УДК 541.135

Э.А.Стезерянский, И.А.Гурьянова-Доскоч, А.А.Омельчук КОНСТАНТА УСТОЙЧИВОСТИ ИОННОЙ ПАРЫ $\{Na[Ag(S_2O_3)_2]\}^{2-}$

Методами гидродинамической вольтамперометрии и потенциометрии с Na^+ -селективным электродом изучено катодное восстановление тиосульфатных комплексов серебра в растворах с разной концентрацией катионов натрия. Электрохимически активной частицей при восстановлении тиосульфатных комплексов серебра является ионная пара (ИП) $\mathrm{Na[Ag(S_2O_3)_2]}^{2-}$, образование которой предшествует реакции переноса электрона. Константы скоростей образования и распада ИП, константа ее устойчивости K, равная $\mathrm{18.2 \pm 2.2}$, определены из зависимостей предельных токов от скорости вращения электрода. Значение $\mathrm{lg}K_0$ 1.96 рассчитано по методу Дэвиса при нулевой ионной силе раствора.

ВВЕДЕНИЕ. Изучение особенностей электродных процессов в тиосульфатных растворах представляет интерес в связи с применением тиосульфатных солей в качестве нетоксичного компонента выщелачивающих растворов в гидрометаллургии золота и серебра [1], а также разработкой технологии рациональной утилизации отработанных фотографических фиксажных растворов.

Электрохимическое восстановление тиосульфатных комплексов серебра зависит от концентрации катионов натрия, введенных в раствор в качестве катионов фонового электролита [2—4]. Процесс катодного восстановления тиосульфатных комплексов серебра при соотношении $Ag: S_2O_3^{\ 2^-} 1:25$, где в объеме раствора преобладает комплекс $Ag(S_2O_3)_2^{\ 3^-}$, изучен нами в растворах, содержащих диметилформамид и карбамид [3, 4]. Введение в водные растворы амидов изменяет структуру водных растворов и сольватацию ионов. Установлено, что электрохимически активной частицей при восстановлении тиосульфатных комплексов серебра является ионная пара (ИП) $\{Na[Ag(S_2O_3)_2]\}^{\ 2^-}$, образование которой предшествует реакции переноса электрона:

$$Ag(S_2O_3)_2^{3-} + Na^+ \xrightarrow{\frac{k_1}{k_2}} \{Na[Ag(S_2O_3)_2]\}^{2-}; (1)$$
$$\{Na[Ag(S_2O_3)_2]\}^{2-} + e \longrightarrow Ag + 2S_2O_3^{2-} + Na^+. (2)$$

Цель работы — определение константы устойчивости ионной пары $\{Na[Ag(S_2O_3)_2]\}^{2-}$ в водном растворе методом гидродинамической вольтамперометрии.

9KCПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Рабочие растворы содержали 1 ммоль· π^{-1} AgClO₄, 25 ммоль· π^{-1} Na₂S₂O₃ (соотношение Ag : S₂O₃ 1:25) и разное количество перхлората натрия NaClO₄. Аналитическая концентрация ионов Na⁺ составляла 0.05—1.00 моль· π^{-1} . Необходимое значение кислотности растворов (pH 9.5 ± 0.3) создавали добавлением гидроксида натрия. Растворы готовили из реактивов квалификации ч.д.а. и бидистиллированной воды.

Исследование кинетики восстановления комплексов серебра проводили методом вращающегося дискового серебряного электрода с использованием потенциостата IPC-рго М и электрохимического датчика Модуль ЕМ-04 (НТФ Вольта, РФ). Управление потенциостатом и первичную обработку данных осуществляли персональным компьютером с помощью программы IPC-2000. Равновесную концентрацию ионов натрия Na⁺ измеряли иономером И-160 МИ и натрийселективным электродом ЭЛИС-112Na (Измерительная техника ИТ, РФ). Перед измерениями ион-селективный электрод выдерживали в 0.01 моль·л⁻¹ растворе NaCl в течение 1 сут.

Диаметр дискового серебряного поликристаллического электрода 3 мм. Электрод сравнения — хлоридсеребряный с насыщенным раствором NaCl, вспомогательный электрод — платиновая проволока. Поляризационные кривые снимали в стеклянной термостатируемой ячейке при температуре 25 ± 0.5 °C в атмосфере аргона. Скорость развертки потенциала 5 MB·c^{-1} .

