- 71. Burch R., Urbano F.J., Loader P.K. // Appl. Catal. -1995. -A.123, № 1. -P. 173—184.
- 72. Ribeiro F.U., Chow M., Dalla Betta R.A. // J Catal. -1994. -146, № 2. -P. 537—577.
- Щитова Н.Б., Дроздов В.А., Колосов П.Е., Смоликов М.Д. // Кинетика и катализ. -2000. -41, № 5. -С. 791—800.
- 74. Bera P., Patil K.C., Hegde M.S. // Phys. Chem. -2000. -№ 2. -P. 373—378.
- Fessi S., Ghorbel A., Rives A., Hubuut R. // Ibid. -2000.
 -№ 2. -P. 3795—3800.
- Doshi R., Alcock C.B., Gunasekaran N., Carlerry J. // J. Catal. -1993. -140, № 21. -P. 557—563.
- Сталл Д., Вестрам Э., Зинке Г. Химическая термодинамика органических соединений -М.: Мир, 1971.
- Isaienko O., Maksymovych N., Yatsimirsky V. // Sensors and Actuators. -2005. -B108. -P. 134—142.
- Maximovich N.P., Yeremina L.E. // Ibid. -1993. -B.13, 14. -P. 256—258.
- Maksymovych N., Vorotyntsev V., Nikitina N. et al. // Ibid. -1996. -B.35, 36. -P. 419—421.
- Maksymovych N.P., Maksymovych P.O. // Ibid. -2000.
 -B65. -P. 310, 311.
- 82. Xueyan Du, Yuan Wang, Yonguan Mu et al. // Chem. mater. -2002. -14. -P. 3953—3957.
- Максимович Н.П., Каскевич О.К., Максимович П.А., Яцимирский В.К. и др. // Журн. аналит. химии. -2003.
 -58, № 16. -С. 105—110.

Київський національний університет ім. Тараса Шевченка

- 84. Maksymovych N., Ruchko V., Maksymovych O.E. et al. // CHISA 2002, Praha, Czesh.Republic, 2002. -P. 163.
- 85. *Maksymovych N.P. Maksymovych P.O. //* Proc. World Ceramic Congress and Forum on New Materials. -Florence, Italy, 1998. -P. 248.
- 86. *Мичак А.Г., Кудряшов О.І.,.Максимович Н.П. та ін.* Космічна наука та технологія. -2002. -**8**, № 2/3. -C. 218—221.
- 87. Каскевич О.К., Максимович Н.П., Никитина Н.В. и др. Фундаментальная наука в интересах развития критических технологий. -Владимир: Изд-во Ин-та катализа СО РАН, Новосибирск, 2005. -С. 313, 314.
- 88. Пат. 56271, Україна. Опубл. 15.05.2003.
- 89. Пат. 2199054, Российская федерация 56271. -Опубл. 20.02.2003.
- Maksymovych N., Ripko O., Maksymovych O. et al. // Sensors and Actuators. -2003. -B93. -P. 321—326.
- 91. Максимович Н.П., Каскевич О.К., Максимович А.И и др. Фундаментальная наука в интересах развития критических технологий. -Владимир: Изд-во Ин.-та катализа СО РАН, Новосибирск, 2005. -С. 325, 326.
- 92. Diegues A., Romano-Rodrigies A., Morante J.R. et al. // Sensors and Actuators. -2000. -B66. -P. 40—42.
- 93. Jiang D.P., Zhang L.G., Fan Y. et al. // Ibid. -2000. -B66. -P. 207—209.
- 94. Massok P., Loesch M., Bertrand D. // Ibid. -1995. -B24, 25. -P. 525—528.

Надійшла 03.11.2006

ДК 541.49+546.98

А.Н. Козачкова, Н.В. Царик, Н.А. Костромина, В.И. Пехньо

ВЗАИМОДЕЙСТВИЕ *цис*-ДИАМИНДИХЛОРОПАЛЛАДИЯ (II) С ОКСИЭТИЛИДЕНДИФОСФОНОВОЙ КИСЛОТОЙ

Методами pH-потенциометрии, электронной и ИК-спектроскопии изучено комплексообразование μuc -Pd(NH₃)₂Cl₂ с оксиэтилидендифосфоновой кислотой (ОЭДФ, H₄L) в зависимости от pH среды в водных рас- творах при различных соотношениях Pd (II) и ОЭДФ. Рассчитаны константы образования и построены диаграммы распределения равновесных концентраций комплексов состава [Pd(NH₃)₂HL]⁻ и [Pd(NH₃)₂L]²⁻. Для комплексов Pd (II) с PO₃²⁻-группой ОЭДФ, NH₃ и Cl⁻ лигандами рассчитаны величины инкрементов для уравнения, связывающего состав хромофора с энергией d-d-переходов.

