548.737 + 546.562

А.Н. Гусев, В.Ф. Шульгин, А.Н. Чернега МОЛЕКУЛЯРНАЯ СТРУКТУРА ДИМЕРНОГО АДДУКТА АЦЕТАТА МЕДИ (II) С ПИРИДИНОМ

Выполнен рентгеноструктурный анализ аддукта ацетата меди (II) с пиридином состава $[Cu_2(\mu-CH_3COO)_4-(C_5H_5N)_2]$. Кристаллографические данные: a=19.543(2), b=13.054(3), c=8.601(4) Å. Пр.гр. *Pbca*, Z=8 (2897 отражений, R=0.040, $R_w=0.045$). Координационное соединение содержит центросимметричные димеры, построенные по типу "китайского фонарика", в котором карбоксилат-анионы выполняют бидентатно-мостиковую функцию и связывают катионы меди, расположенные на расстоянии 2.637 Å. Аксиальные позиции заняты атомами азота молекул пиридина (длина связи Cu–N 2.192 Å).

Димерные карбоксилаты меди (II) являются классическими объектами современной координационной химии и довольно подробно исследованы методами магнетохимии [1, 2], спектроскопии ЭПР [3—5] и рентгеноструктурного анализа [6]. В литературе описана молекулярная и кристаллическая структура более 120 димерных карбоксилатов меди (II), однако структура аддукта Cu(CH₃-COO)₂ с пиридином до настоящего времени не изучена. Ранее [7] было установлено, что, в зависимости от условий синтеза, возможно образование как мономерных, так и димерных аддуктов ацетата меди с пиридином и пиколином. Результаты исследования равновесия

 $[Cu(OAc)_2Py]_2 + 2Py \Longrightarrow 2[Cu(OAc)_22Py]$

свидетельствуют о том, что оно сильно смещено в сторону образования димера ($K=1.2 \cdot 10^{-2}$) [8].

Нами выполнен прямой рентгеноструктурный анализ кристаллической и молекулярной структуры аддукта [Cu(OAc)₂Py]₂ (I). Рентгеноструктурное исследование монокристалла соединения I с линейными размерами 0.31×0.34×0.38 мм, выращенного перекристаллизацией из метанола с добавлением небольшого количества пиридина, проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (СиКа-излучение, λ=1.54178 Å, отношение скоростей сканирования $2\theta/\omega = 1.2$, $\theta_{\text{макс}} = 65^{\circ}$, сег-C4 мент сферы $0 \le h \le 23, 0 \le k \le 15, 0 \le l \le 8$). Всего было собрано 2897 отражений, из которых 2081 являются симметрично независимыми ($R_{int} = 0.03$). Кристаллы орторомбической сингонии, a = 19.543(2), b =13.054(3), c = 8.601(4) Å, V = 2194(1) Å³, ME= 260.73; Z = 8, $d_{\text{выч}} = 1.58 \text{ г/см}^3$; $\mu = 2.75 \text{ см}^{-1}$, F(000) = 1059.6; пространственная группа Рbса. Структура расшифрована прямым методом и уточнена методом наи-

меньших квадратов в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [9]. В уточнении использовано 1428 отражений с $I > 3\sigma(I)$ (136 уточняемых параметров). При уточнении использована весовая схема Чебышева с тремя параметрами: 2.81; 0.788; 2.28 [10]. Окончательные значения факторов расходимости: R=0.040 и $R_w=0.045$, GOF=1.116. Остаточная электронная плотность из разностного ряда Фурье составляет 0.42 и – 0.55 $e/Å^3$. Учет поглощения в кристалле выполнен с помощью метода азимутального сканирования [11]. Полный набор рентгеноструктурных данных задепонирован в Кембриджском банке структурных данных (№ ССDC 298791).

Общий вид молекулы комплекса представлен на рисунке, наиболее важные длины связей и валентные углы приведены в таблице.

Кристаллическая структура соединения I по-

Молекулярная структура аддукта ацетата меди (II) с пиридином. Атомы водорода для простоты не приведены.

Основные длины связей (d) и валентные углы (ω)

Связь	d, Å	Угол	ω, град.
Cu(1)–Cu(1)	2.6371(9)	Cu(1)–Cu(1)–O(1)	82.60(8)
Cu(1)–O(1)	1.963(2)	Cu(1)–Cu(1)–O(2)	85.18(7)
Cu(1)–O(2)	1.973(2)	O(1)–Cu(1)–O(2)	167.77(9)
Cu(1)–O(3)	1.973(2)	Cu(1)–Cu(1)–O(3)	83.46(7)
Cu(1)–O(4)	1.975(2)	O(1)–Cu(1)–O(3)	90.30(11)
Cu(1)–N(1)	2.192(2)	O(2)–Cu(1)–O(3)	88.65(11)
O(1)–C(6)	1.250(4)	Cu(1)–Cu(1)–O(4)	84.67(7)
O(2)–C(6)	1.253(4)	O(1)–Cu(1)–O(4)	89.17(11)
O(3)–C(8)	1.251(4)	O(2)–Cu(1)–O(4)	89.3 (1)
O(4)–C(8)	1.252(4)	O(3)–Cu(1)–O(4)	168.09(9)
N(1)–C(1)	1.350(4)	Cu(1)–Cu(1)–N(1)	178.29(7)
N(1)–C(5)	1.334(4)	O(1)–Cu(1)–N(1)	96.3 (1)
C(1)–C(2)	1.365(5)	O(2)–Cu(1)–N(1)	95.96(9)
C(2)–C(3)	1.405(7)	O(3)–Cu(1)–N(1)	95.28(9)
C(3)–C(4)	1.384(8)	O(4)–Cu(1)–N(1)	96.6 (1)
C(4)–C(5)	1.375(6)	Cu(1)–O(1)–C(6)	125.5 (2)
C(6)–C(7)	1.506(4)	Cu(1)–O(2)–C(6)	121.85(19)
C(8)–C(9)	1.506(4)	Cu(1)–O(3)–C(8)	123.7 (2)
		Cu(1)–O(4)–C(8)	122.14(19)
		Cu(1)–N(1)–C(1)	119.9 (2)
		Cu(1)–N(1)–C(5)	122.2 (2)

