УДК 535.372:541.49:546.663

Е.А. Алексеева, С.С. Кость, Н.В. Русакова, Т.В. Павловская, А.В. Мазепа, А.И. Грень, Ю.В. Коровин СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА ТЕРБИЯ В КОМПЛЕКСАХ С КАЛИКС[4]АРЕН-КРАУН-ЭФИРАМИ

Изучены спектрально-люминесцентные характеристики ионов тербия (Tb³⁺) в комплексах с каликс[4]аренами, модифицированными по нижнему ободу каликсареновой матрицы краун-эфирными фрагментами (12краун-4, 15-краун-5 и 18-краун-6). Установлено, что наибольшая интенсивность 4*f*-люминесценции реализуется в комплексе с каликс[4]арен-15-краун-5. Проанализировано влияние природы растворителей на люминесцентные свойства комплексов тербия.

Комплексообразованию лантанидов с макроциклическими лигандами уделяется все большее внимание в значительной степени вследствие расширения областей практического применения соответствующих соединений [1-3]. Одним из быстро развивающихся направлений при этом является изучение таких объектов, как комплексные соединения лантанидов с каликсаренами. Успешное использование данных лигандов в качестве переносчиков ряда ионов металлов через гидрофобные мембраны, а также выявленная биологическая активность по отношению к различным патогенным микроорганизмам делает изучение комплексов с ними весьма перспективным [4, 5]. Однако систематические исследования комплексообразования каликсаренов с лантанидами отсутствуют, в то время как изучение спектрально-люминесцентных характеристик комплексов может помочь в решении таких вопросов, как выяснение состава, строения и устойчивости данных соединений.

Цель данной работы — установление влияния как химической природы краун-эфирных заместителей каликс[4]ареновой матрицы, так и органических растворителей на величину 4*f*-люминесценции комплексов тербия (Tb³⁺).

Изученные в работе каликс[4]арен-краун-эфиры (L) и соответствующие их комплексы с тербием синтезированы по оригинальным методикам. Чистоту и индивидуальность соединений контролировали методом TCX на пластинках Silufol UV-254. Строение и преимущественные конформации каликсаренов-лигандов устанавливали методом ЯМР на ядрах ¹H и ¹³C с помощью спектрометра Variап VXR 300 MHz (TMC — внутренний стандарт). Масс-спектры получены на спектрометре VG 70-70 EQ с использованием пучка атомов Xe с энергией 8 кВ (*м*-нитробензиловый спирт в качестве матрицы при FAB⁺-ионизации). Масс-спектры электронного удара измерены при энергии ионизирующего напряжения 70 эВ на спектрометре MX-1321. Электронные спектры поглощения растворов комплексов и лигандов записывали на спектрофотометре Perkin-Elmer Lambda-9 UV/VIS/NIR. Спектры люминесценции растворов комплексов в ацетонитриле (C=1·10⁻³ M) регистрировали на спектрометре СДЛ-1, возбуждая люминесценцию ртутной лампой сверхвысокого давления ДРШ-250 с выделением наиболее интенсивных линий в УФобласти (313 и 365 нм) светофильтром УФС-2. Молекулярную люминесценцию лигандов регистрировали в области спектра 400–600 нм, 4*f*-люминесценцию иона Tb³⁺ — при 460–570 нм.

Tempa-n-mpem-бутил-25, 26, 27, 28-тетра-гид $роксикаликс[4] арен (<math>L^4$) получен согласно [6]. Его физико-химические характеристики соответствуют данным, представленным в этой работе.

Общий метод получения п-трет-бутилкаликс-[4] арен-краун-эфиров заключается в следующем. Суспензию L¹ (2.96 г, 4 ммоль) и К₂CO₃ (1.32 г, 9.2 ммоль) в 80 мл CH₃CN перемешивали в течение 30 мин, затем в реакционную среду добавляли тозилат (или иодид) соответствующего оксиэтиленгликоля в качестве алкилирующего агента (8.8 ммоль). Реакционную смесь перемешивали при кипячении в течение 6-8 ч в зависимости от природы уходящей группы в молекуле алкилирующего агента. После охлаждения растворитель отгоняли при пониженном давлении, к остатку прибавляли 100 мл CHCl₃ и раствор промывали последовательно 1 N HNO₃ (2×50 мл), водой, органическую фазу сушили над безводным MgSO₄, растворитель отгоняли при пониженном давлении, сырой продукт очищали перекристаллизацией.

