УДК 549.73/546.43.72:[544.016.5]

Е.Д. Соловьева, Е.В. Пашкова, В.П. Иваницкий, Б.С. Хоменко, А.Г. Белоус ВЛИЯНИЕ ПРИРОДЫ ЖЕЛЕЗОСОДЕРЖАЩЕГО КОМПОНЕНТА НА ФАЗОВЫЙ

СОСТАВ, МИКРОСТРУКТУРУ И СВОЙСТВА ГЕКСАФЕРРИТА БАРИЯ М-ТИПА

Исследовано влияние природы железосодержащего компонента (соотношение ионов Fe^{3+}/Fe^{2+} и природы аниона осадителя OH⁻ и CO₃²⁻) на фазовый состав, микроструктуру и свойства гексаферрита бария М-типа. Определены параметры синтеза из растворов, позволяющие увеличить намагниченность нанодисперсного ГФБ.

ВВЕДЕНИЕ. В последнее время интерес к нанодисперсному гексаферриту бария (ГФБ) со структурой магнетоплюмбита (М-тип) существенно возрос [1-9]. Это объясняется перспективностью использования ГФБ в производстве постоянных магнитов нового поколения [5], для разработки систем высокоплотной записи и хранения информации [10], различных современных СВЧ-устройств [6-7], а также для биомедицинского применения в качестве индукторов гипертермии [8-9]. Известно [11], что свойства ферритов существенно зависят от физико-химических свойств исходных реагентов, особенно от железосодержащего компонента. Из химических методов синтеза нанокристаллических ферритов, в том числе и гексаферритов, метод осаждения трудно растворимых компонентов не потерял своей актуальности и имеет ряд очевидных преимуществ по сравнению с золь-гель методом, особенно если речь идет о многотоннажном производстве. Наиболее привлекательным является карбонатно-гидроксидный прекурсор, отличающийся простотой осаждения компонентов и возможностью регулирования размера и формы частиц осадков. Немаловажным является также доступность и дешевизна исходных реагентов. Для получения ферритов из растворов обычно используют раствор железа (III) или (II) [11]. Однако систематических исследований, посвященных влиянию степени окисления исходного железа на ферритообразование, морфологию частиц ГФБ и их свойства в литературе недостаточно.

В связи с изложенным выше цель данной работы — исследование влияния степени окисления исходного железа (соотношение Fe₂O₃/FeO) и природы аниона осадителя (OH⁻ и CO³⁻) на фазовый состав, морфологию частиц и магнитные свойства ГФБ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Исследовали три серии образцов, прекурсоры которых отвечают следующим формулам:

(1-x) FeOOH·x(Fe(OH)₂, x=0-1 (серия А); BaCO₃·11.6 [(1-x) FeOOH·x(Fe(OH)₂] (серияБ); BaCO₃·11.6 [(1-x) FeOOH·x(FeCO₃] (серия В).

Гидроксидные осадки серии А получали осаждением из 1 М растворов Fe(NO₃)₃, FeCl₂ и их смесей с различным соотношением Fe(III) : Fe(II) при последовательном (ПОГ) и совместном (СОГ) осаждении гидроксидов (при ПОГ на осажденный гидроксид железа (III) осаждали гидроксид железа (II)).

Осадки серии Б получали осаждением карбоната бария из 1 М раствора $BaCl_2$ на соответствующие (предварительно осажденные) гидроксидные осадки железа с различным соотношением Fe(III)/ Fe(II) (на осадки А). Осаждение гидроксидов проводили концентрированным раствором NH_4OH , а $BaCO_3$ — раствором $(NH_4)_2CO_3$ с добавлением NH_4OH при постоянном перемешивании.

Осадки серии В отличаются от осадков Б тем, что осаждение железа в них проводили не раствором NH_4OH , а $(NH_4)_2CO_3$.

Подачу реагентов в реактор осуществляли при постоянном строго контролируемом pH (с помощью блока автоматического титрования БАТ-15), при котором обеспечивается полное осаждение соответствующих компонентов. Осадки отмывали дистиллированной водой до отсутствия в промывных водах ионов NO_3^- и CГ, сушили на воздухе при комнатной температуре и при 350 K, а затем прокаливали при температуре 1073 K (образцы A) и в интервале 1173—1373 K (образцы Б и B).

