УДК. 546.06

В.Д. Александров, О.В. Соболь, А.Ю. Соболев

ПОСТРОЕНИЕ ДИАГРАММЫ СОСТОЯНИЯ КРИСТАЛЛОГИДРАТОВ $Na_2SO_4{\cdot}10H_2O{-\!\!-}Na_2S_2O_3{\cdot}5H_2O$ *

Методами термоциклирования построена диаграмма состояния системы $Na_2SO_4\cdot 10H_2O$ — $Na_2S_2O_3\cdot 5H_2O$ с метастабильными областями. На основании ранее исследованных систем H_2O — $Na_2SO_4\cdot 10H_2O$ и H_2O — $Na_2S_2O_3\cdot 5H_2O$ построена диаграмма тройной системы H_2O — $Na_2SO_4\cdot 10H_2O$ — $Na_2S_2O_3\cdot 5H_2O$.

ВВЕДЕНИЕ. Кристаллогидраты сульфата и тиосульфата натрия находят широкое применение при создании термоаккумулирующих материалов (ТАМ) на основе периодических фазовых превращений плавление → кристаллизация [1—7]. Основными характеристиками ТАМ являются высокие значения энтальпий плавления ΔH_L , устойчивая стабильность эндо- и экзотермических эффектов при многократном термоциклировании, знание разновидностей кристаллизации и величин предкристаллизационных переохлаждений. В работах [8, 9] при изучении кинетики кристаллизации в системах вода-тиосульфат натрия (Na₂S₂O₃), вода-сульфат натрия (Na₂SO₄) методом циклического термического анализа (ЦТА) были установлены величины предкристаллизационных переохлаждений, разновидности кристаллизаций и влияние различных факторов на них, найдены границы метастабильности растворов, которые были нанесены на соответствующие диаграммы состояния [10] в части, ограниченной соответствующими кристаллогидратами декагидрата сульфата натрия (СН-10) и пентагидрата тиосульфата натрия (ТСН-5).

В данной работе методами термоциклирования изучена кинетика кристаллизации смеси кристаллогидратов Na₂SO₄·10H₂O и Na₂S₂O₃·5H₂O и предпринята попытка построить самостоятельную диаграмму состояния между указанными кристаллогидратами и тройную диаграмму вода—CH-10—TCH-5 с учетом ранее полученных результатов [8, 9]. С этой целью все смеси в системе CH-10—TCH-5 исследовались в условиях, в которых индивидуальные кристаллогидраты CH-10 и TCH-5 имели достаточно хорошее переохлаждение. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Исследовали смеси (CH-10)_{100-х}—(TCH-5)_x, где x = 0(I), 10 (II), 25(III), 35(IV), 40(V), 45(VI), 50(VII), 52(VIII), 60(IX), 65(X), 75(XI), 80(XII), 90(XIII), 100 % вес. TCH-5 (образец XIV).

Образцы готовили по стандартной методике [8, 9]. Все образцы, имеющие одинаковые массы по 4 г. помешали в стеклянные пробирки. закрытые специальными тампонами. Нагрев и охлаждение образцов осуществляли с помощью печи сопротивления в интервале температур от -23 до +70 °С. Для этого печь и образцы помещали в морозильную камеру ВЕКО FSE 1010, работающую при температуре -23 °С. Скорость нагревания и охлаждения составляла 0.04—0.06 град/с. Температуру с помощью хромель-алюмелевой термопары записывали на диаграммную ленту потенциометра КСП-4 со шкалой на 2 мВ. Погрешность измерения температуры составляла 0.5 град. Изучено по три образца каждого состава, на каждом из которых проведено свыше десятка последовательных термоциклов нагревания и охлаждения. Надежность и достоверность полученных результатов основывались на совпадении реперных точек (температур плавления СН-10, ТСН-5 и льда) со справочными данными и многократной воспроизводимости соответствующих экзо- и эндотермических эффектов при непрерывном термоциклировании.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. На первом этапе образцы нагревали и охлаждали с целью определения температур ликвидуса T_L , солидуса T_S , минимальной температуры T_{\min} на момент начала кристаллизации и степени предкристаллизационного переохлаждения $\Delta T = T_L - T_{\min}$.

В таблице даны составы образцов и соответ-

^{*} Работа выполнена в рамках госбюджета по плану Министерства образования и науки Украины в области фундаментальных исследований.

