УДК 546:831/643:72.54-36

К.В. Кравчик, Е.В. Пашкова, О.И. Вьюнов, А.Г. Белоус

ВЛИЯНИЕ УСЛОВИЙ ОСАЖДЕНИЯ ГИДРОКСИДОВ НА КРИСТАЛЛОХИМИЧЕСКИЕ ОСОБЕННОСТИ Y-ZrO₂ со структурой МЕТАСТАБИЛЬНОГО (НИЗКОТЕМПЕРАТУРНОГО) ФЛЮОРИТА

Исследованы кристаллохимические особенности метастабильной (низкотемпературной) фазы ZrO₂ со структурой флюорита. Показано, что с увеличением pH возрастают напряжения кристаллической решетки. Обсужден возможный механизм напряжений. Получен нанокристаллический порошок Y-ZrO₂ со средним диаметром частиц 5—17 нм.

Система гидроксидов циркония и иттрия имеет большое практическое значение, так как на ее основе разрабатывают перспективные материалы для высокопрочной керамики [1] и твердых электролитов [2, 3]. На практике гидроксидные прекурсоры получают в основном методом совместного осаждения гидроксидов (СОГ) из водных растворов соответствующих солей. Недостатками метода СОГ являются неконтролируемое соосажление врелных примесей, солержашихся в растворах исходных солей, плохая фильтруемость осадков, а также образование после сушки и прокалки очень прочных стеклообразных агрегатов, требующих проведения длительного эффективного размола. Указанные недостатки устраняются при последовательном осаждении гидроксидов (ПОГ) [4]. Согласно [5] на стадии формирования кристаллической решетки ZrO₂ образуется в первую очередь метастабильная фаза кубической модификации (структурный тип флюорита), которая с увеличением температуры переходит в тетрагональную *t* и моноклинную *m* фазы. Однако согласно энергетической теории [6]. подтвержденной на практике в ряде работ [7], существуют критические размеры кристаллитов, для которых энергетически выгодными являются те или иные фазы. В работе [8] показано существенное влияние рН осаждения гидроксидов на обводненность и дисперсность осадков. Очевидно, что природа осадков будет сказываться на структуре и дисперсности низкотемпературного кубического диоксида циркония.

В связи с изложенным выше цель данной работы — исследование влияния условий осаждения гидроксида циркония при последовательном осаждении гидроксидов (ПОГ) на кристаллохимические особенности стабилизированного иттрием диоксида циркония со структурой низкотемпературного метастабильного флюорита.

Исследовали воздушно-сухие и прокаленные при 600 °C/1ч осадки, отвечающие составу 0.97ZrO₂· $0.03Y_2O_3$. В качестве исходных солей использовали 2 М водные растворы ZrOCl₂ и Y(NO₃)₃. Осаждение проводили концентрированным водным раствором. ZrO(OH)₂ осаждали при различных значениях pH — от 3 до 8.5. От маточного раствора осадки отмывали дистиллированной водой до отсутствия в промывных водах ионов Cl⁻ и NO₃⁻.

Дифференциально-термический анализ проводили на дериватографе Q-1000 фирмы МОМ в условиях динамического и квазистатического режимов при скорости нагревания в первом случае 10 град/мин до температуры 1000 °С, а во втором — 5 град/мин до температуры кристаллизации (температуры, отвечающей максимуму экзоэффектов) с последующей изотермической выдержкой до прекращения потери массы. Погрешность в определении температуры — 1 %.

ИК-спектры снимали на спектрометре Specord-M80 в области 400-4000 см⁻¹. Образцы для исследования готовили в виде таблеток с бромидом калия.

