы полных энергий фрагментов Nb⁵⁺ ($E = -134.97 \cdot 10^{-3}$ кДж/моль) и 7F⁻ ($E = -437.82 \cdot 10^{-3}$ кДж/моль) на 14.03 $\cdot 10^{-3}$ кДж/моль, то есть диссоциация "изолированного" аниона NbF₇²⁻ невозможна по энергетическим соображениям. Поэтому нами предпринята попытка детального

^{*} Работа выполнена в рамках ГБ темы (0110U002258) МОНМС Украины.

[©] В.В.Соловьев, Л.А.Черненко, 2012

Рис. 1. Оптимизированное геометрическое строение аниона NbF_7^{2-} (тип геометрической структуры — пентагональная бипирамида, симметрия *D5h*).

изучения механизма взаимодействий M^{m+} ... NbF₇²⁻ (M = K⁺, Na⁺, Li⁺, Ca²⁺, Mg²⁺), реализующихся в объемной фазе ниобийсодержащего расплава. Следует отметить, что выбор катионов K⁺, Na⁺ дает не только прямое соответствие объекта расчета и эксперимента, но и позволя-

Таблица 1

Величины энтальний образования металлокомплексов {М^{*m*+}[Nb-F₇]²⁻ }^{(*m*-2)+} (ΔH_{obp}) взаимодействий М^{*m*+}... NbF₇²⁻ (R — равновесные межатомные расстояния для моно- (*m*), би- (*b*) и три- (*t*) координации катионов относительно аниона)

Металлокомпл	^I M ^{<i>m</i>+}		∆Н _{обр} , кДж/моль	R, Å		
екс				Nb-F ₍₁₎	Nb-F ₍₆₎	$F_{(6)} - M^{m+}$
NbF_7^{2-}			65.030	1.97	2.00	
{ $M^{m+}[N b-F_{7}]^{2-}$ }	\mathbf{K}^+	m	71.223	1.96	2.06	2.17
		b	73.770	1.96	2.06	2.32
		t	75.490	1.96	2.05	2.43
	Na ⁺	т	71.800	1.96	2.09	1.99
		b	74.558	1.96	2.09	2.06
		t	76.739	1.95	2.07	2.15
	Li ⁺	т	73.013	1.95	2.12	1.68
		b	76.237	1.95	2.10	1.71
		t	78.899	1.95	2.08	1.86
	Ca^{2+}	т	73.020	1.90	2.08	1.71
		b	76.232	1.89	2.13	1.85
		t	78.382	1.90	2.16	1.96
	${\rm Mg}^{2+}$	т	74.967	1.89	2.17	1.73
		b	77.072	1.89	2.19	1.76
		t	79.426	1.89	2.21	1.89

ет моделировать влияние катионов фонового электролита. Остальные катионы были взяты нами для проведения сравнительной оценки возмущающего воздействия катионного состава расплава на механизм катион-анионного взаимодействия.

Рис. 2. Распределение МЭСП в анионе $NbF7^{2-}$.

При анализе причин, вызывающих поляризацию аниона, важное значение имеет определение направлений взаимодействия аниона с катионами металлов. Анализ распределения молекулярного электростатического потенциала (МЭСП) и построенных энергетических профилей дна долин потенциальных поверхностей энергий (ППЭ) взаимодействий M^{m+} ... NbF₇²⁻ показал (рис. 2, 3), что преимущественным направлением взаимодействия катионов с анионом можно считать биссектрису торсионного угла (тридентатное (t) положение катионов M^{m+} с координатами (1.5, 1.5, 1.5), рис. 2). Кроме того, существуют минимумы энергии, соответствующие взаимодействию катионов с анионом по биссектрисе любого из валентных плоских углов ∠FNbF (бидентатное (b) положение катионов M^{m+} с координатами (1.5, 0, 1.5), рис. 2), а также — на продолжении любой из связей Nb-F (монодентатное (*m*) положение катионов M^{m+} с координатами (2.5, 0, 0), рис. 2). При этом энергия взаимодействий M^{m+} ... NbF₇²⁻ естественно растет в ряду $M^{m+} = K^+$, Na⁺, Li⁺, Ca²⁺, Mg²⁺.