[©] В.Д. Александров, О.В. Соболь, А.Ю. Соболев, 2010

Экспериментальные средние значения температур ликвидуса $<T_L>$, солидуса $<T_S>$, минимальной предстартовой температуры кристаллизации $<T_{min}>$, переохлаждения $<\Delta T^->$ относительно соответствующих температур T_L в системе Na₂SO₄·10H₂O—Na₂S₂O₃·5H₂O

Весовой состав смесей кристаллогидратов	$< T_L >$	< T _S >	< <i>T</i> _{min} >	$<\Delta T^{-}>$
	°C			
CH-10	32.4	-15	8	24.4
90 % CH-10—10 % TCH-5	29	-14	5	24.0
75 % CH-10—25 % TCH-5	18	-16	-1	19
65 % CH-10—35 % TCH-5	10	-15	-5	15
60 % CH-10—40 % TCH-5	7	-16	-7	14
55 % CH-10—45 % TCH-5	3	-14	-4	7
50 % CH-10—50 % TCH-5	-5	-17	-10	5
48 % CH-10—52 % TCH-5	-8	-15	-12	4
40 % CH-10—60 % TCH-5	-15	-15	-17	2
35 % CH-10—65 % TCH-5	2	-14	-16	18
25 % CH-10—75 % TCH-5	15	-15	-9	24
20 % CH-10—80 % TCH-5	28	-16	-5	33
10 % CH-10—90 % TCH-5	40	-15	-3	43
TCH-5	48.5	-15	4.5	44

ствующие им средние температуры ликвидуса $<\!T_L\!>$, солидуса $<\!T_S\!>$, $<\!T_{\rm min}\!>$ и переохлаждений ΔT^- . Разброс указанных температур от средних значений составлял ± 2 градуса от цикла к циклу.

По данным таблицы построена диаграмма состояния декагидрат сульфата натрия — пентагидрат тиосульфата натрия (рис. 1, *a*). Эта диаграмма соответствует диаграмме состояния эвтектического типа. Эвтектика Э₃ приходится на состав 40 % вес. СН-10—60 % ТСН-5 при эвтектической температуре –15 °С. На этой диаграмме показаны области метастабильного состояния растворов. Видно, что по мере приближения к эвтектическому составу $Э_3$ предкристаллизационные переохлаждения уменьшаются как для CH-10 в доэвтектической, так и для TCH-5 в заэвтектической областях.

Схематические термограммы нагревания и охлаждения CH-10 (I), CH-10 +25 % вес. TCH-5 (III), эвтектики CH-10+60 % вес. TCH-5 (IX), CH-10+80 % вес. TCH-5 (XII) и TCH-5 (XIV) показаны на рис. 1, δ .

На рис. 2 сведены воедино в тройную диаграмму три двойные диаграммы: система CH-10 — TCH-5 (данная работа), а также полученные нами ранее системы вода — CH-10 и вода — TCH-5 [8, 9]. Построенная тройная диаграмма состояния вода — CH-10 — TCH-5 в развернутом виде характеризует метастабильное состояние этой системы, а также области синтеза либо индивидуальных кристаллогидратов Na₂S₂O₃·5H₂O и Na₂SO₄·10H₂O, либо их смесей из переохлажденного состояния.

4 Тройная диаграмма состояния вода— СН-10—ТСН-5 представлена в собранном виде (рис. 3, *a*). По ней можно определить поверхность ликвидуса АЭ₂ВЭ₃СЭ₁А, области синтеза кристаллогидратов Na₂SO₄·10H₂O и Na₂S₂O₃· 5H₂O и тенденцию сближения эвтектик Э₁, Э₂, Э₃ (пунктирные линии) к тройной эвтектике Э, в зависимости от температуры.

По изотермическим и политермическим разрезам можно в достаточно наглядной форме представить динамику изменения составов и температур для синтеза не только отдельных кристаллогидратов СН-10 и ТСН-5, но и их смесей. В качестве примера рядом с тройной диаграммой дан (рис. 3, δ) концентрационный треугольник с проекция-

Рис. 1. Диаграмма состояния CH-10—TCH-5 с переохлаждениями (*a*) и схематические термограммы (б) нагревания и охлаждения составов I, III, IX, XII и XIV.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2010. Т. 76, № 4

Неорганическая и физическая химия

Рис. 2. Развернутая диаграмма состояния H_2O — Na_2SO_4 · $10H_2O$ — $Na_2S_2O_3$ · $\cdot 5H_2O$ с указанием метастабильных областей синтеза соответствующих кристаллогидратов (заштрихованные области).

