- 9. Тітов Ю.О., Чумак В.В., Слободяник М.С. // Укр. хім. журн. -2005. -71, № 1. -С. 19—23.
- 10. Slobodyanik N.S., Titov Y.A., Chumak V.V. // Theoret. and Experim. Chemistry. -2005. -41, № 1. -P. 53—57.

Київський національний університет ім. Тараса Шевченка

- 11. Фесенко Е.Г. Семейство перовскита и сегнетоэлектричество. -М.: Атомиздат, 1972.
- 12. Ненашева Е.А., Ротенберг В.А., Гиндин Е.И., Прохватилов В.Г. // Изв. АН СССР, Сер. неорган. материалы. -1979. -15, № 10. -С. 1890—1892.

Надійшла 10.11.2005

УДК 547+546.712'742'562

Р.А. Дорощук, Д.Н. Хоменко, В.А. Овчинников, Р.Д. Лампека СИНТЕЗ И СТРОЕНИЕ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ *d*-МЕТАЛЛОВ И УРАНИЛ-ИОНА С С-2-ПИРРОЛ-N-МЕТИЛНИТРОНОМ

Синтезированы новый лиганд С-2-пиррол-N-метилнитрон и координационные соединения на его основе с ионами цинка, кадмия, палладия, мангана и уранил-ионом. Полученные соединения исследованы с помощью ИК-, ЯМР-спектроскопии и методом рентгеноструктурного анализа.

Создание новых эффективных лигандных систем и синтез на их основе координационных соединений с заданными свойствами является одним из основных и наиболее перспективных направлений разви-

тия современной координационной химии [1]. К таким системам следует отнести нитроны, которые могут координироваться к центральному атому за счет наличия высокой электронной плотности на атоме кислорода нитронной группы [2]. В литературе описаны свойства алифатических, шестичленных ароматических и гетероциклических нитронов [3, 4]. Интерес к синтезу и исследованию таких соединений вызван возможностью их использования для синтеза изоксазолидиновых систем, широко применяемых для синтеза разнообразных органических соединений, в частности, 1,3-аминоспиртов и α-ненасыщенных кетонов [5]. С другой стороны, изоксазолидины являются биологически активными веществами и используются в фармацевтической практике [5].

Поэтому целью данной работы было исследование координационного поведения С-2-пиррол-N-метилнитрона (2NP) с некоторыми *d*-металлами и уранил-ионом. Следует отметить, что в отличие от других типов нитроны, содержащие пятичленный гетероциклический фрагмент, и их комплексы практически не изучались.

Синтез С-2-пиррол-N-метилнитрона проводили по схеме с использованием методик, приведенных в работах [6, 7]:

Комплексные соединения синтезировали по общей методике, состоящей в следующем. Соль металла (0.3 ммоль, хлорид или нитрат) растворяли в 5 мл метанола. К полученному раствору прибавляли раствор лиганда 2NP (0.6 ммоль в 5 мл метанола). Полученные кристаллические вещества промывали толуолом и высушивали. В работе синтезированы координационные соединения 2NP с ионами цинка, кадмия, палладия, мангана и уранил-ионом.

ИК-спектры синтезированных соединений в области 400-4000 см⁻¹ были записаны на приборе UR-20 (таблетки KBr). Спектры ЯМР ¹Н измерены на спектрометре Mercury 400 фирмы Varian $(400 \text{ M}\Gamma\mu)$ при комнатной температуре в CD₃CN. Взаимодействие 2NP с лантаноидным сдвигающим реагентом (ЛСР) Eu(ФОД)₃ (ФОД — остаток 1,1,1,2,2,3,3-гептафтор-7,7-диметилоктан-4,6диона) проводили, добавляя к раствору взвешенного образца изучаемого вещества в дейтерохлороформе порции ЛСР и записи спектров ЯМР 'Н полученных растворов. Величины химических сдвигов для каждого из протонов обрабатывали методом наименьших квадратов и экстраполяцией находили сдвиги при соотношении ΠCP : субстрат = 1:1. Определенные таким обра-

© Р.А. Дорощук, Д.Н. Хоменко, В.А. Овчинников, Р.Д. Лампека, 2007

зом лантаноидные индуцированные сдвиги (ЛИС) сигналов использовали для последующего анализа. В качестве внутреннего стандарта химических сдвигов применяли ТМС, в качестве ЛСР — коммерческие реактивы без дополнительной очистки.

Соотношение металл : лиганд в синтезированных комплексах устанавливали методом атомноабсорбционной спектрометрии, измеряя концентрацию металла в образце после его разрушения. Для всех исследованных систем соотношение металл:лиганд составляет 1:2.