На рис. З изображены энергетические профили дна долины ППЭ взаимодействий M^{m+} ... NbF₇²⁻, а в табл. 1 приведены энергетические характеристики этих взаимодействий. Вероятность спонтанного перехода из потенциальной ямы вблизи одного минимума в потенциальную яму вблизи другого минимума для низших колебательных состояний очень мала (минимумы на ППЭ разделены высокими барьерами (от 200 кДж/моль, табл. 1), что свидетельствует не только о достаточной жесткости связей в образовавшихся вследствие катион-анионных взаимодействий вероятных металлокомплексах, но и определяет возможность раздельного существования их структурных изомеров.

Рассчитанные значения порядков связей B_{ij} для металлокомплексов { $M^{m+}[NbF_7]^{2-}$ } ($^{(m-2)+}$ $^{(m-2)+}$ (табл. 2) показывают, что в результате катионанионного взаимодействия энергии связей свободного и координированного фторониобата изменяются таким образом: энергия связи атома

ниобия с максимально отдаленным от катиона атомом фтора (например, связь Nb– $F_{(1)}$, см. рис. 1) незначительно увеличивается, а энергия связи атома ниобия с примыкающим к катиону атомом фтора (например, связь Nb– $F_{(6)}$, см. рис. 1) — мягко ослабевает (табл. 2). Обнаруженный эффект закономерно усиливается в ряду: $K^+ < Na^+ < Li^+ < Ca^{2+} < Mg^{2+}$.

Сравнительный анализ зарядовых характеристик на атомах по Левдину (табл. 3) показывает, что указанное выше изменение энергий связей Nb-F при приближении катиона M^{m+} к аниону NbF₇²⁻ сопровождается не только перераспределением заряда с анионных атомов фтора на катион, но и с центрального атома аниона (атома ниобия), а степень такого перераспределения усиливается с увеличением удельного заряда катиона, причем эта тенденция для катионов фонового электролита (K^+ и N a^+),

естественно, выражена не столь заметно. Особенно следует подчеркнуть, что катионы более силь-

Таблица 2 Величины порядков связей B_{ij} для металлокомплексов { $M^{m+}[NbF_7]^{2-}$ } (выборочные данные)

			1	
Металло- комплекс	min	Nb-F ₍₁₎	Nb-F ₍₆₎	M-F ₍₆₎
NbF_7^{2-}	0	0.654	0.654	
$\{K^{+}[NbF_{7}]^{2-}\}^{-}$	т	0.665	0.372	0.057
	b	0.670	0.450	0.064
	t	0.725	0.497	0.072
$\{Li^{+}[NbF_{7}]^{2-}\}^{-}$	т	0.717	0.208	0.208
	b	0.700	0.231	0.203
	t	0.736	0.353	0.221
$\{Mg^{2+}[NbF_{7}]^{2-}\}$	т	0.801	0.218	0.232
	b	0.815	0.222	0.235
	t	0.821	0.258	0.247

Таблица З

Зарядовые характеристики (Q, ат.ед.) на атомах металлокомплексов { $M^{m+}[NbF_7]^{2-}$ } при t-координации катиона к аниону для равновесных состояний металлокомплексов

Комплекс	Nb	F ₍₄₎₋₍₆₎	F _{(1)-(3),(7)}	M^{m+}
NbF_7^{2-}	1.072	-0.433	-0.450	
$\{K^{+}[NbF_{7}]^{2-}\}^{-}$	1.072	-0.490	-0.380	0.894
$\{Na^{+}[NbF_{7}]^{2-}\}^{-}$	1.100	-0.480	-0.360	0.797
$\{Li^{+}[NbF_{7}]^{2-}\}^{-}$	1.153	-0.460	-0.343	0.637
$\{Ca^{2+}[NbF_{7}]^{2-}\}$	1.192	-0.561	-0.298	1.718
$\{Mg^{2+}[NbF_{7}]^{2-}\}$	1.183	-0.528	-0.279	1.508

ного поляризующего действия, по сравнению с катионами K⁺ и Na⁺, при взаимодействии с анионом ярко стимулируют проявление донорных свойств центрального атома Nb аниона NbF₇^{2–} (большее, чем у атомов фтора), тем самым превращая его в вероятный центр "электронной атаки" наряду с катионами в последующих реакциях электровосстановления электрохимически активных частиц.