Данная работа является продолжением изучения комплексообразования палладия (II) с оксиэтилидендифосфоновой кислотой (ОЭДФ, H₄L). Ранее [1] нами исследовано взаимодействие ОЭДФ с хлороаквакомплексами палладия (II), образующимися при растворении K₂PdCl₄, и было показано, что в растворах хлороаквакомплексов палладия (II) с ОЭДФ образуются комплексы состава [PdHLCl₂]³⁻ и [PdLCl₂]⁴⁻. Взаимодействие хлороаквакомплексов палладия (II) с ОЭДФ происходит с замещением двух молекул воды в PdCl₂-(H₂O)₂ или молекулы воды и хлорид-иона в случае [PdCl₃H₂O]⁻ двумя депротонированными атомами кислорода фосфоновых групп лиганда.

В настоящей работе проведено исследование взаимодействия ОЭДФ с *цис*-Pd(NH₃)₂Cl₂. Пред-

[©] А.Н. Козачкова, Н.В. Царик, Н.А. Костромина, В.И. Пехньо, 2007

ставляло интерес установить состав и устойчивость комплексов, образующихся в системе *цис*-Pd(NH₃)₂Cl₂—ОЭДФ, и сравнить с ранее полученными данными для системы K₂PdCl₄—ОЭДФ.

В качестве исходных веществ использовали ОЭДФ (ч.) и *цис*-Pd(NH₃)₂Cl₂, синтезированный по схеме [2]:

Pd
$$\xrightarrow{\text{HNO}_3 + 3\text{HCl}}$$
 PdCl₂ $\xrightarrow{\text{KCl}}$ K₂PdCl₄ $\xrightarrow{\text{2CH}_3\text{COONH}_4}$
 \longrightarrow uuc -Pd(NH₃)₂Cl₂.

Содержание палладия в PdCl₂ определяли восстановлением хлорида в токе водорода до металлического палладия [3]. Образование *цис*-комплекса Pd(NH₃)₂Cl₂ проверяли по появлению красной окраски при прибавлении к ацетатному раствору данной соли раствора KI [2].

Спектрофотометрическое и рН-потенциометрическое исследование системы μuc -Pd(NH₃)₂Cl₂ —ОЭДФ при соотношениях металл : лиганд, равных 1:1, 1:2 и 2:1, в зависимости от рН проводили по методике, описанной в предыдущей работе [1]. Концентрация палладия (II) в растворах составляла $1 \cdot 10^{-3}$ моль/л, лиганда — $1 \cdot 10^{-3}$, $2 \cdot 10^{-3}$ и $5 \cdot 10^{-4}$ моль/л соответственно. Количество добавленного КОН изменяли от 0 до 5 эквивалентов по отношению к лиганду. Константу образования комплексов рассчитывали на основании данных рН-потенциометрии и спектрофотометрии по программе PSEQUAD [4] по формуле:

$$\beta_{9\phi} = \left[(\mathrm{Pd}(\mathrm{NH}_3)_2)_x \mathrm{L}_y \mathrm{H}_z \right] / \left[\mathrm{Pd}(\mathrm{NH}_3)_2 \mathrm{Cl}_2 \right]^x \cdot \left[\mathrm{L} \right]^y [\mathrm{H}]^z.$$
(1)

Рассчитанные по формуле (1) константы описывают только равновесия присоединения лиганда к иис-Pd(NH₃)₂Cl₂ без учета природы и количества атомов во внутренней координационной сфере палладия (II), замещаемых при комплексообразовании. Необходимо отметить, что эти константы являются эффективными, так как их значения зависят от концентрации в растворе хлорид-ионов и молекул NH₃. Тем не менее, значения констант образования комплексов ($\beta_{9\varphi}$), образующихся в системе *цис*-Pd(NH₃)₂Cl₂—ОЭДФ, можно использовать для построения диаграмм распределения равновесных концентраций комплексов в зависимости от рН раствора и сравнения с результатами, полученными в одинаковых условиях без введения постороннего электролита, для системы К₂PdCl₄—ОЭДФ.