Рентгеноструктурное исследование монокристаллов синтезированных соединений проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4. При съемке структуры лиганда использовали Cu K_{α} -линии (длина волны — 1.54056 Å), для структуры комплексов — Мо K_{α} -линии (длина волны — 0.71073 Å). Для структуры 2NP с уранил-ионом учитывали поглощение методом пси-

сканирования [8]. Структура лиганда решена прямым методом, а структуры комплексов — методом Паттерсона. Структуры уточнялись по F^2 полноматричным МНК в анизотропном приближении для всех неводородных атомов. Атомы водорода частично локализованы из разностного синтеза Фурье, остальные задавались геометрически. Все расчеты выполнены по программам SHELXS-86 и SHELXL-93 [9, 10]. Основные кристаллографические данные и параметры экспериментов приведены в табл. 1, некоторые геометрические характеристики — в табл. 2—4.

ИК-спектр лиганда 2NP характеризируется интенсивной полосой поглощения при 1145 см⁻¹, которую можно отнести к валентным колебаниям группы N–O. Кроме этого, в спектре наблюдается уширенная полоса поглощения средней интенсивности при 1630 см⁻¹, отвечающая сопряженной системе двойных связей гетероцикла и нитронной группы. В ИК-спектрах координационных соединений на основе 2NP наблюдается

Таблица 1

Кристаллографические данные и параметры рентгендифракционных экспериментов для соединений 2NP, Cd₂(2NP)₄(NO₃)₄, UO₂(2NP)₂(NO₃)₂

Характеристика	2NP	$Cd_2(2NP)_4(NO_3)_4$	UO ₂ (2NP) ₂ (NO ₃) ₂
Эмпирическая формула М	C ₆ H ₈ N ₂ O 124.14	$C_{24}H_{32}Cd_2N_{12}O_{16}$ 969.42	$C_{12}H_{16}N_6O_{10}U_{642.34}$
Температура, К	293	293	293
Длина волны, А	1.54056	0.71073	0.71073
Параметры элементарной	a=8.458(2)	a=21.298(4)	a=7.2390(10)
ячейки, А, град.	b=19.048(4)	b=12.515(3)	b=13.352(3)
	<i>c</i> =18.044(4)	<i>c</i> =13.308(3)	<i>c</i> =9.796(2)
	$\beta = 103.49(3)$	β=90.64(3)	$\beta = 93.65(3)$
Сингония	Моноклинная	Моноклинная	Моноклинная
Пространственная группа	P2(1)/n	C2/c	P2(1)/n
Z	16	8	2
$V, Å^3$	2826.8(11)	3547.0(13)	944.9(3)
F(000)	1136	1936	604
Размер кристалла, мм, диаметр	0.15×0.20×0.20	0.43	0.34
сферического кристалла, мм			
$D_{\text{расч}}, \ \text{г/см}^3$	1.251	1.815	2.258
μ , MM^{-1}	0.092	1.287	8.655
Измеренные отражения	4530	4029	2191
Независимые отражения	4211	3859	2034
Отражения с $I > 2\sigma(I)$	3128	2878	1247
Количество параметров	487	244	137
Конечный <i>R</i> -фактор	$R_1 = 0.0424, \ wR_2 = 0.1243$	$R_1 = 0.0358, wR_2 = 0.0942$	$R_1 = 0.0333, wR_2 = 0.0902$
<i>R</i> -фактор по всем рефлексам	$R_{1}^{1}=0.0643, wR_{2}^{2}=0.1419$	$R_{1}^{1}=0.0648, wR_{2}^{2}=0.1184$	$R_{1}^{2}=0.0775, wR_{2}^{2}=0.1139$
Максимальный пик разности синтеза Фурье, <i>е</i> /Å ³	0.191	0.658	1.798