Рентгеновские исследования проводили на дифрактометре ДРОН 4-07 (Со K_{α} -излучение, 40 кВ, 18 мА). Dифрактограммы снимали в интервале углов 2 Θ =10°—150° в дискретном режиме с шагом $\Delta 2\Theta$ =0.02° и экспозицией в каждой точке 10 с. В качестве внешних стандартов использовали SiO₂ (стандарт 2 Θ) и сертифицированный стандарт ин-

[©] К.В. Кравчик, Е.В. Пашкова, О.И. Вьюнов, А.Г. Белоус, 2006

тенсивности Al₂O₃ [9]. Для рентгенофазового анализа использовали базу данных JCPDS. Области когерентного рассеивания (ОКР) и напряжения в кристаллической решетке определяли по уширению рентгеновских рефлексов 101 и 202 согласно зависимости [10]:

$$\beta \cos\theta = f(\sin\theta) = \lambda/D + 2\eta \sin\theta$$
,

где β — полуширина рентгеновского пика на середине высоты; λ — длина рентгеновского пика; η — напряжение в кристаллической решетке. Размер частиц определяли методом просвечивающей электронной микроскопии (ПЭМ) на электронном микроскопе JEM 100CXII фирмы JEOL.

Результаты ИК-спектроскопии индивидуальных гидроксидов циркония, иттрия и системы 0.97ZrO(OH)₂·0.03Y(OH)₃ полученной в условиях СОГ и ПОГ, представлены в таблице.

Отсутствие полос поглощения в ИК-спектрах прокаленных при температуре 670 К осадков 0.97ZrO(OH)₂·0.03Y(OH)₃ в области 540—1570 см⁻¹, имеющихся на ИК-спектрах непрокаленных образцов, позволяет отнести указанные полосы к деформационным колебаниям М–О–Н. Полосы в интервале 1620—1640 см⁻¹ отвечают деформаонным колебаниям молекул воды [11—13]. Полосы в интервалах 425—470 и 3400—3470 см⁻¹ вызваны валентными колебаниями М–О и ОН-

Частоты колебаний (v, см⁻¹) ИК-спектров индивидуальных гидроксидов циркония и иттрия и системы $0.97ZrO(OH)_2 - Y(OH)_3$ в зависимости от условий синтеза

ZrO(OH) ₂	Y(OH) ₃	0.97ZrO ₂ ·0.03Y ₂ O ₃			
		ПОГ		СОГ	
288K		288K	670K	288K	670K
	340 (86)				
470 (100)	425 (69)	460 (100)	465 (100)	460 (100)	455 (100)
	645 (74)	570-650 (пл.)		590-660 (пл.)	
835 (3)	830 (5)	830 (2)		830 (3)	
1050 (3)	1050 (5)	1050 (3)		1050 (2)	
1080 (3)	1080 (4)			1080 (пл.)	
1350 (49)	1370 (100)	1370 (38)		1370 (31)	
1570 (60)	1520 (87)	1560 (51)		1560 (38)	
1630 (55)	1635 (50)	1630 (48)	1625 (9)	1625 (40)	1625 (13)
3430 (94)	3470 (86)	3410 (97)	3360 (13)	3420 (81)	3380 (16)

П р и м е ч а н и е. Цифры в скобках — относительная интенсивность полос поглощения, пл. — плечо; 288 и 670 К — температуры обработки.

групп соответственно. Сдвиг полос поглощения, характерных для валентных колебаний изолированных ОН-групп (3750—3500 см⁻¹), в область более низких частот (3700—2500 см⁻¹) указывает на значительную водородную связь как в индивидуальных гидроксидах циркония и иттрия, так и в их системе.

ИК-спектры системы гидроксидов 0.97ZrO(OH)₂ $\cdot 0.03$ Y(OH)₃, полученных в условиях СОГ и ПОГ, практически идентичны и различаются лишь отсутствием в спектрах ПОГ полосы поглощения при 1080 см⁻¹. По сравнению со спектрами полос индивидуальных гидроксидов они характеризуются смещением полос валентных колебаний М–О и О–Н в область более низких частот. Это является доказательством того, что как при СОГ, так и при ПОГ образуются не механические смеси гидроксидов, а гидроксокомплексы полимерного типа [14], различающиеся, вероятно, степенью старения [15, 16] вследствие неодинаковой степени контакта между частицами гидроксидов [8].