На рис. 4 изображены карты перераспределения электронной плотности для катион-анионных взаимодействий M^{m+} ... NbF₇²⁻. Карты изображены в плоскости, проходящей через атом Nb и катион M^{m+} ; каждая молекулярная орбиталь (MO) представлена в виде линии. Как видно из рис. 4, интенсивность линий увеличивается в ряду Li⁺>Ca²⁺>Mg²⁺, указывая на особенности поляризующего влияния различного катионного состава расплава на перераспределение заряда в анионе NbF_7^{2-} .

Сравнительное рассмотрение заселенностей орбиталей исследуемых взаимодействий позволяет установить (табл .4), что преимущественный перенос заряда в результате катион-анионного взаимодействия осуществляется главным образом на *s*-орбиталях катиона, входящих в состав нижних вакантных молекулярных орбиталей (НВМО). Из табл. 4 можно заключить, что, например, для тридентатного взаимодействия (см. рис. 2) по мере приближения катиона происходит миграция электронной плотности с 4*d*-, 4*d*-, 4*d*_{xv}-орбиталей централь-

ного атома и 2*p*-орбиталей атомов фтора на орбитали катиона. Естественно, что отток электронной плотности с аниона больше в случае взаимодействия аниона с катионом Mg^{2+} , чем с катионом Ca^{2+} или Li⁺ (табл. 4). Следует отметить, что ввиду малости поляризующего действия на анион катионов фонового электролита, по сравнению с катионами Li⁺, Ca^{2+} и Mg^{2+} , анализ перераспледеления электронной плотности в анионе под влиянием катионов K⁺ и Na⁺ нами не приводится.

Детализация особенностей влияния катионов на изменение геометрического и электронного строения аниона NbF_7^{2-} , полученная на основе квантово-химических расчетов энергетических, зарядовых и геометрических параметров исследуемых взаимодействий, дает возможность установить специфичность деформацион-

Рис. 4. Карты распределения электронной плотности для катион-анионных взаимодействий M^{m+} ... NbF7²⁻ в плоскости, проходящей через атом Nb и катион $M^{m+}: a - M^{m+} = Li^+; \delta - M^{m+} = Ca^{2+}; s - M^{m+} = Mg^{2+}$.

Вид комплекса		NbF ²⁻	$\{M^{m+}[NbF_{7}]^{2-}\}^{(m-2)+}$			
Атом	Орбиталь	1101 7	Li^+	Ca ²⁺	Mg^{2+}	
Nb	$4d_{x^2-y^2}$	0.303	0.285	0.269	0.226	
	$4d_{z^2}$	0.324	0.271	0.269	0.260	
	$4d_{xy}$	0.321	0.246	0.245	0.227	
	$4d_{xz}$	0.179	0.301	0.245	0.213	
	$4d_{yz}$	0.178	0.256	0.296	0.325	
F ₍₁₎	$2p_y$	1.357	1.333	1.324	1.337	
	$2p_z$	1.277	1.268	1.320	1.357	
F ₍₂₎	$2p_x$	1.358	1.350	1.346	1.328	
	$2p_y$	1.337	1.356	1.357	1.287	
F ₍₃₎	$2p_x$	1.391	1.382	1.372	1.304	
	$2p_y$	1.247	1.249	1.272	1.345	
F ₍₄₎	$2p_x$	1.265	1.276	1.307	1.265	
	$2p_y$	1.371	1.379	1.365	1.352	
F ₍₅₎	$2p_y$	1.286	1.301	1.366	1.323	
	$2p_z$	1.336	1.381	1.373	1.265	
F ₍₆₎	$2p_y$	1.302	1.370	1.378	1.318	
	$2p_z$	1.336	1.342	1.361	1.270	
F ₍₇₎	$2p_x$	1.251	1.365	1.372	1.306	
	$2p_y$	1.386	1.317	1.338	1.342	

