УДК: 546.16: 831'161.659.661.667.668

О.П. Іваненко, Н.М. Компаніченко, А.О. Омельчук, Р.М. Савчук

ВЗАЄМОДІЯ ТЕТРАФТОРИДУ ЦИРКОНІЮ З ФТОРИДАМИ ЛАНТАНОЇДІВ (ІІ,ІІІ) (САМАРІЮ, ЄВРОПІЮ, ТУЛІЮ, ІТЕРБІЮ) ТА МЕТАЛІЧНИМ ЦИРКОНІЄМ

Мегодами хімічного, диференційно-термічного і рентгенофазового аналізів, УФ- та ІЧ-спектроскопії досліджено взаємодію між тетрафторидом цирконію та фторидами лантаноїдів (самарій, європій, тулій, ітербій) змішаних ступенів окиснення, а також трифторидами РЗЕ в присутності металічного цирконію, в температурному інтервалі 700—900 °С. Диференціально-термічним аналізом встановлено, що при температурі 350—830 °С спостерігається взаємодія між компонентами з утворенням фаз складу LnZrF_{6+x} (Ln – Sm, Eu, Tm, Yb). Кристалічні гратки отриманих сполук LnZrF_{6+x} подібні до надструктури Yb₂₇F₆₄. Для всіх отриманих сполук розраховано параметри кристалічних граток і зроблено віднесення частот смуг поглинання ІЧ-спектрів.

Завдяки унікальним фізико-хімічним властивостям — прозорості в широкій області інфрачервоного спектру та низькому рівню оптичних втрат [1, 2] багатокомпонентні системи на основі тетрафториду цирконію використовують для виготовлення скла спеціального призначення, світловодів, матеріалів електронної оптики, квантових генераторів.

З метою запобігання переходу у кристалічний стан, покращення оптичних характеристик до складу фторцирконатного скла вводять фториди лужно-земельних [3, 4] та рідкісноземельних елементів (РЗЕ) [5]. За структурними характеристиками до фторидів лужно-земельних елементів подібні дифториди самарію, європію, тулію та ітербію [6, 7], однак інформація про взаємодію їх з тетрафторидом цирконію практично відсутня. З огляду на це дослідження взаємодії між тетрафторидом цирконію та сполуками РЗЕ нижчих ступенів окиснення представляють не лише науковий, але й практичний інтерес.

У даному повідомленні приведені результати досліджень взаємодії фторидів РЗЕ нижчих ступенів окиснення з тетрафторидом цирконію, а також взаємодія аналогічних трифторидів лантаноїдів з тетрафторидом цирконію та металічним цирконієм в якості відновника.

ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА. Дослідження виконані методами хімічного, ДТ та рентгенофазового аналізу (РФА), ІЧ- і спектроскопії дифузного відбиття. Метою виконаних досліджень було виявлення характеру взаємодії між LnF_{2+x} (Ln – Sm, Eu, Tm, Yb) та ZrF_4 , а також LnF_3 , ZrF_4 і Zr. Фториди рідкісноземельних елементів нижчих ступенів окиснення LnF_{2+x} (де Ln - Sm, Tm, Yb) одержували відновленням трифторидів РЗЕ кваліфікації х.ч. відповідними металами при 700 —950 °C, а EuF_{2+x} — відновленням EuF_3 кремнієм при 1000 °C, у вакуумі. Тетрафторид цирконію марки х.ч. прогрівали при 500 °C з трикратним надлишком NH₄F. Отриманий фторцирконат амонію розкладали у вакуумі.

Для одержання фторцирконатів РЗЕ (II) складу LnZrF₆ використовували дві різні методики синтезу:

А. Змішування у мольних співвідношеннях 1:1 тетрафториду цирконію та LnF_{2+x} (Ln – Sm, Eu, Tm, Yb) за реакцією:

$$LnF_{2+x} + ZrF_4 = LnZrF_{6+x}; \qquad (1)$$

Б. Використання в якості відновника трифторидів РЗЕ до LnF_{2+x} цирконію (монокристалічний метал, подрібнений до частинок розміром приблизно 0.1 мм), який додавали в суміші $ZrF_4 + LnF_3$ (Ln – Sm, Eu, Tm, Yb), для протікання реакцій по схемі [8]:

$$LnF_{3} + 3/4ZrF_{4} + 1/4Zr = LnZrF_{6}$$
. (2)

Суміші перетирали в агатовій ступці, засипали в кварцеві ампули, які вакуумували та запаювали. Ампули з речовинами поміщали в піч шахтного типу. Зразки витримували при температурах 700—850 °С протягом 3—4 год.