25,27-Дигидрокси-п-трет-бутилкаликс[4] арен-12-краун-4 (L¹), m/z 762[M]⁺. ¹Н ЯМР (CDCl₃, TMC), δ, м.д.: 0.95 с (18H, t-Bu), 1.29 с (18H, t-Bu), 3.27 д (4H, ArCH₂Ar), 4.0–4.15 с, м (12H, OCH₂CH₂O), 4.37 д (4H, ArCH₂Ar, J=13.53 Гц), 6.79 с (4H, ArH), 7.05 с (4H, ArH), 7.39 с (2H, OH). Выход — 75 %.

© Е.А. Алексеева, С.С. Кость, Н.В. Русакова, Т.В. Павловская, А.В. Мазепа, А.И. Грень, Ю.В. Коровин , 2007

25,27-Дигидрокси-п-трет-бутилкаликс[4]арен-15-краун-5 (L²), т/z 806[М]⁺. ¹Н ЯМР (CDCl₃, TMC), δ, м.д.: 0.95 с (18H, t-Bu), 1.34 с (18H, t-Bu), 3.35 д (4H, ArCH₂Ar), 3.8–4.15 м (16H, OCH₂CH₂O), 4.43 д (4H, ArCH₂Ar, *J*=13.0 Гц), 6.8 с (4H, ArH), 7.15 с (4H, ArH), 7.20 с (2H, OH). Выход — 86 %.

25,27-Дигидрокси-п-трет-бутилкаликс[4]арен-18-краун-6 (L³), т/z 850[М]⁺. ¹Н ЯМР (CDCl₃, TMC), δ, м.д.: 0.85 с (18Н, *t*-Bu), 1.25 с (18Н, *t*-Bu), 3.2 д (4H, ArCH₂Ar), 3.65–4.1 м (20H, OCH₂-CH₂O), 4.31 д (4H, ArCH₂Ar, *J*=13.2 Гц), 6.75 с (4H, ArH), 6.98 с (4H, ArH), 7.0 с (2H, OH). Выход — 89 %.

Общий метод получения комплексов состоит в том, что суспензию 1 ммоль соответствующего краун-производного каликсарена, 1 ммоль TbCl₃, 1 мл триэтил-ортоформиата в 80 мл CH₃CN перемешивали при 60 $^{\circ}$ C в течение 8–10 ч. После окончания реакции растворитель отгоняли при пониженном давлении, сырой продукт очищали перекристаллизацией из системы ацетонитрил—метанол. Растворы реагентов определенной концентрации готовили растворением их точных навесок в соответствующем растворителе.

п-Трет-бутилкаликс[4]арен-12-краун-4-Tb⁺-(Cl⁻) (Tb $\equiv L^1$) (здесь и далее для обозначения комплексов вводится знак " = "). Масс-спектр (FAB): M⁺ 920. ¹H ЯМР (CDCl₃, TMC), δ , м.д.: 0.90 с (18H, *t*-Bu), 1.25 с (18H, *t*-Bu), 3.21 д (4H, ArCH₂Ar), 3.85–4.0 м (12H, OCH₂CH₂O), 4.29 д (4H, ArCH₂Ar, J=14.0 Гц), 6.68 с (4H, ArH), 7.0 с (4H, ArH).

25,27-Дигидрокси-п-трет-бутилкаликс[4]арен-15-краун-5- Tb^+ (Cl^-) ($T \pm L^2$): Масс-спектр (FAB): M⁺ 964. ¹H ЯМР (CDCl₃, TMC), δ , м.д.: 0.91 с (18H, *t*-Bu), 1.31 с (18H, *t*-Bu), 3.3 д (4H, ArCH₂Ar), 3.65–4.08 м (16H, OCH₂CH₂O), 4.38 д (4H, ArCH₂Ar, J=13.7 Гц), 6.76 с (4H, ArH), 7.07 с (4H, ArH).