На рис. 1 приведены кривые нагревания воздушно-сухих образцов ПОГ 0.97ZrO(OH)₂· 0.03Y-(OH)₃, полученных при различных pH осаждения ZrO(OH)₂. Потери массы при нагревании характеризуются максимумами скоростей процесса в области температур 320—400 и 690 К (рис. 1). Первые связаны с потерей неструктурной физически сорбированной (в виде молекул

H₂O) и структурной (в виде OHгрупп) воды [13]. Вторые (при ≈690 К) отвечают температурам экзоэффектов, обусловленных кристаллизацией ZrO₂, которая сопровождается удалением остаточной воды. Отсутствие полос поглощения деформационного колебания М-О-Н на ИКспектрах прокаленных при 670 К образцов (см. таблицу) указывает на то, что высокотемпературная дегидратация гидроксида циркония, вероятно, обусловлена удалением координационно связанных с поверхностными ионами циркония молекул воды [14]. Как следует из кривых ДТА и ТГ (рис. 1), потерю массы при нагревании образцов 0.97ZrO(OH)₂·0.03Y-(ОН)₃ можно условно разделить на 2 этапа: до кристаллизации ZrO₂ (до температуры 690-720 К) и после. На первом этапе до температуры ~470К происходит основная потеря массы с большой скоростью, обус-

Рис. 1. Кривые нагревания гидроксидов циркония и иттрия 0.97ZrO(OH)₂·0.03Y(OH)₃: *1* — pH 4.5; 2 — pH 6.0.

ловленная процессами дегидратации и оксоляции (объединение оловых групп с выделением молекул H₂O), а выше 470 К до температуры кристаллизации — медленный процесс дегидратации с образованием аморфного оксида 0.97ZrO₂·0.03Y₂O₃· *n*H₂O. Кристаллизация ZrO₂ происходит скачкообразно при одновременном мгновенном удалении небольшого количества (0.5 %) паров воды (см. рис. 1, вставка). При нагревании выше температуры "взрывной" кристаллизации, очевидно, происходит удаление остаточной внутриструктурной воды. По результатам исследований масс-спектров дегидратации гидроксидов циркония и иттрия, на данном этапе может происходить также выделение водорода [17].

На рис. 2 приведена зависимость общей потери массы и потери на этапе кристаллизации (690—820 К) при термолизе образцов $0.97ZrO-(OH)_2 \cdot 0.03Y(OH)_3$ от pH осаждения ZrO(OH)_2. Приведенные на рис. 2 результаты указывают на вероятность образования в зависимости от pH осаждения различных видов гидроксидов циркония (полимерных циклов, в которых атомы циркония соединены двойными оловыми мостика-

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 11

ми, попеременно оловыми и кислородными или только кислородными [15]) и, как следствие, различную степень старения гидроксидов [16].

Кристаллизация ZrO₂ в зависимости от pH происходит в области температур 690-720 К. Четкие дифрактограммы, позволившие рассчитать параметр кристаллической решетки, нам удалось получить при термообработке осадков при температуре 870 К (рис. 3). Образующиеся при этой температуре твердые растворы 0.97ZrO₂. 0.03Y₂O₃ для всех исследуемых образцов характеризуются кубической структурой флюорита (пр.гр. Fm3m). На рис. 4 представлены зависимости объема кристаллической решетки (V), напряжений в кристаллической решетке (η) и области когерентного рассеивания (D) указанных выше образцов от pH осаждения ZrO(OH)2. Зависимость параметра кристаллической решетки от рН осаждения коррелирует с аналогичной зависимостью потери массы при термообработке образцов на этапе кристаллизации оксидов ((690-720)—820 К) (см. рис. 4, кривая 1 и рис. 2, кривая 2). Это указывает на присутствие в прокаленном при температуре 870 К/1ч образце внутриструктурной воды, окончательное удаление которой

Рис. 2. Зависимость потери массы при термолизе образцов $0.97 \text{ZrO(OH)}_2 \cdot 0.03 \text{Y(OH)}_3$ от pH осаждения ZrO(OH)_2 : 1 — общая потеря; 2 — потеря в кристаллическом продукте (ZrO₂).

Рис. 3. Дифрактограммы прокаленных образцов при *T*=600 °C/1ч: *1* — pH 4.5; 2 — pH 6.0.

Рис. 4. Зависимости объема кристаллической решетки V(I), области когерентного рассеивания D(2) и напряжений в кристаллической решетке $\eta(3)$ от pH осаждения $ZrO(OH)_2$.