ми изотермических разрезов при температурах 17.5 °С (кривая 1), 40 °С (кривые 2 и 2') и условной температуре Т_Э тройной эвтектики (кривые 3). Координаты начальных (a_1, a_2, c) и конечных (e_1, a_2, c) в₂, d) точек линий растворимости 1, 2 и 2' вычисляли по собранной диаграмме (рис. 3, а). Координаты эвтектик Э1, Э2 взяты из работ [8, 9], а точка Эз определена выше. Эти точки имеют следующие примерные координаты: точке a_1 при 40 °C соответствует состав 12 % СН-10 + 88 % ТСН-5; точке *в*₁ — 40 °С и 17 % H₂O + 83 % TCH-5; точке *a*₂ — 17.5 °С и 30 % СН-10 + 70 % ТСН-5; точке *в*₂ — 17.5 °С и 38 % H₂O + 62 % TCH-5; точке *с* — 17.5 °С и 22 % ТСН-5 + 78 % СН-10; точке d — 17.5 °С и 40 % H_2O + 60 % CH-10; точке \Im_1 — -12 ^oC и 40 % H₂O + 60 % TCH-5; точке Э₂ — -5 ^oC и 80 % H₂O + 20 % CH-10; точке Э₃ — -15 °C и 40 % H₂O + 60 % TCH-5; ориентировочный состав тройной эвтектики Э: 38 % H₂O + 28 % CH-10 +34 % TCH-5.

Температура 40 °С лежит ниже температуры плавления TCH-5 (T_L =48.5 °С), но выше T_L для CH-10 (32.4 °С). Поэтому изотерма *I* на рис. 3 характеризует линию растворимости TCH-5 в воде

при 40 °С. Выше линии 1 раствор с кристаллами ТСН-5, а ниже ее до линии 2 синтезируются кристаллы ТСН-5 и СН-10 в водном растворе обеих солей. В случае областей ниже границ растворимости кристаллогидратов Na₂SO₄·10H₂O и Na₂S₂O₃·5H₂O (кривые 2 и 2') синтезируются оба кристаллогидрата, поскольку эти изотермы лежат ниже температуры плавления СН-10 (32.4 °C). Пользуясь известными правилами рычага и фаз Гиббса, в любой области тройной системы можно рассчитать концентрацию компонентов, фаз и число степеней свободы. Например, фигуративная точка М расположена межлу линиями растворимости 2 и 2', она соответствует $17 \% H_2O + 31 \% Na_2S_2O_3 \cdot 5H_2O +$ +52 % Na₂SO₄·10H₂O и характеризует трехфазное состояние раствор-кристаллогидрат СН-10 -кристаллогидрат TCH-5. Число степеней свободы i=3-1+

+1=3 для точки M, а для точек N_1 и N_2 i=3–2+1=2. Ниже эвтектической поверхности, ограниченной эвтектическими линиями $\Im_1 \rightarrow \Im, \Im_2 \rightarrow \Im,$ $\Im_3 \rightarrow \Im$, наряду с кристаллогидратами Na₂S₂O₃· 5H₂O, Na₂SO₄·10H₂O выкристаллизовывается также и лед.

Сравним концентрационный треугольник вода плюс кристаллогидраты (рис. 3, δ) с построенным нами концентрационным треугольником в системе вода—безводная соль Na₂SO₄—безводная соль Na₂S₂O₃ (рис. 4) по общепринятой схеме [11] с изотермической проекцией, например при 17.5 °C.

Видно, что значительную площадь треугольника занимают составы, включающие в себя безводные соли Na₂SO₄ и Na₂S₂O₃. Последняя диаграмма подходит для выявления условий синтеза безводных солей, но для кристаллогидратов представляется более удобной схема, которая приведена на рис. 3, δ .

ВЫВОДЫ. Таким образом, в работе впервые методом термического циклического анализа (ЦТА) построена диаграмма состояния между двумя кристаллогидратами $Na_2S_2O_3$ · SH_2O и Na_2SO_4 · $10H_2O$. Установлено, что данная диаграмма является ди-

Рис. 4. Концентрационный треугольник системы вода—сульфат натрия—тиосульфат натрия с проекциями изолиний при температуре 17.5 °С.

аграммой состояния эвтектического типа с эвтектическим составом CH-10 + 60 % вес. TCH-5 при

температуре $T_{\mathcal{F}} = -15$ °C. На этой диаграмме показаны предкристаллизационные переохлаждения, которые уменьшаются по мере приближения к эвтектике. Пользуясь известными диаграммами состояния H_2O — Na_2SO_4 · $10H_2O$ и H_2O — $Na_2S_2O_3$ · $5H_2O$, а также полученной диаграммой состояния Na_2SO_4 · $10H_2O$ — H_2O — $Na_2S_2O_3$ · $5H_2O$ построена тройная диаграмма состояния H_2O — Na_2SO_4 · $10H_2O$ — $Na_2S_2O_3$ · $5H_2O$ и показаны метастабильные области в этой системе.