© Э.А.Стезерянский, И.А.Гурьянова-Доскоч, А.А.Омельчук, 2011

Особенности приготовления растворов, подготовки электродов и обработки поляризационных кривых (учет омических потерь IR) приведены в работах [3, 4].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Поляризационные кривые восстановления тиосульфатных комплексов серебра, полученные в растворах с разной концентрацией катионов натрия, приведены на рис. 1. Катодные токи являются диффузионно-миграционными, рост предельных токов восстановления комплексов серебра при увеличении концентрации фонового электролита обусловлен уменьшением вклада миграционной составляющей.

Зависимости предельных токов восстановления комплексов серебра от скорости вращения электрода $\omega^{0.5}$ не проходят через начало координат (рис. 2), что свидетельствует о кинетических или адсорбционных осложнениях электродного процесса. В растворах с малой концентрацией катионов натрия — 50 и 69 ммоль π^{-1} (кривые I, 2) электродная реакция восстановления тиосульфатных комплексов серебра протекает в кинетическом режиме — предельные токи не изменяются с ростом скорости вращения. На рис. 3 предельные токи восстановления представлены в координатах для предшествующей химической реакции $i_{\rm пр}\omega^{-0.5}$ — $i_{\rm пр}$ [6, 7]. Для электродного процесса с предшествующей химической реакцией,

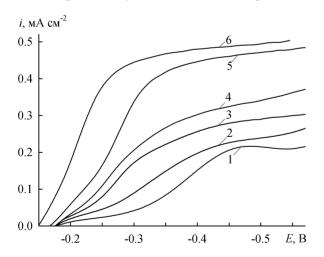


Рис. 1. Поляризационные кривые восстановления комплексов серебра в растворах, содержащих 1 ммоль· π^{-1} AgClO₄, 25 ммоль· π^{-1} Na₂S₂O₃ и разное количество NaClO₄, моль· π^{-1} : I — 0.050; 2 — 0.069; 3 — 0.092; 4 — 0.123; 5 — 0.249; 6 — 1.00. Скорость вращения 1000 об·мин⁻¹, ν = 5 мВ·с⁻¹.

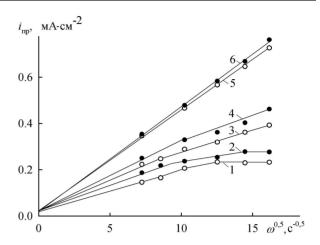


Рис. 2. Зависимости предельных токов $i_{\rm np}$ от $\omega^{0.5}$. Здесь и на рис. 3 обозначение растворов, как на рис. 1.

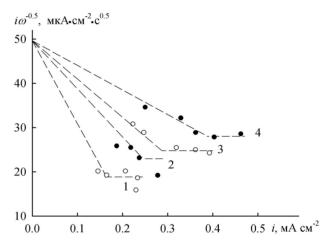


Рис. 3. Экспериментальные (точки) и расчетные (пунктир) зависимости $i_{\rm np}\omega^{-0.5}$ от плотности тока $i_{\rm np}$.

протекающей на вращающемся дисковом электроде, зависимость величины $i_{\rm np}\omega^{-0.5}$ от плотности тока $i_{\rm np}$ линейна и для реакции (1) описывается уравнением [7]:

$$\frac{i_{\text{np}}}{\omega^{1/2}} = \frac{i_g}{\omega^{1/2}} - \frac{0.62(D/\nu)^{1/6}i_{\text{np}}}{K[\text{Na}](k_1[\text{Na}] + k_2)^{1/2}}$$
(3)

Здесь $i_{\rm np}$ — плотность предельного тока; i_g — гипотетическая плотность предельного тока восстановления ${\rm Ag(S_2O_3)_2}^{3^-}$; k_1 и k_2 — константы скорости прямой и обратной химической реакции; K — константа устойчивости ИП ${\rm Na[Ag-(S_2O_3)_2]}^{2^-}$; D — коэффициент диффузии; v — кинематическая вязкость раствора; ${\rm [Na]}$ — равновесная концентрация катионов натрия.

Кинетические параметры электрохимического восстановления тиосульфатных комплексов серебра из растворов с разным содержанием катионов натрия

C_{Na}	[Na ⁺]	I	$D \cdot 10^6$,	$\partial (i_{\rm np}\omega^{-0.5})$	$i_g \omega^{-0.5}$	К,	<i>k</i> ₁	k_2
ммоль· π^{-1}			см ² ·с ⁻¹	$\partial i_{\rm np}$	$\frac{g}{i_{\Pi}\omega^{-0.5}}$	моль 1 ⋅ л	e^{-1}	
50	27	0.076	4.8	-0.219	2.66	21.9	56.5	0.07
69	43	0.095	4.8	-0.114	2.14	20.4	67.5	0.14
92	55	0.118	6.0	-0.076	1.99	18.4	93.1	0.28
123	80	0.149	6.1	-0.055	1.78	15.9	73.6	0.37
249	168	0.275	7.5	-0.008	_	_	_	_
1001	862	1.027	7.7	-0.004	_	_	_	
			Среднее	е для $I = 0.0$	9 – 0.15:	18.2 ± 2.2	78.1	0.26

$$K = \frac{1}{(i_g \omega^{-0.5} / i_{\Pi} \omega^{-0.5} - 1) \text{ [Na]}}$$
 (4)