Таблица 2 Геометрические параметры структуры 2NP

Длины свя	зей, Å	Значения валентных углов, град.			
O(11)–N(11) N(22)–C(26)	1.316(2) 1.347(3)	C(26)–N(22)–C(23) C(12)–N(11)–O(11)	109.7(2) 122.72(17)		
N(22)–C(23)	1.375(3)	C(12)–N(11)–C(11)	121.5(2)		
O(21)–N(21)	1.319(2)	O(11)–N(11)–C(11)	115.80(18)		
O(41) - N(41)	1.319(2)	C(46)-N(42)-C(43)	109.87(19)		
N(11)-C(12)	1.301(3)	C(32) = N(31) = O(31)	122.47(18)		
N(11)-C(11) N(42) C(46)	1.459(5) 1.348(3)	C(32) = N(31) = C(31) O(31) = N(31) = C(31)	122.0(2) 115.6(2)		
N(42) = C(40) N(42) = C(43)	1.348(3) 1.369(3)	C(36) = N(32) = C(33)	113.0(2) 109 4(2)		
N(31)-C(32)	1.292(3)	C(30) = N(32) = C(33) C(42) = N(41) = O(41)	109.4(2) 122.15(17)		
N(31)-O(31)	1.319(2)	C(42)-N(41)-C(41)	122.0(2)		
N(31)-C(31)	1.453(3)	O(41)–N(41)–C(41)	115.83(18)		
N(32)–C(36)	1.350(3)	N(42)-C(43)-C(44)	106.63(19)		
N(32)–C(33)	1.379(3)	N(42)–C(43)–C(42)	125.60(19)		
N(41)–C(42)	1.301(3)	C(44)–C(43)–C(42)	127.8(2)		
N(41)–C(41)	1.458(3)	C(16)–N(12)–C(13)	109.66(19)		
C(43)–C(44)	1.394(3)	N(41)-C(42)-C(43)	125.7(2)		
C(43)–C(42)	1.410(3)	N(12)-C(13)-C(14)	106.83(19)		
N(12)-C(16)	1.355(3)	N(12)-C(13)-C(12)	125.92(19)		
N(12)-C(13)	1.368(3)	C(14)-C(13)-C(12)	127.2(2)		
C(13)-C(14)	1.389(3)	N(22)-C(23)-C(24) N(22)-C(23)-C(24)	106.49(19)		
C(13) = C(12)	1.414(3) 1.281(3)	N(22) = C(23) = C(22)	125.8(2) 127.6(2)		
C(23) = C(24)	1.381(3) 1.422(3)	C(24) = C(23) = C(22) C(22) = N(21) = O(21)	127.0(2) 122.96(18)		
N(21) = C(22)	1.422(3) 1.294(3)	C(22) = N(21) = O(21) C(22) = N(21) = C(21)	122.96(10)		
N(21)-C(21)	1.464(3)	O(21)-N(21)-O(21)	115.5(2)		
C(33)–C(34)	1.391(3)	N(32)–C(33)–C(34)	106.9(2)		
C(33)–C(32)	1.420(3)	N(32)–C(33)–C(32)	125.5(2)		
C(14)–C(15)	1.390(3)	C(34)–C(33)–C(32)	127.7(2)		
C(24)–C(25)	1.394(3)	C(13)-C(14)-C(15)	107.5(2)		
C(44)-C(45)	1.386(4)	N(11)-C(12)-C(13)	126.0(2)		
C(45)-C(46)	1.378(4)	C(23)-C(24)-C(25)	108.0(2)		
C(36)–C(35)	1.376(4)	C(45)-C(44)-C(43)	107.8(2)		
C(25)–C(26)	1.366(3)	N(21)-C(22)-C(23)	125.1(2)		
C(34)–C(35)	1.385(4)	N(31)–C(32)–C(33)	125.5(2)		
C(15)-C(16)	1.365(3)	C(46)-C(45)-C(44)	107.3(2)		
		N(42)-C(46)-C(45) N(22)-C(26)-C(25)	108.3(2)		
		N(32) = C(30) = C(33)	108.3(2) 107.2(2)		
		N(22) - C(23) - C(24)	107.3(2) 108 5(2)		
		C(35)-C(34)-C(33)	100.5(2) 107.6(2)		
		C(16)-C(15)-C(14)	107.8(2)		
		C(36)-C(35)-C(34)	107.9(2)		
		N(12)-C(16)-C(15)	108.2(2)		

Т	а	0	Л	И	Ц	а	3		
Д	ли	нь	лс	звя	взе	й ((Å) в	структурах	$UO_2(2NP)_2(NO_3)_2$
И	C	d ₂ (21	۱P)4(]	NO	$(3_3)_4$		