Таблица 4 Величины заселенностей АО металлокомплексов расплавов (выборочные данные)

Рис. 5. Концептуальная схема перераспределения электронной плотности в анионе NbF_7^{2-} под воздействием катиона M^{m+} .

ной поляризации аниона NbF₇²⁻ под воздействием катионов. Сущность этой поляризации во многом аналогична механизму трансвлия-

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2012. Т. 78, № 4

ния в комплексах переходных металлов [19], объясняемому на основании учета взаимозависимости между донорно-акцепторными свойствами, возникающими между комплексообразователем (в нашем случае — анионом) и лигандами (катионом металла M^{m+}). То есть возникновение электроноакцепторного эффекта на катионе M^{m+} в процессе его взаимодействия с анионом NbF $_7^{2-}$ позволяет реализоваться наведенному донорно-акцепторному эффекту, затрагивающему транс-атом Nb и атомы фтора, электронная плотность с которых перераспределяется по всей частице (рис. 5).

Наличие у катиона способных к акцептированию *s*-орбиталей позволяет создать на отдаленных от катиона атомах фтора "эффективный" положительный заряд (рис. 5, табл. 3). Одновременно с этим под влиянием катиона M^{m+} усиливаются донорные свойства центрального атома (Nb) аниона за счет наличия у атома Nb *d*-орбиталей, которые принимают на себя главную "нагрузку", превращая его, наряду с катионом, в вероятный центр "электронной атаки" в последующих реакциях электровосстановления металлокомплексных частиц.

ВЫВОДЫ. На основании проведенных квантово-химических расчетов можно заключить, что влияние катионов металла на внутримолекулярную поляризацию фторониобата проявляется в инициировании перераспределения электронной плотности по донорно-акцепторному механизму, создавая 2 основных центра "электронной атаки" в последующих реакциях восстановления — центральный атом (Nb), а также катион (рис. 5). Этим объясняется высказанное в работе [1] предположение о том, что процесс электровосстановления анионов в расплавах солей можно отнести к металлокомплексному катализу.

РЕЗЮМЕ. На основі аналізу результатів проведення ab initio квантово-хімічних розрахунків вивчено механізм катіон-аніонної взаємодії в об'ємній фазі ніобієвмісних розплавів. Виявлено специфічність катіон-аніонних взаємодій аніона NbF_7^{2-} з катіонами розплаву, яка доводить, що зовнішньосферна катіонізация аніона NbF_7^{2-} додатково стимулює прояв донорних властивостей центрального атома аніона (атома Nb), а головне "навантаження" в цьому процесі приймають на себе *d*-орбіталі атома Nb, перетворюючи його поряд з катіонами у вірогідний центр "електронної атаки" в подальших реакціях електровідновлення. Встановлено утворення стійких металокомплексів вигляду $\{M^{m+}[NbF_{7}]^{2-}\}^{(m-2)+}$.

SUMMARY. On the basis of the analysis results of the ab initio quantum chemical calculations of the mechanism cation-anionic co-operation is studied in the by volume phase of the niobium-containing melts. Found out specificity of the cation-anionic co-operations of the anion NbF₇²⁻ with cations of the melts, which proves that out-sphere cationization of the anion NbF₇²⁻ stimulates additionally by realization of the donor-type properties by central atom of anion (atom of Nb), and the main "loading" in this process is assumed by the *d*-orbitals of the atom Nb, converting him along with cations, in a probability center "electronic attack" in the further reactions of electroreduction. Formation of steady is set metallo-complexes kind { M^{m+} [NbF₇]²⁻}^{(m-2)+}.