25,27-Дигидрокси-п-трет-бутилкаликс[4] арен-18-краун-6- $Tb^+(Cl^-)(T \equiv L^3)$. Масс-спектр (FAB): M^+ 1008. ¹Н ЯМР (CDCl₃, TMC), δ , м.д.: 0.8 с (18H, *t*-Bu), 1.21 с (18H, *t*-Bu), 3.15 д (4H, ArCH₂Ar), 3.5–3.98 м (20H, OCH₂CH₂O), 4.28 д (4H, ArCH₂Ar, *J*=13.8 Гц), 6.69 с (4H, ArH), 6.82 с (4H, ArH).

Строение и состав комплексов были доказаны с помощью методов ¹Н ЯМР- и FAB-спектрометрии. Наличие в масс-спектрах образцов сигналов с M^+ 920 (для Tb $= L^1$), 964 (Tb $= L^2$) и 1008 (Tb $= L^3$) соответствуют образованию комплексов ка-

ликсаренов с ионом тербия состава 1:1 и доказывают участие в связывании иона тербия не только донорных атомов кислорода полиэфирных цепочек краун-фрагмента, но и гидроксильных групп макроцикла с заменой протонов на ион металла. Спектры ПМР полученных комплексов содержат уширенные сигналы протонов основных характеристичных групп "хозяина" (за счет значительных парамагнитных эффектов), химсдвиги которых смещены в область более сильных полей по сравнению с химсдвигами этих протонов в спектрах исходных соединений, а КССВ протонов метиленовых фрагментов каликсаренового каркаса в спектрах комплексов возрастают примерно на 2 Гц по сравнению с КССВ для тех же протонов в спектрах исходных соединений. Во всех трех случаях спектры ПМР комплексов не содержат сигналов протонов фенольных гидроксильных групп.

Как известно, при формировании комплексов "гость–хозяин" большое значение имеет геометрическое соответствие размеров катион—макроцикл. В изученных нами комплексах диаметр иона Tb^{3+} , равный 1.85 Å, наилучшим образом соответствует размерам полости 15-краун-5 и 18-краун-6 макроциклических заместителей. На рис. 1 приведено схематичное изображение рассматриваемых каликсаренов и комплекса тербия с каликс-[4]арен-15-краун-5, из которого следует, что ион Tb^{3+} координирован атомами кислорода фенольных заместителей и краун-эфирного фрагмента.

Спектры поглощения L^{1} — L^{3} характеризуются наличием двух полос в УФ-области от 280 до 360 нм (табл. 1). Введение различных краун-эфирных фрагментов способствует появлению третьих, длинноволновых полос ($\lambda_{\text{макс}}$ ~360 нм), интенсивность поглощения которых невелика, а также батохромным сдвигам первых полос по сравне-

Рис. 1. Схематичные формулы каликс[4]арен-12-краун-4 (n=1); каликс[4]арен-15-краун-5 (n=2); каликс[4]арен-18-краун-6 (n=3) (a) и комплекса тербия с каликс[4]арен-15-краун-5 (δ).

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2007. Т. 73, № 12

Таблица 1

Характеристики спектров поглощения каликс[4]аренкраун-эфиров и комплексов тербия с ними

Соединение	λ_{max} , нм	ε
п-трет-Бутил-каликс[4]арен-краун-	286.2	3300
$4 (L^{1})$	288.0	
	357.2	45
<i>п-трет</i> -Бутил-каликс[4]арен-краун-	289.0	3600
$5 (L^2)$	291.2	3610
	360.0	120
<i>п-трет</i> -Бутил-каликс[4]арен-краун-	291.5	3500
6 (L ³)	293.0	3450
	360.5	60
<i>п-трет-</i> Бутил-тетрагидрокси-	280.0	5000
каликс[4]арен (L ⁴)	288.0	4400
Тербий <i>п-трет</i> -бутил-каликс-	292.5	3800
[4]арен-12-краун-4 $Tb = (L^1)$	294.0	3750
Тербий п-трет-бутил-каликс-	286.5	3650
[4]арен-15-краун-5 $Tb = (L^2)$	289.0	3700
Тербий <i>п-трет</i> -бутил-каликс-	273.5	3500
[4]арен-18-краун-6 Tb $=$ (L ³)	275.5	3520
Тербий п-трет-бутил-	294.0	5150
Тетрагидроксикаликс[4]арен $Tb = (L^4)$	308.0	4100

нию с L⁴. В спектрах поглощения комплексов тербия третья полоса отсутствует. При этом с увеличением полости макроцикла в комплексах тербия с каликс[4]арен-краун-эфирами наблюдается увеличение гипсохромного сдвига и уменьшение интенсивности полос поглощения по сравнению с комплексом нефункционализированного лиганда. Это, вероятно, свидетельствует об изменении симметрии молекул комплексов.