© Е.Д. Соловьева, Е.В. Пашкова, В.П. Иваницкий, Б.С. Хоменко, А.Г. Белоус, 2010

Рис. 1. Мессбауэровские спектры воздушно-сухих гидроксидно-оксидных осадков железа (III,II), полученных при различных условиях осаждения (ПОГ и СОГ) и соотношениях Fe_2O_3 : FeO (% мол.): 100:0 (a,δ); 85:15, ПОГ (e); 50:50, ПОГ (z); 50:50, СОГ (d); 0:100 (e). Съемка при 300 К (a, e-e) и 77 К (δ).

Фазовый состав образцов серии А исследовали методом мессбауэровской спектроскопии. Мессбауэровские спектры (МС) были получены на спектрометре динамического типа, работающем в режиме постоянных ускорений с использованием анализатора АИ-4096. В качестве источника γ-квантов использовали ⁵⁷Со в матрице Сг. Температура поглотителя 300 и 77 К, а источника — 300 К. Калибровку шкалы скоростей проводили по положению линий α-Fe. Компьютерную обработку МС выполняли по методу наименьших квадратов.

Образцы Б и В исследовали методами рентгенофазового (РФА) и полнопрофильного рентгенофазового анализов на дифрактометре ДРОН-ЗМ (Си K_{α} -излучение, съемка в каждой точке 10с). В качестве внешних стандартов были взяты SiO₂ (стандарт 2 Θ) и сертифицированный стандарт интенсивности Al₂O₃ [12]. Для рентгенофазо-

вого анализа использовали базу данных ІСРД.

Микрофотографии снимали на растровом электронном микроскопе рентгеновского микроанализатора ICXA-733 фирмы JEOL.

Средний размер частиц определяли методом усредненных диаметров при обработке микрофотографий [13].

Намагниченность образцов измеряли на магнитно-весовой установке, описанной в работе [14].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. На рис. 1 представлены МС рентгеноаморфных воздушно-сухих (в/с) осадков, на рис. 2 — МС этих же образцов после их термообработки (серия А). В табл. 1 приведена характеристика исследуемых образцов и результаты компьютерной обработки их МС.

Мессбауэровский спектр воздушно-сухого образца 1(1), полученного осаждением гидроксида из раствора железа (III) (см. табл. 1), представлен