определены константы устойчивости ИП $\{\text{Na}[\text{Ag}(\text{S}_2\text{O}_3)_2]\}^{2-}$ (таблица). В расчетах использовали значения предельных токов $i_{\text{пр}}$ до перехода электродного процесса в кинетический режим (рис. 2).

Константы устойчивости определены в растворах с разной ионной силой. Концентрационная константа устойчивости β_c в общем случае зависит от ионной силы раствора I. Взаимосвязь концентрационной и термодинамической констант устойчивости β_o описывается полуэмпирическим уравнением Дэвиса [8, 9]:

$$\lg \beta_c = \lg \beta_o + \Delta z^2 A \left(\frac{I^{1/2}}{1 + I^{1/2}} - 0.2I \right).$$
 (5)

Здесь $A=1.825\cdot 10^6 (\epsilon T)^{-3/2}$ моль $^{-0.5}\cdot \pi^{0.5}\cdot K^{1.5}$ — константа уравнения предельного закона Дебая—Хюккеля; ϵ — диэлектрическая проницаемость растворителя. Для водных растворов при 25 °C A=0.509 моль $^{-0.5}\cdot \pi^{0.5}$ [10]; Δz^2 — алгебраическая сумма квадратов зарядов ионов. Для реакции (1) $\Delta z^2=6\ (-3^2+1^2-(-2)^2)$.

Уравнение (5) можно записать в виде [8]:

$$\lg \beta_{c} - \Delta z^{2} A \frac{I^{1/2}}{1 + I^{1/2}} = \lg \beta_{o} - 0.2 \Delta z^{2} A I. \quad (6)$$

Экспериментальные зависимости константы устойчивости ИП $\{Na[Ag(S_2O_3)_2]\}^{2-}$, пред-

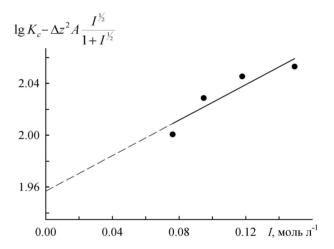


Рис. 4. Зависимость логарифмов концентрационных констант устойчивости внешнесферного ассоциата $\{Na[Ag(S_2O_3)_2]\}^{2-}$ от ионной силы раствора I.

ставленные в координатах
$$\lg \beta_{\rm c} - \Delta z^2 A \; \frac{I^{1/2}}{1 + I^{1/2}} - \dots$$

ионная сила I, приведены на рис. 4. Зависимость линейна, значение константы устойчивости при нулевой ионной силе $\lg K_o = 1.96$ определили при экстраполяции прямой на ось ординат (I=0).

При ионной силе I = 0.09 - 0.15 моль π^{-1} усредненное значение константы устойчивости K составляет 18.2 ± 2.2 , константы скоростей образования (k_1) и распада (k_2) ИП $\{\text{Na}[\text{Ag}(\text{S}_2\text{O}_3)_2]\}^{2-1}\}$ равны соответственно 78.1 и 0.26 с⁻¹ (таблица).

Зависимости, рассчитанные по уравнениям (3), (4) с использованием этих усредненных зна-

чений K, k_1 , k_2 (пунктир на рис. 3), удовлетворительно совпадают с экспериментальными данными в интервале концентраций катионов натрия $C_{\rm Na} = 0.05$ —0.123 моль· $\rm n^{-1}$.

РЕЗЮМЕ. Катодне відновлення тіосульфатних комплексів срібла з розчинів, що містять 1 ммоль л $AgClO_4$, 25 ммоль π^{-1} $Na_2S_2O_3$ (співвідношення Ag: $S_2O_3^{\ 2}=1:25)$ і різну кількість перхлорату натрію ($C_{\mathrm{Na}}^{\ \mp}=0.05$ —1.00 моль n^{-1}) вивчено методами гідродинамічної вольтамперометрії і потенціометрії з Na⁺-селективним електродом. Електрохімічно активною часткою при відновленні тіосульфатних комплексів срібла є іонна пара (ІП) $\{Na[Ag(S_2O_3)_2]\}^{2-}$, утворення якої передує реакції переносу електрона. Константи швидкостей утворення і розпаду ІП, константу її стійкості визначено із залежностей граничних струмів від швидкості обертання електрода. Величина константи стійкості іонної пари $\{Na[Ag(S_2O_3)_2]\}^{2-}$ в інтервалі значень іонної сили розчину I = 0.09 - 0.15 моль π^{-1} K складає 18.2 ± 2.2 , константи швидкостей її утворення (k_1) і розпаду (k_2) дорівнюють 78.1 і 0.26 с $^{-1}$ відповідно. Значення $\lg K_0$ 1.96 при I = 0 розраховано за методом Девіса.