$UO_2(2NP)_2(NO_3)_2$		Cd ₂ (2NP) ₄ (NO ₃) ₄			
$UO_{2}(2NP)_{2}$ $U(1)-O(2)\#1$ $U(1)-O(2)$ $U(1)-O(1)\#1$ $U(1)-O(4)$ $U(1)-O(4)\#1$ $U(1)-O(3)\#1$ $U(1)-O(3)\#1$ $U(1)-N(3)\#1$ $N(1)-C(2)$ $N(1)-O(1)$ $N(1)-C(1)$ $O(3)-N(3)$	2(NO ₃)2 1.758(7) 1.758(7) 2.354(7) 2.354(7) 2.543(7) 2.543(7) 2.565(7) 3.000(8) 3.000(8) 1.310(11) 1.344(9) 1.460(12) 1.264(10)	$\begin{array}{c} Cd_2(2NP)_{44}\\ \hline Cd(1)-O(1)\\ Cd(1)-O(2)\\ Cd(1)-O(2)\# 1\\ Cd(1)-O(3)\\ Cd(1)-O(3)\\ Cd(1)-O(7)\\ Cd(1)-O(6)\\ Cd(1)-O(6)\\ N(6)-O(8)\\ N(6)-O(7)\\ N(6)-O(6)\\ O(1)-N(3)\\ O(4)-N(5)\\ N(4)-C(12)\\ N(4)-C(9)\\ \end{array}$	(NO ₃) ₄ 2.242(3) 2.284(3) 2.343(3) 2.349(4) 2.376(4) 2.413(3) 2.521(4) 1.220(5) 1.267(5) 1.267(5) 1.267(5) 1.346(5) 1.350(8) 1.374(6)		
C(2)–C(3) N(2)–C(6) N(2)–C(3) C(3)–C(4) O(4)–N(3) C(4)–C(5) N(3)–O(5) C(6)–C(5)	1.423(13) 1.345(14) 1.396(13) 1.388(14) 1.282(11) 1.377(19) 1.209(11) 1.35(2)	N(2)-C(6) $N(2)-C(3)$ $N(5)-O(5)$ $N(5)-O(3)$ $N(3)-C(8)$ $N(3)-C(7)$ $C(8)-C(9)$ $C(5)-C(4)$ $C(5)-C(6)$ $C(9)-C(10)$ $C(3)-C(4)$ $C(3)-C(2)$ $C(10)-C(11)$ $O(2)-N(1)$ $O(2)-Cd(1)# 1$ $N(1)-C(2)$ $N(1)-C(1)$	$\begin{array}{c} 1.349(7) \\ 1.375(6) \\ 1.222(5) \\ 1.251(6) \\ 1.293(6) \\ 1.462(7) \\ 1.411(7) \\ 1.368(10) \\ 1.385(9) \\ 1.395(7) \\ 1.395(7) \\ 1.399(7) \\ 1.401(7) \\ 1.403(9) \\ 1.337(9) \\ 1.368(4) \\ 2.343(3) \\ 1.298(6) \\ 1.481(6) \end{array}$		

П римечание. #1 — атомы генерируются операциями симметрии — в структуре $UO_2(2NP)_2(NO_3)_2$: -X, -Y, -Z; в структуре $Cd_2(2NP)_4(NO_3)_4$: 0.5-X, 0.5-Y, -Z (то же и в табл. 4).

сдвиг полосы поглощения v (N–O) в низкочастотную область на 5—15 см⁻¹, что свидетельствует об удлинении связи N–O. Вследствие координации лиганда к металлу происходит расщепление полосы поглощения в области двойных связей на две составляющие: v(C=N) и v(C=C). При этом полоса, обусловленная колебанием связи C=C в ароматическом ядре 2NP, смещается в низкочас-

Таблица 4

Значения некоторых валентных углов в структурах $UO_2(2NP)_2(NO_3)_2$ и $Cd_2(2NP)_4(NO_3)_4$