Рис. 5. Кинетическая зависимость потери массы при температуре кристаллизации.

может быть завершено в условиях непрерывного нагрева при температурах выше 1270 К [17], а при изотермическом нагреве при температуре кристаллизации — за три часа (рис. 5).

Из представленной на рис. 6 микрофотографии (ПЭМ) прокаленного при 870 К/ч осадка (pH 4.5) видно, что средний размер частиц (12 нм) совпадает с размером ОКР этого же образца (D= =11 нм, см. рис. 4, кривая 2). То есть размер ОКР отвечает не агрегату частиц, а отдельной частице.

В работе [18] показано, что при старении гидроксида циркония формируются две фазы, приближающиеся по составу к $ZrO_2 \cdot nH_2O$ и $ZrO(OH)_2 \cdot nH_2O$. Учитывая это и выводы авторов работы [19], появление двух максимумов в области рН 3.5—5.5 на зависимости D—pH (рис. 4, кривая 2), вероятно, можно объяснить наличием двух типов зародышей, которые проявляются далее в процессе кристаллизации и роста кристаллов ZrO₂. Как следует из рис. 4 (кривая 2), размер частиц в зависимости от pH изменяется от 5 до 17 нм при сохранении кубической структуры (критический размер зерен ZrO₂, выше которого появляется *m*-модификация, по данным работы

Рис. 6. Микрофотография прокаленного образца 0.97ZrO₂·0.03Y₂O₃, *T*=600 ^oC/1ч, pH 4.5.

[20] равен 10 нм, а по [21] — 20 нм).

Из анализа зависимостей п-рН и D-рН (рис. 4, кривые 2, 3) следует, что при общей тенденции увеличения напряжений кристаллической решетки с увеличением pH осаждения ZrO(OH)₂ можно говорить о корреляции микронапряжений с размером частиц для образцов, осажденных в области рН 5.5-8 (η увеличивается с уменьшением D). Отсутствие отмеченной выше корреляции для образцов, полученных в области рН 3.5—5.5, с размерами частиц, приближающимися к "критическим" (рис. 4, кривая 2), вероятно, можно объяснить возникновением микронапряжений в кристаллической решетке флюорита вследствие образования в ней зародышей моноклинной фазы. Появление последней рентгенографически зафиксировано нами в этих образцах при температуре 970 К [22].

Таким образом, в данной работе исследованы кристаллохимические особенности метастабильной (низкотемпературной) фазы ZrO_2 со структурой флюорита. Установлено содержание в ней внутриструктурной воды. Показано, что с увеличением pH возрастают напряжения кристаллической решетки. Обсужден возможный механизм напряжений. Получен нанокристаллический Y-ZrO₂ со средним диаметром частиц, равным 5—17 нм.

РЕЗЮМЕ. Досліджено кристалохімічні особливості метастабільної (низькотемпературної) фази ZrO₂ зі структурою флюориту. Показано, що із збільшенням рН зростають напруження кристалічної гратки. Розглянуто можливий механізм напружень. Отримано нанокристалічний порошок Y-ZrO₂ з середнім діаметром 5—17 нм.

SUMMARY. Crystal-chemical peculiarities of metastable (low-temperature) phase ZrO₂ with fluorite structure

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 11

have been investigated. It has been shown that crystal lattice' strain increases with increasing of pH value. Possible mechanism of strain appearance has been discussed. Nanocrystalline Y-ZrO₂ powder with average grain size of 5—17 nm has been obtained.