SUMMARY. The formation of an outer-sphere associate of silver thiosulfate complex $Ag(S_2O_3)_2^{3^-}$ with sodium cation Na^+ , ion pair $\{Na[Ag(S_2O_3)_2]\}^{2^-}$, has been studied by hydrodynamic voltammetry and potentiometry with a Na^+ selective electrode. Solutions contained

Институт общей и неорганической химии им. В.И. Вернадского НАН Украины, Киев

 $1~{\rm mmol\cdot L^{-1}}~{\rm AgClO_4},~25~{\rm mmol\cdot L^{-1}}~{\rm Na_2S_2O_3}$ (ratio Ag: ${\rm S_2O_3}^{2-}=1:25)$ and different amounts of sodium perchlorate (${C_{\rm Na}}^+=0.05$ —1.00 mol·L $^{-1}$). The value of the logarithm of stability constants at the zero ionic strength of the solution ${\rm lg}K_{\rm o}=1.96$, has been determined by the Davis method. The value of the stability constant of the ion pair ${\rm \{Na[Ag(S_2O_3)_2]\}^{2-}}$ at the ionic strength I=0.09—0.15 mol·L $^{-1}$, $K=18.2\pm2.2$, the rate constants of its formation and decay $k_1=78.1$ and $k_2=0.26~{\rm s}^{-1}$.

ЛИТЕРАТУРА

- Senanayake G. // Gold Bulletin. -2005. -38, № 4. -P. 170—179.
- 2. *Ситтиг М*. Извлечение металлов и неорганических соединений из отходов. -М.: Металлургия, 1985.
- 3. *Vandeputte S., Hubin A., Vereecken J. //* Electrochim. Acta. -1997. -**42**, № 23–24. -P. 3429—3441.
- 4. Стезерянский Э.А., Гурьянова-Доскоч И.А., Омельчук А.А. // Укр. хим. журн. -2010. -76, № 1. -С. 34—39.
- Стезерянский Э.А., Гурьянова-Доскоч И.А., Омельчук А.А. // Там же. -2011. -77, № 4. -С. 103—106.
- 6. Плесков Ю.В., Филиновский В.Ю. Вращающийся дисковый электрод. -М.: Наука, 1972.
- 7. *Галюс 3*. Теоретические основы электрохимического анализа. -М.: Мир, 1974.
- 8. *Васильев В.П.* Термодинамические свойства растворов электролитов. -М.: Высш. шк., 1982.
- 9. Davies C.W. // J. Chem. Soc. -1938. -P. 2093—2098.
- Справочник по электрохимии / Под. ред. А.М. Сухотина. -Л.: Химия, 1981.

Поступила 03.08.2011

УДК 543.053

В.В.Нечипорук, О.В.Болотін, М.О.Куманьова, В.І.Ткач

МЕТОДИ МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ ТА ОПТИМІЗАЦІЯ УМОВ АМПЕРОМЕТРИЧНОГО ВИЗНАЧЕННЯ СОЛЕЙ ПОЛІГЕКСАМЕТИЛЕНГУАНІДІНУ

З використанням методів математичного моделювання досліджено кінетику та механізм основних електроаналітичних процесів, які протікають під час амперометричного визначення органічних катіонів різних солей полігексаметиленгуанідіну (ПГМГ) та продукту їхньої деструкції — гексаметилендіаміну. Для теоретичного аналізу часової поведінки аналітичного сигналу в залежності від параметрів електрохімічної системи та виявлення основних факторів впливу на аналітичний ефект проведено узагальнення кінетичної моделі електроаналітичних процесів, яка розглядалась в наших попередніх роботах [10, 11], на випадок наявності *п*-проміжних продуктів. Запропоновано математичну модель динаміки електроаналітичних процесів, яка грунтується на системі звичайних диференційних рівнянь з *п*-компонентами. На підставі аналітичних та чисельних досліджень математичної моделі

© В.В.Нечипорук, О.В.Болотін, М.О.Куманьова, В.І.Ткач, 2011