UO ₂ (2NP) ₂ (NC	₃) ₂	$Cd_2(2NP)_4(NO_3)_4$			
O(2) # 1 - U(1) - O(2)	180 0(5)	O(1) = Cd(1) = O(2)	86 80(11)		
O(2)#1-U(1)-O(1)#1	85 9(3)	O(1) - Cd(1) - O(2) = 1	159 29(11)		
$O(2)_{H} I O(1)_{O(1)_{H}} I$	94.1(3)	O(2) - Cd(1) - O(2) = 1	73 82(11)		
O(2)=O(1)=O(1)# 1 O(2)# 1 U(1) $O(1)$	94.1(3)	$O(2) - Cd(1) - O(2)\pi 1$ O(1) Cd(1) O(3)	88 65(14)		
O(2) = I = O(1) = O(1)	94.1(3) 85.0(3)	O(1) - Cd(1) - O(3)	130 47(12)		
O(2)=O(1)=O(1)	180.0(3)	O(2)=Cu(1)=O(3)	100.47(12) 100.35(13)		
O(1)#1- $U(1)$ - $O(1)$	100.0(3)	O(2)# I= $Cu(1)=O(3)$	109.55(13) 104.62(13)		
O(2) # I = O(1) = O(4)	09.2(3)	O(1) - Cd(1) - O(7)	104.02(13) 147.79(11)		
O(2)=O(1)=O(4)	90.0(3)	O(2)=Cu(1)=O(7)	147.70(11)		
O(1) # 1 = O(1) = O(4)	(113.9(2))	O(2) = 1 - Cu(1) - O(7)	00.00(11)		
O(1) = U(1) = O(4)	04.1(2)	O(3)-Cd(1)-O(7)	80.58(15)		
O(2) # I = O(1) = O(4) # I	90.8(3)	O(1) - Cd(1) - O(6)	89.24(12)		
O(2) - U(1) - O(4) # 1	89.2(3)	O(2) - Ca(1) - O(6)	97.26(11)		
O(1) # I - U(1) - O(4) # I	64.1(2)	O(2)# I-Cd(I)-O(6)	80.13(11)		
O(1)-U(1)-O(4)#1	115.9(2)	O(3) - Cd(1) - O(6)	131.98(12)		
O(4) - U(1) - O(4) # 1	180.0(5)	O(7)-Cd(1)-O(6)	53.79(11)		
O(2)#1-U(1)-O(3)	89.8(3)	O(1)-Cd(1)-O(4)	95.84(13)		
O(2)-U(1)-O(3)	90.2(3)	O(2)-Cd(1)-O(4)	79.76(11)		
O(1)#1-U(1)-O(3)	66.4(2)	O(2)#1-Cd(1)-O(4)	87.95(12)		
O(1)-U(1)-O(3)	113.6(2)	O(3)-Cd(1)-O(4)	51.73(12)		
O(4)-U(1)-O(3)	49.7(2)	O(7)-Cd(1)-O(4)	127.48(12)		
O(4)#1-U(1)-O(3)	130.3(2)	O(6)-Cd(1)-O(4)	173.92(12)		
O(2)#1–U(1)–O(3)#1	90.2(3)	O(8)–N(6)–O(7)	121.4(4)		
O(2)–U(1)–O(3)#1	89.8(3)	O(8)–N(6)–O(6)	121.1(4)		
O(1)#1-U(1)-O(3)#1	113.6(2)	O(7)–N(6)–O(6)	117.5(4)		
O(1)-U(1)-O(3)#1	66.4(2)	N(6)-O(6)-Cd(1)	93.4(3)		
O(4)–U(1)–O(3)#1	130.3(2)	N(3)-O(1)-Cd(1)	120.4(3)		
O(4)#1-U(1)-O(3)#1	49.7(2)	N(5)–O(4)–Cd(1)	91.4(3)		
O(3)–U(1)–O(3)#1	180.0(2)	C(12)–N(4)–C(9)	108.7(5)		
O(2)#1-U(1)-N(3)	88.9(3)	N(6)-O(7)-Cd(1)	95.2(3)		
O(2)–U(1)–N(3)	91.1(3)	C(6)-N(2)-C(3)	109.6(5)		
O(1)#1-U(1)-N(3)	90.9(2)	O(5)–N(5)–O(4)	122.8(5)		
O(1)–U(1)–N(3)	89.1(2)	O(5)–N(5)–O(3)	120.4(5)		
O(4)–U(1)–N(3)	25.1(2)	O(4)–N(5)–O(3)	116.8(4)		
O(4)#1-U(1)-N(3)	154.9(2)	N(5)–O(3)–Cd(1)	99.6(3)		
O(3)–U(1)–N(3)	24.7(2)	C(8)–N(3)–O(1)	122.4(4)		
O(3)#1-U(1)-N(3)	155.3(2)	C(8)–N(3)–C(7)	123.2(5)		
O(2)#1-U(1)-N(3)#1	91.1(3)	O(1)–N(3)–C(7)	114.4(4)		
O(2)–U(1)–N(3)#1	88.9(3)	N(3)-C(8)-C(9)	125.5(5)		
O(1)#1–U(1)–N(3)#1	89.1(2)	C(4)-C(5)-C(6)	108.6(5)		
O(1)–U(1)–N(3)#1	90.9(2)	N(4)–C(9)–C(10)	106.9(5)		
O(4)-U(1)-N(3)#1	154.9(2)	N(4)-C(9)-C(8)	126.4(4)		
O(4)#1-U(1)-N(3)#1	25.1(2)	C(10)-C(9)-C(8)	126.7(5)		
O(3)–U(1)–N(3)#1	155.3(2)	N(2)-C(3)-C(4)	106.9(5)		
O(3)#1–U(1)–N(3)#1	24.7(2)	N(2)-C(3)-C(2)	126.9(4)		
N(3)-U(1)-N(3)#1	180.0(3)	C(4)-C(3)-C(2)	126.2(5)		
C(2)–N(1)–O(1)	120.6(7)	N(2)–C(6)–C(5)	107.5(6)		

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2007. Т. 73, № 1

тотную область (табл. 5). Такой характер ИКспектров свидетельствует о координации лиганда через атом кислорода нитронной группы. В молекулу изучаемого нитрона входит пиррольный фрагмент, потому в ИКспектрах мы должны наблюдать довольно интенсивную полосу поглощения в области 3400—4500 см⁻¹. Но эта полоса присутствует только в ИК-спектрах комплексного соединения 2NP с уранил-ионом. В остальных случаях наблюдается уширенный пик в области 3200—3300 см⁻¹. Такой характер пика может быть обусловлен образованием водородной связи между атомом кислорода нитронной группы и N-H протоном пиррольного фрагмента. Этим объясняется небольшая разница в смещении полос поглощения в спектрах некоординированного лиганда и комплексов на его основе.