Во всех изученных комплексах с каликс[4]арен-краун-эфирами наблюдается 4*f*-люминесценция иона Tb³⁺ (рис. 2). Спектры состоят из трех полос, которые соответствуют переходам (I—III) с возбужденного уровня ${}^{5}D_{4}$ на подуровни мультиплета ${}^{7}F_{n}$. Наибольший сигнал наблюдается для комплекса тербия с L², содержащего 15-краун-5заместитель. Наиболее интенсивной является полоса с $\lambda_{\text{макс}} \approx 545$ нм, а полоса сверхчувствительного перехода (СЧП) ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ расщеплена на три компоненты.

В табл. 2 представлены характеристики спектров люминесценции ионов Tb^{3+} с изученными лигандами. По сравнению со спектрами $Tb = L^4$ наблюдается различное расщепление СЧП в спектрах тербия с L^1 — L^3 в зависимости от полости краунэфира. Так, в комплексах с L^1 и L^4 наблюдается

только один максимум СЧП ($\lambda_{\text{макс}} = 490$ и 491 нм соответственно), тогда как в комплексах с L² и L³ расщепление полосы происходит, соответственно, на 3 ($\lambda_{\text{макс}} = 489, 492$ и 493нм) и 2 ($\lambda_{\text{макс}} = 488$ и 491 нм) компоненты. Данное расщепление свидетельствует об изменении симметрии комплексов в ряду краун-эфирных заместителей, а также об изменениях координационных центров в отсутствие и при наличии этих заместителей.

Подобие между спектрами поглощения каликсаренов-лигандов и спектрами возбуждения люминесценции их комплексов с тербием указывает на то, что перенос энергии возбуждения от органической части молекулы комплекса к иону Tb³⁺ осуществляется по внутримолекулярному механизму. Об эффективности переноса энергии возбуждения от лиганда к иону лантанида в комплексах свидетельствует существенное снижение интенсивности молекулярной люминесценции лиганда.

Величина соотношений интенсивности (η) полос может быть использована для характеристики изменений, происходящих в спектре люминесценции под влиянием поля лигандов. Поэтому были найдены значения отношения интенсивности двух полос: одной, соответствующей СЧП, и другой, соответствующей магнитно-дипольному переходу (табл. 2). Наибольшее соотношение интенсивностей полос люминесценции наблюдается для каликс[4]арена, содержащего 15краун-5-фрагмент.

Известно, что на величину интенсивности люминесценции (I_n) ионов лантанидов влияет природа растворителя [7]. Поэтому нами было изучено влияние различных растворителей на интенсивность люминесценции ионов Tb³⁺ в рассматриваемых системах. Как видно из табл. 3, наиболь-

Рис. 2. Спектр 4*f*-люминесценции ионов Tb³⁺ в комплексе с L² (λ_{B030} =280 нм, C_{κ} =1·10⁻³ моль, ДМФА, 298 К).

Таблица 2

Характеристики спектров люминесценции комплексов Tb = Lⁿ и соотношение интенсивности полос их спектров