строена из дискретных центросимметричных димеров, имеющих геометрию "китайского фонарика". Катионы меди связаны четырьмя мостиковыми ацетат-анионами, симметрично координированными по типу с-2-с [12]. Расстояние медь...медь равно 2.637 Å и лежит в диапазоне 2.603—2.886 Å, типичном для димерных аддуктов ацетата меди с хромофором CuO₄N [6]. Геометрия координационного полиэдра соответствует тетрагональной пирамиде, основание которой образовано четырьмя карбоксильными атомами кислорода, а вершина занята атомом азота молекулы пиридина. Катионы меди (II) отклоняются от базальной плоскости на 0.207 Å в сторону атома азота. Расстояние Cu (1) -N(1) равно 2.192 Å и несколько больше расстояний Cu(1)-O (1.963—1.975 Å), что позволяет отнести координацию меди к типу [4+1] [13]. Длины связей и валентные углы в пределах ацетат-анионов и молекулы пиридина близки к обычным значениям [14, 15].

РЕЗЮМЕ. Виконано прямий рентгеноструктурний аналіз адукту ацетату купруму (II) з піридином складу [$Cu_2(\mu$ -CH₃COO)₄(C_5H_5N)₂]. Кристалографічні дані: a=19.543(2), b=13.054(3), c=8.601(4) Å. Пр.гр. *Pbca*, Z=8 (2897 відбитків, $R=0.040, R_w=0.045$). Координаційна сполука містить центросиметрічні димери, побудовані за типом "китайського ліхтарика", у якому карбоксилат-аніони виконують бідентатно-місткову функцію і зв'язують катіони купруму, розташовані на відстані 2.637 Å. Аксіальні позиції зайняті атомами нітрогену молекул піридину (довжина зв'язку Cu-N 2.192 Å).

SUMMARY. The X-ray analysis of the copper (II) acetate and pyridine adduct $[Cu_2(\mu-CH_3COO)_4(C_5H_5N)_2]$ had been carried out. Cell parameters a=19.543(2), b=13.054(3), c=8.601(4)Å. Space group *Pbca*, Z=8 (2897 reflexes, R=0.040, $R_w=0.045$). Coordination compound consist of the symmetric dimers that are built as a "lantern". Carboxylic anions are bicoordinated and connects copper cations that are displaced at 2.637 Å. Nitrogen atoms of pyridine molecules taken up an axial positions (Cu–N 2.192 Å).

- 1. Карлин Р. Магнетохимия. -М.: Мир, 1989.
- 2. Ракитин Ю.В., Калинников В.Т. Современная магнетохимия. -СПб.: Наука, 1994.
- 3. Ракитин Ю.В., Минин В.В., Ларин Г.М. Интерпретация спектров ЭПР координационных соединений. -М.: Наука, 1993.
- 4. Яблоков Ю.В., Воронкова В.К., Мосина Л.В. Парамагнитный резонанс обменных кластеров. -М.: Наука, 1988.
- 5. Smith T.D., Pilbrow J.R. // Coord. Chem. Rev. -1974. -13, № 2/3. -P. 173—278.
- 6. Sundberg M.R., Uggla R., Melnik M. // Polyhedron. -1996. -15, № 7. -P. 1157—1163.
- 7. Szpakowska M., Uriska I. // Thermochim. Acta. 1987. -117, № 15. -P. 59—72.
- Abuhijleh A.L., Ahmed I.Y. // Polyhedron. -1991. -10, № 8. -P. 793—797.
- 9. Watkin D.J., Prout C.K., Carruthers J.R., Betteridge P.W. CRYSTALS. Issue 10. -Chem. Crystallography Laboratory, Univ. of Oxford, 1996.
- Carruthers J.R., Watkin D.J. // Acta crystallogr. (A).
 -1979. -35. -P. 673—698.
- 11. North A.C.T., Phillips D.C., Scott F., Mathews F.S. // Ibid. -1968. -24. -P. 351-355.
- Порай-Кошиц М.А. Журн. структур. химии. -1980.
 -21. -№ 3. -С. 146—180.
- Уэллс А. Структурная неорганическая химия. В 3-х т. -М.: Мир, 1988. -Т. 3. -С. 249.
- 14. Allen F.H., Kennard O., Watson D.G. et al. // J. Chem. Soc. Perkin Trans. II. -1987. -№ 12. -P. S1—S19.
- 15. Orpen A.G., Brammer L., Allen F.H. et al. // Ibid. -1989. -№ 12. -P. S1—S83.

Поступила 14.12.2005

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2007. Т. 73, № 4

Таврический национальный университет им. В.И. Вернадского, Симферополь Институт органической химии НАН Украины, Киев