Некоординированный лиганд и координационные соединения на его основе с диамагнитными металлами (Pd^{2+} , Zn^{2+} , UO_2^{2+}) Cd^{2+}) были исследованы методом ¹Н ЯMPспектроскопии. Как видно из табл. 6, химические сдвиги протонов свободного лиганда и его координационных соединений несколько различаются. В ПМР-спектрах комплексных соединений наблюдается сдвиг сигналов в слабое поле. что вызвано уменьшением электронной плотности в органическом фрагменте. Следует отметить, что за счет координации 2NP к ионам металлов наибольший сдвиг наблюдается для протона Н(2), расположенного в непосредственной близости от центра координации, и составляет 0.11-0.4 м.д.

Метод лантаноидных сдвигающих реагентов, наряду с другими способами, во многих случаях используется для определения конформации молекул или функциональных групп в растворе. Их применение основано на том, что вызываемые ЛСР лантаноидные индуцированные сдвиги определяются расположением протонов молекулы относительно координационного центра и могут быть рассчитаны. Этот подход мы и использовали для выяснения строения некоординированного лиганда. Важным фактом для установления конформации соединения 2NP в растворе является значительная величина ЛИС для протона Н-5 гетероциклического фрагмента — в условиях эксперимента величина

		Продолжение п	пабл. 4		
UO ₂ (2NP) ₂ (NO ₃) ₂		$Cd_2(2NP)_4(NO_3)_4$			
$\begin{array}{c} UO_{2}(2NP)_{2}(NP)_{2}$	123.8(8) 115.4(8) 97.3(5) 125.6(8) 106.6(11) 107.6(10) 125.2(11) 127.1(9) 132.4(5) 97.8(5) 107.3(12) 123.0(9) 121.8(9) 115.1(8) 178.9(7) 58.0(4)	C(2) = C(1) - C(1) $C(5) - C(4) - C(3)$ $C(11) - C(12) - N(4)$ $N(1) - O(2) - Cd(1) + 1$ $Cd(1) - O(2) - Cd(1) + 1$ $C(2) - N(1) - O(2)$ $C(2) - N(1) - C(1)$ $O(2) - N(1) - C(1)$ $N(1) - C(2) - C(3)$ $C(12) - C(11) - C(10)$	106.7(5) 107.3(6) 109.8(6) 123.8(2) 121.5(2) 106.18(11) 121.2(4) 123.9(4) 114.8(3) 127.5(4) 107.8(6)		
O(4)–N(3)–U(1) C(5)–C(6)–N(2) C(6)–C(5)–C(4)	57.1(4) 110.9(13) 107.6(10)				

Таблица 5

Положения основных полос поглощения в ИК-спектрах 2NP и координационных соединений на его основе

Соединение	v (C=N, C=C)	v (N–O)		
	см ⁻¹			
2NP	1630	1145		
$Zn(2NP)_2Cl_2$	1640	1130		
$Mn(2NP)_2Cl_2$	1630, 1650	1135		
$Pd(2NP)_2Cl_2$	1600,1630	1170		
$UO_2(2NP)_2(NO_3)_2$	1650	1140		
$Cd_2(2NP)_4(NO_3)_4$	1655	1140		

ЛИС составляла 3.8. Это свидетельствует о близости данного протона к парамагнитному центру молекулы ЛСР, которая возможна только для *syn*-конформации лиганда в растворе:

Таблица б

Химические сдвиги протонов (групп протонов*), м.д.

$\begin{array}{c} 4 \\ 5 \\ N \\ H \\ O \end{array}$							
Соединение	1	2	3	4	5		
$\begin{array}{c} 2NP \\ UO_2(2NP)_2(NO_3)_2 \\ Cd_2(2NP)_4(NO_3)_4 \\ Zn(2NP)_2Cl_2 \\ Pd(2NP)_2Cl_2 \end{array}$	3.71 4.00 3.73 3.87 3.76	7.52 7.92 7.63 7.81 7.67	6.527.046.716.916.81	6.306.416.346.476.37	6.98 7.11 7.08 7.25 7.16		

* Спектры записаны в CD₃CN.