05=000	Fe_2O_3 : FeO,	Фарарый аралар	U vD	ИС	КР	Γ	S 0/
Образец	% мол.	Фазовый состав	п _{эф} , кэ	мм/с			3, %
1(1)	100:0	Fe ³⁺	0	0.60(2) ^г	0.72(2)	0.53(2)	100
1 (1) ⁶	100:0	Fe ³⁺	0	0.74(2)	0.80(2)	1.01(2)	100
1 (2)	100:0	Fe ³⁺ (с.п.ф.) ^в	0	0.62(2)	0.72(2)	0.53(2)	93(2)
		α -Fe ₂ O ₃	506(3)	0.66(2)	0.21(3)	0.23(5)	7(3)
1 (2) ^б	100:0	α -Fe ₂ O ₃	530(3)	0.75(2)	0.16(3)	0.50(4)	24(3)
		β-FeÕŐΗ I	470(3)	0.74(3)	0.19(6)	1.2(4)	34(7)
		II	437(3)	0.72(3)	0.09(5)	1.20(9)	42(4)
1 (3)	100:0	α -Fe ₂ O ₃	518(3)	0.63(I)	0.22(I)	0.32(1)	100
2(1)	85:15, ПОГ	γ -Fe ₂ O ₃	468(3)	0.65(4)	0.04(3)	0.6(I)	4(I)
		α-FeOOH I	372(3)	0.66(2)	0.27(2)	0.58(2)	39(2)
		II	316(3)	0.67(2)	0.24(2)	1.8(I)	57(4)
2 (2)	85:15, ПОГ	γ-Fe ₂ O ₃	485(3)	0.60(3)	-0.06(3)	0.52(5)	5(I)
		α-FeOOH I	373(2)	0.64(2)	0.27(2)	0.57(2)	39(I)
		II	332(2)	0.65(2)	0.26(2)	1.57(5)	56(3)
2 (3)	85:15, ПОГ	α -Fe ₂ O ₃	518(2)	0.63(2)	0.22(I)	0.31(2)	100
3 (1)	50:50, ПОГ	α -Fe ₂ O ₃ + γ -Fe ₂ O ₃	491(3)	0.58(2)	0.01(2)	0.53(I)	37(I)
		γ-Fe ₂ O ₃	478(2)	0.59(3)	-0.09(5)	1.00(6)	24(2)
		α-FeOOH I	367(3)	0.59(2)	0.20(3)	1.00(5)	24(I)
		II	275(3)	0.74(9)	0.10(7)	0.98(7)	15(2)
3 (1) ⁶	50:50, ПОГ	α -Fe ₂ O ₃	540(3)	0.77(2)	0.07(2)	0.37(2)	20(I)
		γ -Fe ₂ O ₃	527(3)	0.64(2)	-0.06(2)	0.58(I)	32(I)
		α-FeOOH	508(3)	0.72(2)	0.23(2)	0.57(I)	48(I)
3 (2)	50:50, ПОГ	α -Fe ₂ O ₃	502(3)	0.57(2)	0.07(2)	0.48(2)	36(2)
		γ -Fe ₂ O ₃	478(3)	0.59(2)	0.10(3)	0.88(5)	25(2)
		α-FeOOH I	373(3)	0.65(2)	0.28(2)	0.99(3)	27(I)
		II	273(3)	0.62(2)	0.16(4)	1.3(2)	12(2)
3 (3)	50:50, ПОГ	α -Fe ₂ O ₃	518(2)	0.63(2)	0.21(2)	0.32(I)	100
4(1)	50:50, COF	γ-Fe ₂ O ₃ I	494(3)	0.60(2)	0.00(I)	0.58(2)	45(I)
		II	451(3)	0.68(2)	0.06(3)	1.30(5)	25(I)
		α-FeOOH I	366(3)	0.66(2)	0.25(2)	0.63(3)	13(I)
		II	273(3)	0.71(2)	0.14(2)	0.89(3)	17(I)
4 (2)	50:50, COГ	γ-Fe ₂ O ₃ I	494(I)	0.60(2)	0.00(I)	0.62(2)	54(I)
		II	454(3)	0.58(2)	0.01(3)	1.01(3)	9(I)
		α-FeOOH I	368(3)	0.65(2)	0.25(2)	0.61(2)	17(I)
		II	274(3)	0.67(2)	0.13(2)	1.20(4)	20(2)
4 (3)	50:50, COF	α -Fe ₂ O ₃	517(3)	0.62(2)	0.23(2)	0.31(2)	100
5 (1)	0:100	Fe ³⁺ (с.п.ф.)	0	0.64(5)	0.72(4)	0.51(5)	11(4)
		α -Fe ₂ O ₃	504	0.63(5) 0.01(4) 0.40(4)		0.40(4)	11(4)
-		γ -Fe ₂ O ₃	483	0.62(5)	-0.03(4)	1.17(5)	78(3)
5 (1) ⁶	0:100	Fe ³⁺ (с.п.ф.)	0	0.73(6)	0.68(4)	0.58(4)	7(5)
		α -Fe ₂ O ₃	535	0.73(6)	-0.04(4)	0.37(4)	17(4)
		γ -Fe ₂ O ₃	505	0.74(6)	0.04(4)	1.26(5)	76(4)

Таблица 1					
Параметры Мессбауэровских	спектров гидроксидов	и оксидов железа (сер	ия А), полученных пр	ю различных услови	ях ^а

^a *H*_{эф}— эффективное магнитное поле на ядре железа; ИС — изомерный сдвиг относительно нитропруссида натрия; КР — квадрупольное расщепление; Γ — ширина линии поглощения на половине высоты; *S* — относительная площадь компоненты в общем спектре; ^б измерение проводилось при температуре жидкого азота; ^в с.п.ф. — суперпарамагнитная фаза; ^г в скобках после номера образца цифры 1,2,3 означают соответственно образец воздушно-сухой, после сушки и прокаливания; цифра в скобках после измеренных величин — погрешность в последнем знаке.

Рис. 2. Мессбауэровские спектры образцов железа (III, II), полученных при различных условиях осаждения (ПОГ и СОГ) и соотношении Fe_2O_3 : FeO (% мол.), после их термообработки: 100:0 (*a*,*б*); 85:15, ПОГ (*b*); 50:50, ПОГ (*c*,*e*); 50:50, СОГ (*d*). Сушка при *T*=350 К (*a*–*d*), прокалка при 1073 К (*e*); съемка при 300 К (*a*, *e*–*e*) и 77 К (*б*).