Состав внутренней координационной сферы комплексов палладия (II) определяли на основа-

нии сравнения положения максимумов полос поглощения, наблюдаемых в спектрах изучаемой системы, с положением максимумов полос поглощения для ряда комплексов палладия (II) с известным составом хромофора.

Кривые pH-потенциометрического титрования ОЭДФ и смеси ОЭДФ с *цис*-Pd(NH₃)₂Cl₂ приведены на рис. 1. При эквимолярном соотношении компонентов кривая титрования в приделах pH 3—10 расположена при более низких pH, чем

Рис. 1. Кривые pH-потенциометрического титрования ОЭДФ (1) и систем $Pd(NH_3)_2Cl_2: OЭДФ$ в соотношении, равном 1:2 (2), 1:1 (3), 2:1 (4).

для ОЭДФ, что указывает на комплексообразование с выделением ионов водорода. При этом часть атомов, входящих в координационную сферу палладия (II), замещается депротонированными атомами кислорода ОЭДФ. Именно этот процесс фиксируется в спектрах поглощения системы *цис*-Pd(NH₃)₂Cl₂—ОЭДФ при соотношении металл : лиганд, равном 1:1, 1:2 и 2:1, в зависимости от pH среды.

Как видно из рис. 2, в электронных спектрах поглощения системы *цис*-Pd(NH₃)₂Cl₂—OЭДФ (1:1) при pH 2.98—4.42 наблюдается уменьшение интенсивности полосы поглощения при 25800 см⁻¹, соответствующей Pd(NH₃)₂Cl₂ [5], и появление полосы с v_{max} =29800 см⁻¹. Изобестическая точка в электронных спектрах поглощения в данной области pH свидетельствует о наличии в системе двух окрашенных частиц — Pd(NH₃)₂Cl₂ и комплекса палладия (II) с ОЭДФ. Можно предположить, что при образовании комплекса с максимумом поглощения 29800 см⁻¹ происходит замещение двух ио-

Рис. 2. Электронные спектры поглощения растворов системы $Pd(NH_3)_2Cl_2: H_4L = 1:1 (C_{Pd(II)}=1\cdot10^{-3}, C_{H_4L}= = 1\cdot10^{-3}$ моль/л). pH: 1 - 2.98; 2 - 3.23; 3 - 3.70; 4 - 4.42; 5 - 6.48; 6 - 7.15; 7 - 8.06; 8 - 8.44.

нов хлора в $Pd(NH_3)_2Cl_2$ двумя депротонированными атомами кислорода фосфоновых групп ОЭДФ. По данным спектрофотометрии и pH-потенциометрии для данной области pH рассчитана константа образования комплекса [Pd(NH_3)_2HL]⁻, равная $lg\beta_{bb}=15.68$ (5·10⁻²).

Дальнейшее повышение pH до 8.44 сопровождается ростом интенсивности полосы поглощения при незначительном сдвиге максимума к 30200 см⁻¹. Для области pH 6.48—8.44 рассчитана константа образования комплекса [Pd(NH₃)₂L]²⁻, равная $lg\beta_{3\phi}$ =8.40 (6·10⁻²). Данный комплекс образуется при депротонировании некоординированного атома кислорода фосфоновой группы ОЭДФ. При этом состав хромофора комплекса [Pd(NH₃)₂L]²⁻ остается таким же, как и для комплекса [Pd(NH₃)₂HL]⁻.

В электронных спектрах растворов, содержащих $Pd(NH_3)_2Cl_2$ и ОЭДФ в соотношении 1:2, в широкой области pH 2.6—8.51 наблюдаются полосы поглощения, соответствующие комплексам $[Pd(NH_3)_2HL]^-$ и $[Pd(NH_3)_2L]^{2-}$. Спектрофотометрические и pH-потенциометрические данные системы *цис*-Pd(NH_3)_2Cl_2—ОЭДФ = 1:2 хорошо описываются моделью с учетом образования комплексов с соотношением металл : лиганд, равным 1:1. Из построенной для данной системы диаграммы распределения равновесных концентра-

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2007. Т. 73, № 3

раций комплексов палладия (II) с ОЭДФ (рис. 3) следует, что максимальный выход комплекса $[Pd(NH_3)_2HL]^-$ наблюдается при рН 6.5, а комплекса $[Pd(NH_3)_2L]^{2-}$ — при рН 9.