Рентгеноструктурное исследование показало, что в кристаллическом состоянии некоординированный лиганд находится в synформе (рис. 1) (четыре независимые молекулы лигандов). Длина связи C=N (1.297 Å) – нитронной группы близка к стандартной длине ковалентной связи C=N (1.28 Å) [11]. Длина связи N-O (1.316 Å) имеет промежуточное значение между одинарной N-O (1.4 Å) и двойной N=O (1.22 Å). Молекулы воды, присутствующие в кристалле, связаны водородными связями с атомами кислорода нитронной группы

 $(d(H_{воды} - O_{нитр}) = 2 \text{ Å}).$

Координационный полиэдр урана в соединении UO₂(2NP)₂(NO₃)₂ можно охарактеризовать как гексагональную бипирамиду (координационное число 8), в аксиальных положениях которой находятся два атома кислорода уранильной группы (рис. 2, а). Экваториальные позиции занимают шесть атомов кислорода двух нитронных и двух нитратных групп. Лиганд в координационном соединении находится в syn-форме. При координации лиганда к центральному атому длина связи N-O увеличивается на 0.028 Å по сравнению со свободным лигандом. Длина связи C=N также увеличивается на 0.013 Å и составляет 1.31 А. Атом водорода пиррольного фрагмента в структуре UO₂(2NP)₂(NO₃)₂ образует водородные связи с двумя атомами кислорода O(1) и O(2), длина которых составляет 2.3 (0.1) и 2.8 (0.1) Å соответственно. Угол между плоскостями С(3)-C(4)-C(5)-C(6)-N(2) и C(2)-N(1)-C(1) равен 6.53° (0.81) (рис. 2, б).

Используя геометрические критерии [12], ко-

Рис. 1. Молекулярное строение соединения 2NP (20 %-е тепловые эллипсоиды).

Рис. 2. Координационное окружение урана (*a*) и молекулярное строение комплекса $UO_2(2NP)_2(NO_3)_2$ (*б*) (30 %-е тепловые эллипсоиды).

ординационный полиэдр иона кадмия в $Cd_2(2NP)_4$ -(NO₃)₄ интерпретировали как искаженный одношапочный октаэдр (координационное число кадмия 7) (рис. 3, *a*). Углы между гранями, определяющими геометрию многогранника, составляют 31.7°, 43.8°, 25.3° соответственно. В идеальном одношапочном октаэдре ($C_{3\nu}$) эти углы равны и составляют 24.2°. Позицию шапки в октаэдре занимает атом кислорода O(4) нитратной группы. Координационная сфера кадмия образова-

динированном и свободном лиганде практически не изменяется и составляет 1.297 Å.

Угол между плоскостями C(3)–C(4)–C(5)– C(6)–N(2) и C(2)–N(1)–C(1)–O(2) равен 10.58° (0.38), а между плоскостями C(9)–C(10)–C(11)– C(12)–N(4) и C(8)–N(3)–C(7)–O(1) — 7.22°. Атом водорода H(2) образует внутримолекулярные водородные связи с двумя атомами кислорода O(2) и O(4) нитронной и нитратной групп, длина которых составляет 2.104 и 2.126 Å соответственно. Атом водорода H(4) образует только одну водородную связь (2.207 Å) с атомом кислорода O(1) нитронной группы (рис. 3, δ).

Рис. 3. Координационное окружение кадмия (*a*) и молекулярное строение комплекса $Cd_2(2NP)_4(NO_3)_4$ (*б*) (20 %-е тепловые эллипсоиды).

на семью атомами кислорода. При этом две нитратные группы координируются к центральному иону бидентатно-хелатно, одна молекула 2NP координируется монодентатно, две молекулы 2NP — бидентатно-мостиково. Структура Cd₂(2NP)₄-(NO₃)₄ представляет собой центросимметричный димер, который образуется за счет мостиковой функции кислорода нитронной группы, координационные центры находятся на расстоянии 3.7 Å друг от друга. Наибольшая длина связи металл —лиганд составляет 2.521(4) Å для Cd(1)–O(4).

При координации лиганда к центральному атому длина связи N–O молекулы лиганда, который координируется монодентатно-мостиково, увеличивается на 0.052 Å и составляет 1.368 Å. В свою очередь, длина связи N–O монодентатно координирующейся молекулы 2NP увеличивается только на 0.03 Å. Длина связи C=N в коорТаким образом, в работе синтезированы новый лиганд С-2-пиррол-N-метилнитрон и координационные соединения на его основе с ионами цинка, кадмия, палладия, мангана и уранил-ионом. Полученные соединения исследованы с помощью ИК-, ЯМР-спектроскопии и методом рентгеноструктурного анализа.

РЕЗЮМЕ. Синтезовані новій ліганд С-2-піррол-N-метилнітрон та координаційні сполуки на його основі з йонами цинку, кадмію, паладію, мангану та ураніл-йоном. Отримані сполуки досліджені за допомогою ІЧ-, ЯМР-спектроскопії та методом рентгеноструктурного аналізу.

SUMMARY. New ligand C-2-pyrrole-N-methylnitrone and their complexes with some *d*-metals and uranylion were synthesized. These compounds with the use UR-, NMR-spectroscopy and X-ray were investigated.