квадрупольным дублетом с параметрами, характерными для высокоспиновых ионов Fe³⁺, находящихся в кислородном октаэдрическом окружении (рис. 1, а). Понижение температуры образца до 77 К приводит к существенному росту ширины линий дублета, что указывает на релаксационный характер спектра, связанный с малыми размерами частиц (рис. 1, б). На МС этого же образца, высушенного при температуре 350 К (рис. 2, а), на фоне суперпарамагнитного дублета наблюдается более четкое проявление магнитной сверхтонкой структуры. По величине эффективного магнитного поля на ядрах $Fe^{3+}(H_{3b})$ слабоинтенсивный секстет приписан нами частицам гематита (α-Fe₂O₃) (табл. 1, образец 1(2)) [15]. МС этого образца, измеренный при 77 К, представляет собой суперпозицию существенно уширенных секстетов, характерных для переходных между

суперпарамагнитным и ферромагнитным состоянием частиц (рис. 2, б). На фоне этого переходного спектра четко выделяются узкие линии секстета, отвечающего фазе α-Fe₂O₃. Наряду с гематитом в слаборазрешенном релаксационном спектре этого образца выделены также два секстета (табл. 1, образец 1(2)) с параметрами, близкими к параметрам β-FeOOH [16, 17]. Известно [18], что конечным продуктом старения рентгеноаморфного Fe(OH)₃ является гетит (α-FeOOH), а образование β-FeOOH может проходить при нагревании (T=350-370 K) в маточном растворе осадка, полученного осаждением из водных растворов аммиаком. Это позволяет нам отнести квадрупольный дублет на МС образца 1(1) (рис. 1, а,б) к фазе суперапарамагнитного α-FeOOH, трансформирующегося в β-FeOOH в процессе нагревания при температуре 350 К (рис. 2, *a*,б).

Мессбауэровские спектры воздушно-сухих осадков, полученных при комнатных температурах из смеси растворов Fe(III) и Fe(II) (образцы 2(1), 3(1) и 4(1), описываются тремя, четырьмя и четырьмя секстетами соответственно (см. табл. 1

и рис. 1, *в*–*д*). Секстеты с $H_{3\phi}$ =468—527 и ИС= =0.57—0.68 отнесены к маггемиту (γ -Fe₂O₃) [19, 20], а секстеты с $H_{3\phi}$ =273—372 и ИС=0.59 —0.74 — к гетиту (α -FeOOH) [21, 22]. Появление двух компонент в спектре α -FeOOH является отражением значительной его обводненности [23, 24].

Мессбауэровский спектр образца 5(1), полученного осаждением гидроксидов из раствора железа (II), представлен линиями магнитного расщепления и дублетом квадрупольного расщепления (рис. 1, *е*). Компьютерное разделение спектров позволило выделить в них два секстета магнитного расщепления (рис. 1, *е*, табл. 1). Измерения МС при температуре 77 К

привели к увеличению $H_{9\phi}$ первого секстета от 504 до 535 кЭ, а второго — от 483 до 505 кЭ. Указанные значения $H_{9\phi}$ первого секстета характерны для α -Fe₂O₃, а второго — для γ -Fe₂O₃(табл. 1).

Из сопоставления МС гидроксидно-оксидных образцов железа, представленных на рис. 1 и 2, видно, что картина МС образцов после сушки при 350 К (рис. 2) изменяется только для образца 1, полученного осаждением гидроксида из раствора железа (III).

Фазовый состав рентгеноаморфных гидроксидно-оксидных осадков железа по результатам мессбауэровской спектроскопии приведен в табл. 2. Прокаливание осадков железа при температуре 1073 К приводит к образованию α -Fe₂O₃ с параметрами MC, характерными для хорошо окристаллизованного гематита. Несмотря на различие фазового состава осадков (табл. 2) вид MC α -Fe₂O₃ (рис. 2, *e*) и их параметры (табл. 1) идентичны.