В электронных спектрах поглощения растворов системы $Pd(NH_3)_2Cl_2 \ c \ O \ni Д\Phi = 2:1$ в области pH от 2.99 до 4.84 наблюдается смещение максимума полосы поглощения от 25800 см⁻¹ к 29800 см⁻¹, соответствующее образованию комплекса [Pd(NH_3)_2HL]⁻. При дальнейшем повышении pH выделяется осадок, элементный анализ которого свидетельствует об образовании комплекса состава $Pd_2(NH_3)_4L\cdot H_2O$.

Найдено, %: С 4.88, Н 3.62, N 10.13, P 13.0, Pd 39.9. Pd₂(NH₃)₄L·H₂O. Вычислено, %: С 4.74, Н 3.62, N 11.18, P 12.36, Pd 42.48.

Для установления способа координации ОЭДФ в биядерном комплексе $Pd_2(NH_3)_4L \cdot H_2O$ изучен ИК-спектр образца в таблетке с КВг в области валентных колебаний фосфоновой группы (800—1300 см⁻¹). В спектре выделенного комплекса Pd₂(NH₃)₄L·H₂O наблюдаются полосы с максимумом 968, 1004 см⁻¹, соответствующие колебаниям $\gamma_s(PO_3^{2-})$ и 1044, 1136 см⁻¹, соответствующие колебаниям $\gamma_d(PO_3^{2-})$ [6], что свидетельствует о том, что ОЭДФ входит в состав комплекса в виде четырехзарядного аниона. В спектре биядерного комплекса отсутствует полоса при 320 см⁻¹, соответствующая колебаниям (Рd -Cl) [7]. Таким образом, можно предположить, что координационную сферу каждого атома палладия (II) составляют два депротонированных атома кислорода фосфоновых групп ОЭДФ и две молекулы NH₃

Сравнивая процесс комплексообразования

Рис. 3. Диаграмма равновесного распределения концентраций комплексов различного состава в системе $Pd(NH_3)_2Cl_2: H_4L = 1:2$. $C_{Pd(II)} = 1 \cdot 10^{-3}$, $C_{H_4L} = 2 \cdot 10^{-2}$ моль/л.

цис-Pd(NH₃)₂Cl₂ и K₂PdCl₄ с ОЭДФ, необходимо отметить, что взаимодействие в системе *цис*-Pd(NH₃)₂Cl₂—ОЭДФ происходит при более высоких значениях pH по сравнению с системой K₂PdCl₄—ОЭДФ. Этот факт можно объяснить разной устойчивостью исходных K₂PdCl₄ и *цис*-Pd(NH₃)₂Cl₂ в растворе. Величина первой константы гидратации K₂PdCl₄ ($K_{гидр}$ =0.05) [8] на порядок больше величины константы гидратации *цис*-Pd(NH₃)₂Cl₂ ($K_{гидр}$ =0.0047) [5].

В работе [9] было показано, что положение максимума полосы поглощения в электронных спектрах комплексов палладия (II) может быть рассчитано как сумма инкрементов донорных атомов, входящих во внутреннюю координационную сферу комплексов. Используя приведенные в литературе данные о положении максимумов полос поглощения для ряда комплексов палладия (II) с NH₃ и хлорид-ионами [5], а также максимумы полос поглощения изучаемых комплексов палладия (II) с ОЭДФ (таблица), мы попытались оценить величину инкремента для атома кислорода фосфоновой группы. Положение максимума полосы погло-

Спектрофотометрические данные для комплексов палладия (II) с хлорид-ионами, NH₃ и ОЭДФ

Комплекс	Состав хромофора	$\nu_{_{3KC\Pi}}$	ν_{pac4}
		см ⁻¹	
$Pd(NH_3)_4^{2+}$	Pd $4N_{NH_3}$	33900	33260
$PdCl_4^{2^2}$	Pd 4Cl	21100	20700
$Pd(NH_3)_2Cl_2$	Pd 2N _{NH3} 2Cl	26300	26980
$Pd(NH_3)Cl_3^-$	Pd Nnh ₃ 3Cl	23300	23870
$Pd(NH_3)_3Cl^+$	Pd 3N _{NH3} Cl	30300	30120
PdHLCl ₂ ³⁻	Pd 2Opo ₃ 2Cl	24600	24000
$Pd(NH_3)_2HL^-$	Pd 2Nnh ₃ 2Opo ₃	29800	30290
$Pd(NH_3)_2L^{2-}$	$Pd \ 2N_{\rm NH_3} \ 2O_{PO_3}$	30200	30290