Отримані фази досліджували методами хімічного, РФА аналізу, а також ІЧ- та електронної спектроскопії. Диференційно-термічний аналіз здійснювали на дериватографі марки Derivatograph Q 1500 system Paulik–Paulik–Erdey, в платинових ти-

© О.П. Іваненко, Н.М. Компаніченко, А.О. Омельчук, Р.М. Савчук, 2010

глях і атмосфері аргону. Температурний інтервал нагрівання — 20–800 °С, швидкість нагрівання — 10 °С/хв. Рентгенофазовий аналіз проводили на дифрактометрі ДРОН-ЗМ (Си K_{α} -випромінювання) методом порошку, ІЧ-спектроскопію виконували на спектрофотометрі Specord М-80 в області від 4000 до 200 см⁻¹ на таблетованих зразках з бромідом калію. Спектроскопію дифузного відбиття досліджували на спектрофотометрі Lambda 9 (Perkin–Elmer) у діапазоні 200–2500 нм.

ОБГОВОРЕННЯ РЕЗУЛЬТАТІВ. Було помічено, що після нагрівання сумішей LnF_{2+x} : $ZrF_4 = 1$ (мол.) та LnF_3 : ZrF_4 : Zr = 1:3/4:1/4 (Ln - Sm, Eu, Tm, Yb) утворюються фази різного кольору (таблиця). Проведені диференційно-термічні дослідження (ДТА) також підтвердили, що між компонентами в інтервалі температур 300–830 °С відбувається взаємодія. На кривих нагрівання спостерігається цілий ряд термоефектів (рис. 1). Слід зазначити, що температурний інтервал взаємодії нестехіометричного фториду ітербію з тетрафторидом цирконію залишається той самий, що і для ZrF₄ з Yb (або YbF₃ з Zr) [9]. Це можна пояснити тим, що дифторид ітербію частково диспропорціонує по схемі:

$$3YbF_{2+x} \leftrightarrow (2+x)YbF_3 + Yb$$
. (3)

Подібні реакції характерні й для інших нестехіометричних фторидів РЗЕ (РЗЕ – Sm, Eu, Tm), які спостерігаються на термограмах в області температур 340—390 °С. Між тетрафторидом цирконію та лантаноїдом в інтервалі температур 440—520 °С відбувається реакція з утворенням нестехіометричних фторидів:

 $(1+x)ZrF_4 + 2Ln = 2LnF_{2+x} + (1+x)ZrF_2$.

Крім того, продукти реакції, одержані при цих

Умови синтезу та параметри кристалічних граток фторцирконатів РЗЕ (II) (Sm, Eu, Tm, Yb)

Сполука (<i>x</i> ≈ 0.1–0.2)	Параметри кристалічних граток *	Структур- ний тип	Колір сполук	t, ^o C	Тривалість синтезу, год	Методика синтезу
SmZrF _{6+r}	<i>a</i> = 16.7170 Å	сβ	Білий	700	3	А
$EuZrF_{6+x}$	a = 16.7364 Å	сβ	Коричневий	730	3	А
$EuZrF_{6+x}$	a = 16.7132 Å	сβ	Чорний	700	3	Б
$TmZrF_{6+r}$	a = 14.2680 Å, $c = 9.7004$ Å	hex. ¹	Сірий	700	3	А
$TmZrF_{6+x}$	a = 14.3027 Å, $c = 9.6539$ Å	hex. ¹	Сірий	700	3	Б
$YbZrF_{6+x}$	$a = 8.881$ Å, $\alpha = 71.57^{\circ}$	$rh\alpha^2$	Чорний	800	6	Б
YbZrF _{6+x}	a = 16.7036 Å	сβ	Чорний	720	3	А
	a = 10.3668 Å, $c = 19.4769$ Å	$rh\alpha^3$	Чорний	720	3	А
YbZrF _{6+ r}	a = 16.7248 Å	cβ	Чорний	800	3	А
$YbZrF_{6+x}$	a = 16.7104 Å	сβ	Чорний	700–750	1	А

* Параметри, розраховані по надструктурам [10, 11]: Yb₂₇F₆₄ (a = 16.7104 Å); ¹ Tm₁₃F₃₂. (гексаг.: a = 14.2648 Å, c = =9.7067 Å); ² Yb₁₃F₃₃ (R3 ромб.: a = 8.8334 Å, $\alpha = 71.517^{\circ}$); ³ Yb₁₃F₃₃ (R3 гексаг.: a = 10.3671 Å, c = 19.4894 Å).