	I _л , отн.ед. при λ, нм				η =	5 7			
Комплекс	Ι	$^{3}D_{4} -$	$F_{6} \overline{F_{6}} F_$	3kz€ D.	₿Ë«:433@4औ	=33:F73	$6@z\Phi A \ll 6=33$	$\mathfrak{P} \stackrel{^{D}D_4 \to {}^{\prime}F_5}{= 52k \mathcal{U} \in 3P^{\mathscr{K}}}$:43
	λ (переход)	${}^{5}D_{4} - I_{\pi}$	F_4 λ (переход)	I _л	λ (переход)	I _л		${}^{3}D_{4} \rightarrow {}^{\prime}F_{4}$	
$Tb \equiv L^1$	490	50	544	70	585	13	2.0	4.2	
2	$({}^{5}D_{4} \rightarrow {}^{7}F_{6})$		$549 \\ ({}^5D_4 \rightarrow {}^7F_5)$	100	$({}^{5}D_{4} \rightarrow {}^{7}F_{4})$				
$Tb \equiv L^2$	489	25	543	88	585	7	5.4	19.0	
	492 493	28 14	548	100					
	$({}^{5}D_{4} \rightarrow {}^{7}F_{6})$	14	$({}^{5}D_{4} \rightarrow {}^{7}F_{5})$		$({}^{5}D_{4} \rightarrow {}^{7}F_{4})$				
$Tb \equiv L^3$	488	25	542	83	584	8	3.0	12.0	
	491	17	547	100					
	$({}^{5}D_{4} \rightarrow {}^{7}F_{6})$		$({}^{5}D_{4} \rightarrow {}^{7}F_{5})$		$({}^{5}D_{4} \rightarrow {}^{7}F_{4})$				
$Tb \equiv L^4$	491	19	544	75	586	5	5.2	16.0	
			549	100					

Таблица З

Влияние природы растворителя на интенсивность люминесценции комплекса тербия с каликс[4]арен-15-краун-5

Растворитель	I _л , %	Растворитель	I _л , %
Вода	35	Диметилформамид	390
Метанол	142	Ацетон	55
Этанол	230	Диоксан	15
Диметилсульфоксид	350	Ацетонитрил	100

шие значения I_{π} реализуются в растворах ДМФА и ДМСО, существенно ниже сигнал в таких растворителях, как ацетонитрил и диоксан. Вероятно, это можно объяснить тем, что связь S=O в молекуле ДМСО и связи C=O и C-N в молекуле ДМФА имеют сравнительно низкие значения колебательных уровней энергии (E = 1050, 1700 и 1100 см⁻¹ соответственно) и практически мало влияют на люми-несценцию ионов Tb^{3+} (резонансный ${}^{5}D_{4}$ -уровень расположен при 20500 см⁻¹), в то время как, например, в молекуле ацетонитрила связь C≡N имеет достаточно высокий уровень колебательной энергии (*E*=2250 см⁻¹), что и приводит к тушению 4*f*-люминесценции. Увеличение *I*_л в присутствии спиртов может быть объяснено тем, что спирты в отличие от амидов образуют в растворе несколько сольватных форм. Это подтверждает выдвинутое в работе [7] предположение о различной проникающей способности растворителей, обусловленной не только их поляризуемостью, но и размером молекул. Что касается такого растворителя, как вода, то тушение люминесценции связано с безызлучательной потерей энергии возбуждения, обусловленной колебанием связи О–Н (*E*=3600 см⁻¹) [8, 9].

Таким образом, люминесценция тербия реализуется во всех изученных комплексах и происходит по механизму внутримолекулярного переноса энергии возбуждения. Наибольший сигнал наблюдается для комплекса тербия с каликс[4]арен-15-краун-5, что связано с наибольшей в данном случае комплиментарностью между размером полости макроцикла и радиусом лантанида. Определено, что уменьшить безызлучательные потери энергии возбуждения, связанные с колебаниями связей С–Н и О–Н, можно, применяя такие органические растворители, как диметилформамид и диметилсульфоксид.

РЕЗЮМЕ. Вивчено спектрально-люмінесцентні характеристики йонів тербію Tb³⁺ у комплексах з калікс-[4]аренами, що модифіковані по нижньому ободу каліксаренової матриці краун-естерними фрагментами (12краун-4, 15-краун-5 та 18-краун-6). Встановлено, що найбільша інтенсивність 4*f*-люмінесценції реалізується у комплексі з калікс[4]арен-15-краун-5. Проаналізовано вплив природи розчинників на люмінесцентні властивості комплексів тербію.

SUMMARY. The spectral-luminescent characteristics of Tb^{3+} ions in the complexes with calix[4]arenes, which are modified by crown-ethers fragments (12-crown-4, 15-

crown-5 and 18-crown-6) by the lower rim of calixarene matrix, were studied. It was shown that the highest 4*f*-luminescence realizes in the complex with calix[4]arene-15-crown-5. The influence of solvent nature on the luminescent properties of terbium complexes was analyzed.