ЛИТЕРАТУРА

- 1. Кузнецов С.А., Морачевский А.Г., Стангрит П.Т. // Электрохимия. -1982. -18, № 11. -С. 1522—1526.
- 2. Кузнецов С.А., Глаголевская А.И. Гриневич В.В., Стангрит П.Т. // Электрохимия. -1992. -28, № 9. -С. 1344—1351.
- 3. Soloviev V.V., Chernenko L.A., Kremenetsky V.G., Kuznetsov S.A. // Z. Naturforsch. -2010. -№ 65a. -P. 245-250.
- 4. Kremenetsky V.G., Kuznetsov S.A., Kremenetskaya O.V. et al. // Ibid. -2010. -№ 65a. -P. 1020—1026.

Полтавский национальный технический университет им. Юрия Кондратюка

- 5. Шаповал В.И. // Успехи химии. -2001. -№ 2. -С. 182—199.
- 6. Шаповал В.И., Кушхов Х.Б., Соловьев В.В. // Укр. хим. журн. -1984. -**50**, № 5. -С. 494—497.
- 7. Шаповал В.И., Кушхов Х.Б., Соловьев В.В. // Там же. -1984. -50, № 10. -С. 1066—1071.
- 8. Шаповал В.И., Кушхов Х.Б., Соловьев В.В., Шевчук В.Г. // Там же. -1984. -50, № 11. -С. 1184—1188.
- 9. Циклаури О.Г., Соловьев В.В., Шаповал В.И., Абрамов А.Ю. // Там же. -1990. -**56**, № 11. -С. 1123—1129.
- 10. Соловьев В.В., Циклаури О.Г., Шаповал В.И, Давиденко Л.П. // Там же. -1992. -58, № 1. -С. 7—12.
- 11. Соловйов В.В., Черненко Л.О. // Там же. -2005. -71, № 4. -С. 91—95.
- 12. Соловйов В.В., Черненко Л.О. // Наук. вісн. Чернівецького ун-ту. -2008. -Вип.401. -С. 146—148.
- 13. Соловьев В.В., Бут Е.Ф. // Вісн. націон. техн. ун-ту "ХПІ". -2008. -Вип. 304. -С. 135—139.
- Volkov S.V., Novoselova I.A., Solovjov V.V., Chernenko L.A. // Book of abstr. list and exhibitions. Europeans Conf. on combinatorial catalysis research and high-throughput technologies. -2009. -P. 3.
- 15. Шаповал В.И., Соловьев В.В., Лавриненко-Омецинская Е.Д., Кушхов Х.Б. // Укр. хим. журн. -1984. -50, № 9. -С. 917—921.
- 16. http://www.msg.ameslab.gov/GAMESS/GAMESS. html
- 17. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. -1993. -№ 14. -P. 1347.
- 18. http://www.chemcraftprog.com/2011/Zhurko.htm
- 19. Берсукер И.Б. Строение и свойства координационных соединений. -Л.: Химия, 1971.

Поступила 25.11.2011

УДК 621.794.42:546.56

В.И.Ларин, Э.Б.Хоботова, В.В.Даценко, М.А.Добриян

КИНЕТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ВЫТЕСНЕНИЯ МЕДИ ЦИНКОМ ИЗ СУЛЬФАТНЫХ РАСТВОРОВ

Изучены механизм и кинетика цементации меди цинком из сульфатных медно-цинковых растворов. Рассчитаны основные кинетические параметры цементации. Установлены оптимальные параметры процесса, позволяющие интенсифицировать цементацию и провести более полное извлечение меди из раствора.

ВВЕДЕНИЕ. В настоящее время одной из острых экологических проблем является нарастающее количество отработанных гальванических растворов и невостребованных гальванических шламов, содержащих соединения металлов. При травлении изделий из медных сплавов в травильном растворе накапливаются соли металлов, входящих в состав оксидной пленки, об-

© В.И.Ларин, Э.Б.Хоботова, В.В.Даценко, М.А.Добриян, 2012