Рис. 2. ІЧ-спектри фторцирконатів типу LnZrF_{6+x}, отриманих за реакціями (1) (*a*) і (2) (*б*): $I - \text{SmZrF}_{6+x}$; $2 - \text{EuZrF}_{6+x}$; $3 - \text{TmZrF}_{6+x}$; $4 - \text{YbZrF}_{6+x}$.

температурах, містять сполуки складу LnZrF₇ (Ln – Sm, Eu, Tm, Yb), а процеси взаємодії в даному температурному інтервалі можна пояснити протіканням цілого ряду реакцій:

$$\begin{split} & ZrF_4 + Zr \ = \ 2ZrF_2 \,, \\ & LnF_3 + ZrF_4 \ = \ LnZrF_7 \,, \\ & (6+4x)LnF_3 \ + Zr \ = \ 6LnF_{2+x} + ZrF_2 + 4xLn \,, \\ & (12+4x)LnF_3 \ + Zr \ = \ 12LnF_{2+x} + ZrF_4 + 4xLn \,, \\ & 3ZrF_2 + 2LnF_3 \ = \ 3ZrF_4 + Ln \,. \end{split}$$

При подальшому нагріванні відбувається взаємодія (700—830 °C) з утворенням сполук $LnZrF_6$ за схемами:

$$3ZrF_4 + 2Ln = 2LnZrF_6 + 3Zr,$$

$$2LnZrF_7 + Ln = 2LnZrF_6 + LnF_2,$$

$$2LnZrF_7 + Zr = 2LnZrF_6 + ZrF_2,$$

$$2LnF_3 + ZrF_2 + ZrF_4 = 2LnZrF_6,$$

$$LnF_2 + ZrF_4 = LnZrF_6.$$

Дані про ІЧ-спектри одержаних сполук представлені на рис. 2. В ІЧ-спектрах досліджених сполук спостерігаються декілька областей поглинання: 250—290, 300—400, 420—520, 570—620 см⁻¹. В області 250—290 см⁻¹ смуги поглинання можна віднести до асиметричних деформаційних коливань зв'язку Ln–F та до деформаційних коливань фторцирконатних угрупувань. В області 300—400 см⁻¹ спостерігаються валентні асиметричні коливання зв'язку Ln–F. Смуги поглинання в областях 420—520 і 570—620 см⁻¹ відносяться до валентних коливань місткових та немісткових зв'язків Zr–F. УФ-спектри отриманих сполук наведені в статті [12].

Таким чином, проведені диференційно-термографічні дослідження підтвердили, що між компонентами LnF_{2+x} : $ZrF_4 = 1$ (мол.) та LnF_3 : ZrF_4 : Zr = 1:3/4:1/4 (мол.) відбувається взаємодія, яка на термограмах в інтервалі 300—850 °С проявляється у вигляді екзоефектів. Рентгенофазові дослідження підтвердили, що кінцевими продуктами синтезу є сполуки складу $LnZrF_{6+x}$ (Ln - Sm, Eu, Tm, Yb). ІЧ-спектроскопічні дослідження отриманих зразків за різними методиками вказують на подібність продуктів реакції.

РЕЗЮМЕ. Методами химического, дифференциально-термического и рентгенофазового анализов, УФи ИК-спектроскопии изучено взаимодействие между тетрафторидом циркония и фторидами лантаноидов (самарий, европий, тулий и иттербий) смешанных степеней окисления, а также с трифторидами РЗЭ в присутствии металлического циркония, в температурном интервале 700—900 °С. Дифференциально-термическим анализом установлено, что в температурном интервале 350-830 ⁶С наблюдается взаимодействие между компонентами с образованием фаз состава LnZrF_{6+x} (Ln - Sm, Eu, Tm, Yb). Кристаллические решетки полученных соединений LnZrF_{6+r} похожи на надструктуры Yb₂₇F₆₄. Для всех полученных соединений рассчитаны параметры кристаллических решеток и сделано отнесение частот полос поглощения ИК-спектров.

SUMMARY. The interaction of zirconium tetrafluoride with fluorides of lanthanides (samarium, europium, thulium and ytterbium) in mixed oxidation states and with RE trifluorides in the presence of metallic zirconium in a temperature range of 700—900 °C has been studied be chemical, differential thermal and X-ray phase analysis, UV and IR spectroscopy. It has been found by differential thermal analysis that in the temperature range 350—830 °C, an interaction between the components takes place with the formation of $LnZrF_{6+x}$ phases (Ln – Sm, Eu, Tm, Yb). The crystal lattices of the $LnZrF_{6+x}$ compounds obtained are similar to the superstructure of Yb₂₇F₆₄. For all the compounds obtained, the lattice parameters have been calculated, and the absorption band frequencies of IR spectra have been assigned.