Из табл. 2 следует, что введение в реакцион-

ную смесь железа (II) приводит к формированию фазы у-Fe₂O₃. Содержание ү-Fe₂O₃ в осадках возрастает с увеличением количества исходного железа (II) (образцы 2,3,5), а также при переходе от последовательного осаждения гидроксидов к совместному (образцы 3 и 4). Очевидно, что соотношение Fe_2O_3 : FeO = 50:50 % мол., а также тесный контакт между частицами при СОГ обусловливают преимущественные условия для химического взаимодействия, приводящего к образованию магнетита (Fe₃O₄) и окислению

Таблица 2

Фазовый состав рентгеноаморфных гидроксидно-оксидных осадков железа, полученный по результатам мессбауэровской спектроскопии

Обра- зец	Условия с	саждения	Фазовый состав, % мол.			
	Fe ₂ O ₃ : FeO, % мол.	Порядок осаждения	α-FeOOH	α -Fe ₂ O ₃	γ-Fe ₂ O ₃	
1	100:0	_	100		_	
2	85:15	ПОГ	98	0	2	
3	50:50	ПОГ	62.4	10.8	26.8	
4	50:50	СОГ	43.6	0	56.4	
5	0:100	—	11.8	16.1	72.1	

его до γ -Fe₂O₃. Поэтому выход γ -Fe₂O₃ в СОГ по сравнению с ПОГ в 2 раза выше. Однако осадки СОГ характеризуются плохой фильтруемостью, а частицы образцов после сушки и прокалки образуют прочные агрегаты, требующие размола. Поэтому нами выбран метод последовательного осаждения карбоната бария на предварительно осажденные осадки гидроксидов и гидроксокарбонатов железа (III) и (II) (серии А и Б соответственно).

На рис. 3 представлены микрофотографии некоторых гидроксидно-оксидных осадков железа (серия А). Из микрофотографий видно, что при осаждении осадков из раствора железа (III) формируются частицы пластинчатой (рис. 3, *a*), а из растворов железа (II) — игольчатой формы (рис. 3, δ). Для магнетитового соотношения Fe₂O₃ : FeO = 50:50 % мол. при совместном осаждении гидроксидов зафиксировано состояние, когда игольчатые частицы формируются в клубки (рис. 3, *в*). Та-

% мол. (в).

кая ориентация частиц, вероятно, обусловлена преимущественно электростатическим взаимодействием между частицами в этих условиях. Очевидно, что форма "вторичных" частиц, образующихся после термообработки осадков, определяется ориентацией "первичных". Из анализа результатов, приведенных в табл. 2 и на рис. 3, можно сделать вывод о влиянии фазового состава осадков на морфологию частиц. Вероятно, что фаза α - FeOOH способствует формированию частиц с пластинчатой формой, а γ -Fe₂O₃ — с игольчатой.

При термообработке осадков, отвечающих системам Б и В (BaCO₃—FeOOH—Fe(OH)₂ и BaCO₃ —FeOOH—FeCO₃) в интервале температур 1173 —1373 К по данным РФА обнаружены только две фазы: α -Fe₂O₃ и ГФБ М-типа со структурой магнетоплюмбита (пр.гр. $D_6^4h(P6_3/mmc)$). Выход ГФБ (%) и удельная намагниченность насыщения в за-

Рис. 4. *а* — Зависимость выхода гексаферрита бария (1-3) и удельной намагниченности насыщения (1'-3') от содержания FeO и температуры прокаливания образцов системы BaCO₃—FeOOH—Fe(OH)₂ (серия Б): 1, 1' – 1173; 2, 2' – 1273; 3, 3' – 1323 К; б — зависимость выхода гексаферрита бария (1, 2) и удельной намагниченности насыщения (1', 2') от содержания FeO и температуры прокаливания образцов системы BaCO₃—FeOOH —FeCO₃ (серия B): 1, 1' — 1273; 2, 2' — 1323 К.

висимости от содержания FeO (в общем количестве оксидов железа) и температуры прокаливания образцов Б и В приведены на рис. 4, а и б, а микрофотографии соответствующих образцов, прокаленных при температуре 1373 К — на рис. 5 и 6 соответственно. Как следует из рис. 4, а, выход ГФБ при термообработке при температурах 1173 —1273 К (кривые 1,2) уменьшается с увеличением количества железа (II) в исходных растворах и соответственно фазы ү-Fe₂O₃ в исследуемых прекурсорах (табл. 2). Это связано с тем, что наличие фазы дефектного ү-Fe₂O₃ в исследуемых прекурсорах способствует увеличению их активности [8] и, следовательно, смещению начала реакции ферритообразования в область более низких температур. Увеличение при этом количества фазы ГФБ затрудняет диффузию катионов, не вступивших в химическую реакцию, и замедляет скорость образования однофазного ГФБ.