щения для данных комплексов было представлено уравнением:

$$v_{\text{max}} = n_1 v(\text{Cl}) + n_2 v(\text{N}_{\text{NH}_3}) + n_3 v(\text{O}_{\text{PO}_3}),$$

где n_i — количество донорных атомов каждого типа; v — величина инкрементов для донорных атомов каждого типа.

Решив систему линейных уравнений методом наименьших квадратов, мы нашли следующие величины инкрементов, см⁻¹: v(Cl) = 5179, $v(N_{N \ H}) = 8316$ и $v(O_{P \ Q}) = 6831$. Коэффициент корреляции между величинами максимумов полос поглоще-

ния, наблюдаемыми в спектрах и рассчитанными на основании инкрементов, составляет 0.985.

Полученные значения инкрементов для хлорид-ионов и NH₃ практически совпадают со значениями, полученными в работе [9]. Рассчитанная величина инкремента для атома кислорода фосфоновой группы наиболее близка к величине инкремента для атома кислорода карбоксильной группы.

Таким образом, установлено, что при взаимодействии в растворе цис-Pd(NH₃)₂Cl₂ с ОЭДФ образуются комплексы эквимолярного состава с координацией лиганда к палладию (II) двумя депротонированными атомами кислорода фосфоновых групп. Рассчитанные величины инкрементов для Cl⁻, N_{NH₃} и О_{РО₃} могут быть использованы для определения состава хромофора комплексов палладия (II).

РЕЗЮМЕ. Методами рН-потенціометрії, електронної та ІЧ-спектроскопії вивчено комплексоутворення *цис*-Pd(NH₃)₂Cl₂ з оксиетилідендифосфоновою кислотою (ОЕДФ, H₄L) в залежності від pH середовища у водних розчинах при різних співвідношеннях Pd (II) і ОЕДФ. Розраховано константи утворення і побудовано діаграми розподілу рівноважних концентрацій комплексів складу [Pd(NH₃)₂HL]⁻ і [Pd(NH₃)₂L]²⁻. Для комплексів Pd (II) з PO₃²⁻-групою ОЕДФ, NH₃ і Cl⁻-лігандами встановлено величини інкрементів для рівняння, що пов'язує склад хромофору з енергією *d*-*d*-переходів.

SUMMARY. By means of pH-potentiometric, spectrophotometric and IR-spectroscopy methods the complex formation of *cis*-Pd(NH₃)₂Cl₂ with HEDP in aqueous solutions at different pH values and different Pd (II) to HEDP ratios has been studied. Formation stability constants for the complexes [Pd(NH₃)₂HL]⁻ and [Pd(NH₃)₂L]²⁻ and concentration distribution of the complexes have been computed. The increments at equation which connects the composition of chromofore with the *d*-*d* transition energy for the complexes of Pd (II) with PO₃²⁻ group HEDP, NH₃ and Cl⁻ ligands.

- 1. Царик Н.В., Козачкова А.Н., Костромина Н.А., Пехньо В.И. // Укр. хим. журн. -2005. -71, № 12. -С. 12—16.
- 2. Синтез комплексных соединений металлов платиновой группы. -М.: Наука, 1964.
- 3. Гинзбург С.И., Езерская Н.А., Прокофьева И.В. и др. Аналитическая химия платиновых металлов. -М.: Наука, 1972.
- Zekany L., Nagypal I. Computational methods for the determination of formation constants / Ed. by P.J. Leggett. -New York: Plenum, 1985. -P. 291—353.
- 5. Reinhardt R.A., Brnner N.L., Sparker R.K. // J. Inorg. Chem. -1967. -6, № 2. -P. 254—257.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2007. Т. 73, № 3

- 6. *Химия* комплексонов и их применение. -Калинин: Изд-во Калининского гос. ун-та, 1986. -С. 85—91.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. -М.: Мир, 1991.