- 1. Alexander V. // Chem. Rev. -1995. -95. -P. 273-342.
- Parker D., Dickins R.S., Puschmann H. et al. // Chem. Rev. -2002. -102. -P. 1977—2010.
- 3. Bunzli J.-C.G., Piguet C. // Chem. Soc. Rev. -2005. -34. -P. 1134, 1135.

Физико-химический институт им. А.В. Богатского НАН Украины, Одесса

- Arduini A., Brindani E., Giorgi G. et al. // J. Org. Chem. -2002. -67. -P. 6188—6194.
- 5. Lipscomb W.N., Strater S. // Chem. Rev. -1996. -96. -P. 2375-2389.
- 6. Gutsche C.D., Muthukrishnan R. // J. Org. Chem. -1978. -43. -P. 4905, 4906.
- 7. Антипенко Б.М., Ермолаев В.Л. // Оптика и спектроскопия. -1971. -**30.** -С. 75—80.
- 8. Chrysochoos J. // Spectr. Lett. -1972. -5. -P. 429-440.
- Юсов А.Б., Федосеев А.М. // Журн. прикл. спектроскопии. -1988. -49. -С. 920—935.

Поступила 15.11.2006

УДК 537.523.5;544.556.1;546.11'21'26

М.М. Касумов, В.Л. Осауленко, В.В. Покропивный ДУГОВОЙ СИНТЕЗ И МОДИФИЦИРОВАНИЕ ФУЛЛЕРЕНОВ

Исследован масс-спектр фуллеренов дугового разряда после обычной экстракции из сажи. Установлено, что в масс-спектре существует участок, отделяющий малые и средние кластеры от кластеров-фуллеренов с производными. Участок преодолевается в плазме разряда путем коалесценции кластеров; на последующих стадиях синтеза становится возможным также присоединение малых радикалов.

С момента открытия [1] фуллерены привлекают внимание исследователей взаимосвязью структуры и свойств, возможностью управления свойствами за счет структуры молекулы. За два десятилетия благодаря многим тысячам исследований фуллерены и их производные постепенно превратились в перспективные материалы для решения проблемных задач медицины [2] и техники. С 2004 года начат синтез фуллеренов в промышленных масштабах путем сжигания углеводородов [3], но поиски более экономичного метода синтеза продолжаются.

Ранее [4] расчетами было показано, что фуллерены дугового разряда имеют выход $\alpha \approx 0.8$ г/квт-ч. Это пока лучший параметр по сравнению с другими методами и означает перспективность дугового метода, повысить эффективность которого предполагается усовершенствованием газодинамики разрядной камеры [5]. Однако сохраняется некоторая неопределенность с механизмом образования фуллеренов в условиях дугового разряда [6].

Основные представления о механизме образования фуллеренов исходят из модельных лазерохимических опытов [7—9]. В работе [7] покаЦель настоящей работы — исследование массспектров фуллеренов дугового разряда для сопоставления с принятыми механизмами синтеза.

Работа проводилась на установке дугового разряда. Реактор был собран в разрядной камере с охлаждаемой водой цилиндрической полостью диаметром 37 мм. Рабочий газ — гелий — вво-

зано последовательное преобразование углеродных кластеров в результате газокинетических процессов подсоединением атомов и малых кластеров (С2,С3,С4) до С10 в виде линейной цепочки. Дальнейший рост (C₁₀→C₂₀→C₃₀) структуры преобразует кластер в мультикольца, которые при дополнительном подогреве преобразуются в замкнутый углеродный каркас — фуллерен. В работе [8] показано преобразование под действием энергии лазерного импульса циклических углеродных оксидов прекурсоров для цикло-С18 или -С24 в фуллерен С₇₀, а цикло-С₃₀ — в фуллерен С₆₀. При этом, как и в работе [7], возможен отрыв малых фрагментов (С, С₂, С₃). В работе [9] рассмотрена модель Heath-"fullerene-road", согласно которой фуллерены формируются из кластеров с замкнутым каркасом, состоящим из 30-40 атомов углерода, добавлением малых углеродных радикалов.

[©] М.М. Касумов, В.Л. Осауленко, В.В. Покропивный, 2007