Из рис. 4, а (кривая 2) следует, что образование однофазного ГФБ в системе BaCO₃—FeOOH может проходить в интервале 1223—1273 К, а в системе BaCO₃—Fe(OH)₂ — при более высоких температурах. При сравнении выхода ГФБ при термообработке в системах Б и В видно, что в последней процесс ферритообразования существенно замедляется (рис. 4, а,б, кривые 1, 2). Получить однофазный ГФБ в исследуемом интервале температур в системе В нам не удалось. Это можно объяснить тем, что при синтезе ГФБ в системе ВаСО₃—FeOOH лимитирующей стадией диффузионного режима может быть противодиффузия CO₂, образующегося при разложении ВаСО₃. Приведенные выше результаты подтверждают это. Скорость ферритообразования в системе В по сравнению с Б, вероятно, уменьшается вследствие диффузионных осложнений, обусловленных увеличением количества СО2, образующегося при разложении ВаСО₃ и FeCO₃

Известно, что для улучшения магнитных характеристик ГФБ необходимо, чтобы его перемагничивание при приложении внешнего размагничивающего поля происходило путем вращения вектора намагниченности [25, 26]. Такой механизм может быть реализован, если частицы зерна поликристаллического ГФБ будут однодоменными [5, 25, 26]. Критический размер частицы (зерна) ГФБ (Д_{кр}), при котором она становится однодоменной, составляет 1—1.3 мкм [25—28].

Как следует из рис. 5 и 6, размеры частиц образцов Б и В, полученных после термообработ-

Рис. 5. Микрофотографии гексаферрита бария, полученного при термообработке (T=1323 K) образцов BaCO₃—FeOOH—Fe(OH)₂ (серия Б) с содержанием исходного FeO 0, 15, 40, 80 и 100 % мол. (a-d соответственно).

ки при 1323 К, изменяются в зависимости от количества железа (II) в пределах 90 —1000 и 140—500 нм соответственно. Исходя из изложенного выше, размерность полученных порошков

ГФБ отвечает их однодоменности. Из анализа микрофотографий, представленных на рис. 3, 5 и 6, можно сделать вывод, что форма частиц железосодержащего компонента в прекурсоре оказывает влияние на форму частиц ГФБ.

Из микрофотографий образцов серии Б видно, что образцы, полученные из раствора железа (III) (рис. 5, *a*) и смеси железа (III) и (II) (при содержании FeO — 15 % мол.) (рис. 5, δ), характеризуются пластинчатой формой частиц с размерами пластинок $Д_{cp}$ 220 и 300 нм соответственно. Увеличение содержания железа (II) до 40 % мол. FeO приводит к уменьшению размера пластинчатых частиц до $Д_{cp}$ =90 нм и образованию частиц с округлой формой (рис. 5, *e*). С дальнейшим повышением его содержания до 80 и 100 % мол. FeO размер пластинок увеличивается до $Д_{cp} \sim 190$ и ~ 1000 нм с появлением наряду с ними изотропных и игольчатых частиц соответственно (рис. 5, *e*,*d*).

Для образцов серии В характерно образование частиц ГФБ с пластинчастой формой (рис. 6). Размеры частиц в зависимости от содержания FeO изменяются в пределах 140—500 нм (рис. 6, *a*–*г*).

Как следует из рис. 1, 2 и табл. 1, в гидроксидно-оксидных осадках железа (III, II) ионов Fe^{2+} не обнаружено. Поскольку магнитная структура исследуемых образцов ГФБ определяется

Рис. 6. Микрофотографии гексаферрита бария, полученного при термообработке (*T*=1323 К) образцов BaCO₃— FeOOH—FeCO₃ (серия B) с содержанием исходного FeO 0, 15, 40, 80 % мол. (*a*-г соответственно).

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2010. Т. 76, № 7

только одним сортом магнитных ионов — Fe³⁺, их намагниченность зависит, в основном, от микроструктуры частиц. Это подтверждает корреляция концентрационных зависимостей намагниченности (δ_s) образцов Б и В, прокаленных при температуре 1323 К (рис. 4, *a*, кривая 3' и рис. 4, δ , кривая 2'), и размера частиц Д_{ср} соответствующих образцов (рис. 7, *a* и δ соответственно). Су-

Рис. 7. Зависимость среднего размера частиц от содержания FeO (% мол.) в образцах серий Б (a) и В (δ).