Институт общей и неорганической химии им. В.И. Вернадского НАН Украины, Киев

8. Smith R.M., Martell A.E. Critical stability constants. -New York: Plenum Press, 1976. -Vol. 4. -P. 107.

9. Яцимирский К.Б., Козачкова А.Н. // Докл. АН УССР. Сер. Б. -1989. -№ 11. -С. 57—61.

Поступила 27.04.2006

УДК 546.74:546.73:546.76

Л.Г. Рейтер, Е.А. Шульженко

ПОЛИЯДЕРНЫЕ АМИНОЭТИЛАТНЫЕ КОМПЛЕКСЫ НИКЕЛЬ (II)—КОБАЛЬТ (III) И НИКЕЛЬ (II)—ХРОМ (III)*

Изучено взаимодействие ионов Ni²⁺ с *fac*-[MEtm₃] (М — Co, Cr; Etm — NH₂C₂H₄O[¬]). Показано, что в водном растворе образуется соединение состава Ni²⁺·2(*fac*-CoEtm₃). Спектрофотометрическим методом найдено значение константы устойчивости, а также констант скорости обратимой изомеризации фрагмента CoEtm₃ этого соединения. *Трис*-аминоэтилат хрома в присутствии Ni²⁺ подвергается акватации, найдена константа скорости этого процесса. Выделены кристаллические полиядерные соединения Ni²⁺ с продуктами акватации *трис*-аминоэтилата хрома. Обсуждается влияние ионов Ni²⁺ на скорости изомеризации и акватации фрагментов MEtm₃ полиядерных комплексов. Предложена методика гравиметрического определения нитрат-ионов, которая использована для синтезированных соединений.

Полиядерные гетерометальные комплексы с депротонированными этаноламинами могут найти применение как прекурсоры электрокатализаторов, как биологически активные вещества [1, 2].

Удобным способом получения таких соединений является взаимодействие солей *d*-металлов с нелабильным аминоэтилатом кобальта (III) [3— 6], который можно рассматривать как своеобразный лиганд за счет донорных атомов кислорода депротонированного аминоэтанола. Этим способом были синтезированы комплексы состава MX_2 ·(*fac*-CoEtm₃)·*n*H₂O и MX_2 ·2(*fac*-CoEtm₃)·*n*H₂O (Etm — NH₂C₂H₄O⁻, X — однозарядные анионы и 1/2 SO₄, M — Mg, Co, Ni, Cu, Zn и др.) [3—6], однако не было изучено состояние и устойчивость этих соединений в растворах. Прак тически отсутствовали данные о возможности получения полиядерных комплексов при взаимодействии MX₂ с аналогичным хромсодержащим аминоэтилатом *fac*-[CrEtm₃].

Ранее [7, 8] нами определены состав и константы устойчивости соединений, образующихся в водных растворах при действии ионов Cu^{2+} и Zn²⁺ на *трис*-аминоэтилаты кобальта (III) и хрома (III), изучена кинетика реакций их изомеризации и акватации, синтезированы новые Cu (II)—Cr (III) и Zn (II)—Cr (III) соединения. В настоящей работе нами исследованы соединения, образующиеся при взаимодействии ионов Ni²⁺ с *трис*-аминоэтилатами *fac*-[CoEtm₃] и *fac*-[CrEtm₃].

При действии ионов Ni²⁺ на водный раствор fac-[CoEtm₃] наблюдается существенное коротковолновое смещение обеих d-d-полос в электронном спектре *трис*-аминоэтилата (табл. 1, рис. 1). Для определения состава образующегося гетерометаллического комплекса использовали метод изомолярных серий. Из полученных при 340 и 600 нм данных (рис. 2) можно заключить, что образующееся соединение имеет состав 1:2, то есть Ni²⁺·2(*fac*-CoEtm₃). Соединение состава 1:1 в этих условиях не обнаружено. Образование соединений состава 1:2 было показано также для аналогичных систем Cu²⁺—*fac*-[CoEtm₃] и Zn²⁺—*fac*-[CoEtm₃] [7, 8].

Для определения константы устойчивости β_2 соединения Ni²⁺·2(*fac*-CoEtm₃) изучали изменение оптической плотности растворов, содержащих *fac*-[CoEtm₃] и Ni²⁺ (далее А и В) в молярном

^{*} Работа выполнена при поддержке Государственного фонда фундаментальных исследований Министерства образования и науки Украины.

[©] Л.Г. Рейтер, Е.А. Шульженко, 2007

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2007. Т. 73, № 3