- 1. Бабицына А.А., Емельянова Т.А., Федоров В.А. // Неорган. материалы. -1997. -**33**, № 1. -С. 87—92.
- 2. Бабицына А.А., Емельянова Т.А. // Журн. неорган. химии. -1993. -38, № 9. -С. 1587—1589.
- 3. Раков Э.Г. // Там же. -1991. -36, № 4. -С. 828—838.
- 4. Халилов В.Д., Богданов В.Л. // Журн. Всесоюз. хим. общ-ва им. Д.И. Менделеева. -1991. -36, № 5. -С. 593—602.
- 5. Phebus B., Getman B., Kiley Sh. et al. // Solid State Ionics. -2005. -176. -P. 2631-2638.
- 6. Stezowski John J., Eick Harry A. // J. Inorg. Chem. -1970. -№ 9. -P. 1102—1105.
- 7. Catalano E., Bedford R.G., Silveira V.G. // J. Phys.

Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України, Київ Chem. Solids. -1969. -№ 30. -P. 1613-1627.

- de MM. Marcel Poulain et Jacques, presentee par M. Georges Chaudron. // C.R. Acad. Sci. Paris, t. 271 (5 octobre 1970). -P. 822–824. -Ser. C.
- 9. Компаниченко Н.М., Савчук Р.Н., Файдюк Н.В. и др. // Журн. неорган. химии. -2008. -53, № 3. -С. 461—466.
- 10. Greis O. // Z. Anorg. Allg. Chem. -1977. -430. -S. 175-198.
- 11. Greis O., Petzel T. // Ibid. -1977. -434. -S. 89-94.
- 12. Іваненко О.П., Компаніченко Н.М., Омельчук А.О. та ін. // Укр. хим. журн. -2009. -75, № 7-8. -С. 83—88.

Надійшла 04.12.2009

УДК 577.37: 541.49

Л.А. Хмарская, А.В. Штеменко

ВЗАИМОДЕЙСТВИЕ КАРБОКСИЛАТНЫХ КОМПЛЕКСОВ НИКЕЛЯ (II), МЕДИ (II) И ЦИНКА (II) С МОДЕЛЬНЫМИ КЛЕТОЧНЫМИ МЕМБРАНАМИ

Рассмотрено взаимодействие карбоксилатных комплексов d^8 - и d^{10} -металлов первого переходного ряда с модельными клеточными мембранами. Определены частицы, способные проникать через липидный матрикс мембраны. В ходе исследований охарактеризована роль центрального атома комплексной частицы и лиганда при взаимодействии с мембраной. Показана зависимость между липофильностью изучаемого комплекса и его способностью проникать сквозь липидный бислой. Предложен возможный механизм взаимодействия взаимодействие комплексной частицы бислой. Предложен возможный механизм взаимодействия взаимодействие с мембраной.

ВВЕДЕНИЕ. Комплексообразующие свойства присущи всем карбоновым кислотам, начиная с низших аналогов монокарбоновых кислот — муравьиной и уксусной — и заканчивая высшими карбоновыми кислотами.

Жирные кислоты интенсивно продуцируются организмами в процессе метаболизма и являются конечным продуктом окисления других классов органических соединений [1]. Кроме того, они являются компонентами живой материи, входя в состав жиров, эфирных масел, восков, смол. Основной источник жирных кислот в живом организме — расщепление жиров, при этом могут образовываться такие кислоты, как уксусная, пропионовая, масляная и т.д. Также давно и достаточно широко карбоновые кислоты и их производные (эфиры и соли) используют в медицинской практике и фармакологии [2].

Известно, что организм человека на 3 % сос-

© Л.А. Хмарская, А.В. Штеменко, 2010

тоит из металлов [3]. И хотя 69 металлов присутствуют в клетках в разных количествах, все они играют важную роль в процессах, протекающих в организме. Металлсодержащие соединения входят в состав ферментов, регулирующих скорость протекания жизненно важных процессов, способствуют сохранению равновесия в клетках. Поэтому взаимодействие карбоновых кислот и ионов металлов является неотъемлемым элементом процессов, происходящих в живых организмах.

В качестве исходных соединений для создания модельных комплексов нами выбраны три простейшие водорастворимые монокарбоновые кислоты — муравьиная, уксусная и пропионовая. Именно эти кислоты, являясь частями биомолекул, входят в состав практически всех живых организмов. Изучение взаимодействия данного ряда кислот и ионов металлов будет представлять интерес с точки зрения моделирования процессов, связанных