щественное уменьшение намагниченности насыщения с уменьшением размера частиц в пределах от 300 до 90 нм (рис. 4, *a* и рис. 7, *a*) может быть связано также с уменьшением при этом фактора анизотропии формы (отношение диаметра пластинки Д к ее толщине *h*, Д/*h*). Это видно на микрофотографиях образцов Б (рис.5) и В (рис.6). На рис.5, *в,е* видно наличие сферических частиц, а на рис.6, *б,е* имеются частички ГФБ, ось (001) которых расположена параллельно плоскости фотографии, что позволяет определить толщину пластинок. Как видно из рис.6, *б,е*, для мелкодисперсных частичек толщина пластинок практически не меняется для образцов с различным диаметром пластинок. То есть с уменьшением Д уменьшается отношение Д/h, и, следовательно, уменьшается способность к магнитному текстурированию. Это, вероятно, вызывает снижение намагниченности ГФБ (см. рис. 4, *a*, кривая 3', рис. 5 и рис. 4, *б*, кривая 2', рис. 6). На основании изложенного выше мы пришли к выводу, что в области однодоменности частиц ГФБ влияние анизотропии формы на намагниченность насыщения превалирует над влиянием дисперсности. Так, на концентрационной зависимости удельной намагниченности насыщения увеличение δ_s наблюдается для образцов Б, характеризующихся пластинчатой формой частиц и сравнительно большим размером пластинок (15 % FeO), а также образцов, содержащих крупные пластинчатые частицы с $Д_{cp}=1.4$ мкм, Д/h==5-4 совместно с иглообразными частицами (100 % FeO) (см. рис. 4, а, кривая 3', рис. 5 и 7, а). Намагниченность насыщения образцов В в интервале содержания FeO от 40 до 100 % мол. возрастает с увеличением Д_{ср}, несмотря на уменьшение выхода ГФБ в этом интервале составов (рис. 4, б, кривые 2 и 2'; рис. 6 и 7, б). Эти результаты показывают целесообразность контроля и регулирования анизотропии формы частиц при синтезе нанодисперсного ГФБ из растворов.

Таким образом, методом MC установлен фазовый состав рентгеноаморфных гидроксидно-оксидных осадков железа в зависимости от соотношения ионов Fe^{3+}/Fe^{2+} в исходных растворах и порядка осаждения. Отмечено, что фазовый состав осадков железа определяет форму их частиц. Формированию анизотропных по форме частиц в виде пластинок способствует α -FeOOH, а иголок — γ -Fe₂O₃.

Исследовано влияние природы железосодержащего компонента (соотношения Fe₂O₃/FeO и природы аниона осадителя OH⁻ и CO₃²⁻) на процесс ферритообразования, морфологию частиц и магнитные свойства ГФБ М-типа. Показано, что частичное или полное замещение Fe(III) на Fe(II) в исходных растворах железа, а также замена иона осадителя OH⁻ на CO₃²⁻ замедляют получение однофазового ГФБ при термообработке карбонатно-гидроксидных осадков Ва и Fe.

Установлено, что метод осаждения гидроксокарбонатов позволяет получать однодоменные нанодисперсии ГФБ (Д_{ср}=80—90 нм) с анизотропией формы частиц (в виде пластинок). Показана возможность получения частиц ГФБ с округлой формой при использовании смеси исходных солей железа (III) и (II). Определены параметры синтеза из растворов, позволяющие увеличить намагниченность нанодисперсного ГФБ (уменьшение количества ионов CO_3^{2-} в прекурсоре, частичное замещение ионов Fe³⁺ на Fe²⁺ до 15 % мол. FeO, контроль и регулирование анизотропии формы частиц).

РЕЗЮМЕ. Досліджено вплив природи залізовмісного компоненту (співвідношення йонів Fe^{3+}/Fe^{2+} і природи аніона осаджувача ОН⁻ и CO₃²⁻) на фазовий склад, мікроструктуру та властивості гексафериту барію Мтипу. Визначено параметри синтезу з розчинів, які дозволяють збільшити намагніченість нанодисперсного ГФБ.