РЕЗЮМЕ. Методами термоциклювання побудовано діаграму стану системи $Na_2SO_4 \cdot 10H_2O - Na_2S_2O_3 \cdot 5H_2O$ з метастабільними областями, а на основі раніше досліджених систем $H_2O - Na_2SO_4 \cdot 10H_2O$ і $H_2O - Na_2SO_3 \cdot 5H_2O$ — діаграму потрійної системи $H_2O - Na_2 \cdot SO_4 \cdot 10H_2O - Na_2 \cdot SO_4 \cdot 10H_2O - Na_2S_2O_3 \cdot 5H_2O$.

SUMMARY. By the methods of thermocycling the condition diagram of Na₂SO₄·10H₂O—Na₂S₂O₃·5H₂O with metastable areas constructed. Based at early studied systems H₂O—Na₂SO₄·10H₂O and H₂O—Na₂S₂O₃·5H₂O diagram of H₂O—Na₂SO₄·10H₂O—Na₂S₂O₃·5H₂O constructed.

Донбасская национальная академия строительства и архитектуры, Макеевка

- 1. Sun Xinquan, Gong Yuqin, Xu Baoqing. // Hanhzhou Univ. Natur. Sci. -1990. -17, № 2. -P. 195—200.
- 2. Li Gyong, Li Dong Gu, Li Sung Hwan // Chem. and Chem. Eng. -1990. -№ 3. -P. 21-24.
- 3. *Hans Pierre*. // C. r. Acad. Sci. -1973. -277, № 19. -B 533—B 535.
- 4. Заявка 646083, Япония, МКИ. СО9К 5/06. -Заявл. 29.06.87., опубл. 10.01.89.
- 5. *Kimura Hiroshi.* // Ind. and Eng. Chem. Fundam. -1980. -19, № 3. -P. 251—253.
- 6. Пат. 4603003, США. -Опубл. 29.07.1986.
- 7. Пат. США 4508632. -Заявл. 15.06.83., № 504601.
- Александров В.Д., Соболь О.В., Савенков М.В. // Фізика і хімія тв. тіла. -2007. - № 4. -С. 1—5.
- 9. Александров В.Д., Соболь О.В., Постніков В.А. // Там же. -2008. -№ 6. -С. 1—5.
- Киргинцев А.Н., Трушникова Л.Н., Лаврентьева В.Г. Растворимость неорганических веществ в воде. Справочник. - Л.: Химия, 1972.
- 11. Викторов М.М. Графические расчеты в технологии неорганических веществ. -Л.: Химия, 1972.

Поступила 25.09.2009

УДК 541.127:542.943

С.Г. Галстян, М.Ф. Тюпало, А.Г. Галстян

КІНЕТИКА ОКИСНЕННЯ ТОЛУОЛУ ОЗОНОПОВІТРЯНОЮ СУМІШШЮ В ОЦТОВОМУ АНГІДРИДІ

Вивчено рідкофазне окиснення толуолу озоном в оцтовому ангідриді в присутності мінеральних кислот. Показано, що озон реагує з толуолом переважно по ароматичному кільцю з утворенням олігомерних пероксидів (92.0 %). Серед продуктів окиснення по метильній групі ідентифіковано бензилацетат (4.5 %), бензилідендіацетат (2.2 %), бензальдегід (<10⁻⁴ моль/л). В умовах вичерпного окиснення толуолу з'являється бензойна кислота. Виявлено ланцюговий механізм розкладу озону. Визначено ефективну константу швидкості реакції озону з толуолом.

Відомо [1], що окиснення толуолу озоном по бічному ланцюгу в оцтовій кислоті перебігає з утворенням бензойної кислоти (16.9 %). Виділити в цих умовах як кінцеві продукти окиснення толуолу по метильній групі — бензиловий спирт і бензальдегід — неможливо через їх високу реакційну здатність. На наш погляд, це можливе лише за умов, коли проміжні продукти — бензиловий спирт і бензальдегід — в момент появи в оксидаті створюють стійкі до дії озону сполуки, наприклад, ацильовані похідні. Метою даної роботи є дослідження кінетики і продуктів окиснення толуолу озоноповітряною сумішшю в оцтовому ангідриді — сильному ацилюючому агенті.

ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА. Кінетику окиснення толуолу в оцтовому ангідриді досліджували в реакторі типу "каталітична качка". Змішування газової і рідкої фаз у реакторі досягали за рахунок струшування його зі швидкістю 8 с⁻¹, що дозволяло працювати в кінетичній області. Кінетику реакції вивчали, вимірюючи концент-

[©] С.Г. Галстян, М.Ф. Тюпало, А.Г. Галстян, 2010