- 1. Скопенко В.В. // Тез. докл. XXI междунар. Чугаевской конф. по координац. химии. -Киев, 2003. -С. 20, 21.
- 2. Dobashi T.S., Parker D.R., Grubbs E.J. // J. Amer. Chem. Soc. -1977. -99, № 16. -P. 5382—5387.
- 3. Распертова И.В., Жигалко М.В., Шишкин О.В., Лампека Р.Д. // Журн. структур. химии. -2003. -44, № 6. -С. 1161—1164.
- Распертова І.В., Осецька О.В., Лампека Р.Д. // Докл. АН України. -2002. -С. 144—147.
- 5. *Tufarielo J.J.* 1.3-Dipolar Cycloaddition Chemistry. -New York: J. Wiley, 1984. -P. 83.
- 6. Синтез органических препаратов. Сб. 8. -М.: Издво иностр. лит., 1958. -С. 44.
- 7. Дорощук Р.О., Хоменко Д.М., Лампека Р.Д. // Вісн.

Киевский национальный университет им. Тараса Шевченко

Київ. ун-ту. Сер. хім. -2005. -Вип. 42. -С. 14, 15.

- 8. North A.C.T., Phillips D.C., Mathews F.S. // Acta Crystallogr. (A). -1968. -24, № 2. -P. 351-359.
- 9. Sheldric G.M. SHELXS97. Program for the Solution of Crystal Structure. -University of Gottingen, Germany, 1997.
- 10. Sheldric G.M. SHELXL97. Program for the Refinement of crystal Structures. -University of Gottingen, Gottingen, Germany, 1977.
- Общая органическая химия / Под. ред. Д. Бартона и У.Д. Оллиса. Т. 9. Кислородсодержащие, серусодержащие и другие гетероциклы / Под. ред. П.Г. Сэммса. -Пер. с англ. / Под. ред. Н.К. Кочеткова. -М.: Химия, 1985.
- Kouba J.K., Wreford S.S. // Inorg. Chem. -1976. -15, № 6. -P. 1463—1465.

Поступила 23.10.2005

УДК 541.183

Н.И. Ермохина, В.И. Литвин, В.Г. Ильин, П.А. Манорик ТЕМПЛАТНЫЙ СИНТЕЗ МЕЗОПОРИСТОГО ДИОКСИДА ТИТАНА С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСОВ МЕТАЛЛОВ С КРАУН-ЭФИРАМИ

Золь-гель методом с использованием тетрабутоксида титана и комплексов натрия с краун-эфирами в качестве структуронаправляющих агентов получены и охарактеризованы образцы термически устойчивого мезопористого диоксида титана с различным содержанием анатаза.

С тех пор, как в 1992 году были синтезированы кремнеземные мезопористые молекулярные сита типа МСМ-41 [1], использование различных ПАВ и амфифильных блоксополимеров в качестве темплатов для формирования мезопористых структур перенесено в область получения мезопористых металлоксидов, в том числе и TiO_2 [2—10]. Мезопористый диоксид титана привлекает особое внимание исследователей, поскольку материалы на его основе интересны не только как адсорбенты, но и как высокоактивные (фото)катализаторы и др.

Ставшие традиционными маршруты синтеза мезоструктур включают образование гибридных интермедиатов (мезофаз) I класса [7]. Органическая и неорганическая компоненты в них слабо связаны между собой посредством водородных связей, ван-дер-ваальсовых или электростатических сил. Сравнительно недавно возникший подход с использованием лиганд-ассистирующего темплатирования основывается на химическом взаимодействии (ковалентном, ион-ковалентном или Льюисовском кислотно-основном) между неорганическим предшественником и комплексообразующими группами органического реагента [7], то есть обеспечивает формирование гибридных мезофаз II класса. В частности, такой подход использован [11] для получения новых гибридных органо-неорганических материалов на основе производных дибензо-18-краун-6, которые "ковалентно вшиты" в неорганическую матрицу посредством двух или четырех Si-C связей.

Вместе с тем данные о темплатирующем действии краун-эфиров (образование гибридных интермедиатов I класса) при синтезе мезопористых материалов в литературе отсутствуют. В этой связи несомненный интерес представляют эксперименты по синтезу цеолита типа ЕМТ [12, 13]. Впервые ЕМТ был получен Дельпрато и сотрудниками [12] с использованием 18-краун-6 в качестве темплата, который играет в процессе образования цеолита ключевую структуронаправляющую роль в форме [Na-18-краун-6]⁺ комплекса. Сан и сотрудники [13] усовершенствовали методику синтеза, кардинально изменив свойства растворителя введением в традиционную реакцион-

© Н.И. Ермохина, В.И. Литвин, В.Г. Ильин, П.А. Манорик, 2007