SUMMARY. The effect of the nature of iron-containing precursor (the ratio of ions $\text{Fe}^{3+}/\text{Fe}^{2+}$ and the type of precipitating anion $\text{OH}^- \varkappa \text{CO}_3^{2-}$) on phase composition, microstructure and properties of M-type barium hexaferrite have been studied. The synthesis parameters from solution, which allow of nano-sized barium hexaferrite, have been determined.

- Dimri M.C., Kashyap S.C., Dube D.C. // Ceram. International. -2004. -30. -P. 1623—1626.
- 2. Guorging Xu, Hongliang Ma, Minjiang Ihong et al. // J. Magn. Materials. -2006. -301. -P. 383-388.
- 3. *Mali A., Atail A. //* J. Alloys and Comp. -2005. -**399**. -P. 245—250.
- Frey N.A., Heinal R., Srinath S., Dudnay N.I. // Materials Res. Bull. -2005. -40. -P. 1286—1293.
- 5. Губин С.П., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю. // Усп. химии. -2005. -С. 539—569.
- 6. Зависяк И.В., Костенко В.И., Чамор Т.Г., Чевнюк Л.В. // Журн. техн. физики. -2005. -75, № 4. -С. 128—130.
- 7. Lebedev S.V., Patton C.E., Wittenauer M.A. et. al. // J. Appl. Phys. -2002. -91, № 7. -P. 4426—4431.
- Pollert E., Veverka P., Veverka M. et al. // Progress in Solid State Chemistry. -2009. -P. 1–14.
- Hoell A., Muller R., Heinemann A., Wledenmann A. // Magneto hydrodynamics. -2006. -39, № 1. -P. 109—116.

Институт общей и неорганической химии им. В.И. Вернадского НАН Украины, Киев Институт геохимии, минералогии и рудообразования НАН Украины, Киев

- Chou T.S., Doh J., Je J.H., Noh D.Y. // J. Appl. Phys. -1999. -86, № 4. -P. 1958—1964.
- Левин Б.Е., Третьяков Ю.Д., Летюк Л.М. // Физико-химмические основы получения, свойства и применение ферритов. -М.: Металлургия, 1979.
- 12. Certificate of Analysis Standart Reference Material 1976, Instrument Sensitivity Standart for X-Ray Powder Diffraction. Gaithersburg Natl. Inst. of Standarts and Technology, 1991. -P. 1-4.
- Саятников С.А. Стереохимическая металлография. -М.: Металлургия, 1976.
- Клочай И.Ф., Давидович А.Г., Титенко А.Г. и др. // Порошк. металлургия. -1997. -№ 4.
- Химическое применение мессбауэровской спектроскопии / Под ред. В.И. Гальданского, М.М. Крижановского, В.В. Храпова. -М.: Мир, 1970.
- 16. Гончаров Г.К., Ефимов А.А., Калямин В.В., Тамилов СБ. // Журн. общ. химии. -1979. -**48**, № 10. -С. 2398—2408.
- 17. Вознюк П.О. Автореф. дис. ... канд. физ.-мат. наук. -Киев, 1974.
- 18. *Чалый В.П.* Гидроокиси металлов. -Киев: Наук. думка, 1972.
- Bauminger R., Cohen S.V., Marinov A. et. al // Phys. Rev. -1961. -122, № 5. -P. 1447—1450.
- 20. Суздалев И.П. Динамический эффект в гамма-резонансной спектроскопии. -М: Атомиздат, 1979.
- 21. Nakamura T., Shimizu S. // Bull Inst. Chem. Res. Kyoto Univ. -1964. -42, № 5. -P. 299—318.
- 22. Takada T., Kiyama M., Bando I. // J. Phys. Soc. Japan. -1964. -№ 19. -P. 1774-1779.
- Гендлер Т.С, Кузьмин Р.Н., Уразова Т.К. // Кристаллография. -1976. -21, № 4.
- 24. Hrynkuwiez A., Kuigawezuk D., Tomala K. // Phys. Lett. -1965. -17, № 2. -P. 93—95.
- 25. Крупичка С. Физика ферритов и родственных им магнитных окислов. -М.: Мир, 1976. -Т. 2.
- 26. Смит Л., Вейн Х. Ферриты. -М.: Изд-во иностр. лит., 1962.
- 27. Wernsdorfer W., Mailly D., Benoit A. // J. Appl. Phys. -2007. -P. 5094.
- Martin I.I., Noguas I., Liu K. et. al. // J. Magn. Magn. Materials. -2003. -P. 256, 449.

Поступила 03.03.2010