- 1. Янагида X. Тонкая химическая керамика. -М.: Металлургия. 1986.
- 2. Luo J., Almond D.P., Stevens R. // J. Amer. Ceram. Soc. -2000. -83, № 7. -P. 1703—1708.
- Lakki A., Herzog R., Weller M. et al. // J. Europ. Ceram. Soc. -2000. -20. -P. 285—296.
- 4. Білоус А.Г., Пашкова О.В., В'юнов О.І., Хоменко Б.С. Деклараційний патент на корисну модель UA 5131 U, 2005 р. -Бюл. № 2.
- 5. *Nowick A.S.* // Comment Solid State Phys. -1970. -2, № 5. -P. 155—160.
- 6. *Krauth A., Meyer H.* // Ber. Dt. Keram. Ges. -1965. -42, № 3. -S. 61—72.
- Стрекаловский В.Н., Полежаев Ю.М., Пальчуев С.Ф. Оксиды с примесной разупорядоченностью. -М.: Наука. -1987.
- 8. *Чалый В.П.* Гидроокиси металлов. -Киев: Наук. думка, 1972.
- 9. Certificate of Analysis: Standard Reference Material 1976, Instrument Sensitivity Standard for X-Ray Powder Diffraction. -Gaithersburg: Natl. Inst. of Standards and Technology, 1991. -P. 1—4.

Институт общей и неорганической химии им. В.И. Вернадского НАН Украины, Киев

- Ohsato H., Imaeda M., Takagi Y. // Proc. of the Eleventh IEEE Intern. Symp. on Applications of Ferroelectrics. -Mountrex (August 24-27), 1998. -P. 509—512.
- 11. Tagawa H., Mizusake J., Narita H., Tabeuchi H. // Thermochim Acta. -1990. -163. -P. 303-312.
- 12. Плетнев П.Н., Ивакин А.А., Клещев Д.Г. и др. Гидратированные оксиды элементов IV и V. -М.: Наука; 1986.
- Накамото Н. Инфракрасные спектры неорганических и координационных соединений. -М.: Мир, 1966.
- 14. Ильенко В.С., Уваров А.В. // Коллоид. журн. -1975. -37, № 6. -С. 1161—1163.
- 15. Зайцев Л.М. // Журн. неорган. химии. 1966. -11, № 7. -С. 1684—1692.
- 16. Зайцев Л.М., Шубина Т.Н. // Неорган. материалы. -1966. -11, № 9. -С. 1592—1598.
- 17. Стрекаловский В.Н., Макурин Ю.Н., Касимов Г.Г., Вовкотруб Э.Г. // Там же. -1986. -3, № 3. -С. 2067—2070.
- 18. Зайцев Л.М. // Журн. неорган. химии. -1972. -17, № 1. -С. 60—65.
- Буянов Р.А., Криворучко О.П., Рыжак И.А. // Кинетика и катализ. -1972. -13, вып. 2. -С. 470—478.
- 20. Garvie R.C. // J. of Phys. Chem. -1978. -82, № 2. -P. 218-223.
- 21. Pimenov A., Ullrich I., Lunkenheimer P. // Solid State Ionics. -1998. -№. 109. -P. 111—118.
- 22. Makarenko A.N., Belous A.G., Pashkova Y.V. // J. European Ceram. Soc. -1999. -19. -P. 945—947.

Поступила 15.07.2005

УДК 541.183.12+546.273+546.831.4-36

Ю.С. Дзязько, Л.М. Рождественская

ПЕРЕНОС ИОНОВ H⁺, Ni²⁺ и Cr³⁺ В ВЫСОКОГИДРАТИРОВАННОМ НЕОРГАНИЧЕСКОМ ИОНИТЕ НА ОСНОВЕ ГИДРОФОСФАТА ЦИРКОНИЯ

Электромиграционным методом с использованием катионообменных мембран исследован перенос ионов H⁺, Ni²⁺ и Cr³⁺ в неорганическом катионите на основе гидрофосфата циркония, содержащего 85 % воды. Найдено, что поток катионов через мембрану пропорционален градиенту потенциала в слое ионита. Рассчитаны коэффициенты диффузии катионов, которые составляют 2.69—4.30·10⁻¹¹ (H⁺), 1.08·10⁻¹¹ (Ni²⁺) и 4.17·10⁻¹² (Cr³⁺) м²/с.

Извлечение ионов тяжелых металлов из промышленных стоков становится все более актуальной экологической проблемой. Для очистки слабоконцентрированных растворов перспективна электродеионизация — комбинированный метод ионного обмена и электродиализа. Электродеионизация предусматривает очистку в непрерывном режиме одновременно с регенерацией ионита [1].

© Ю.С. Дзязько, Л.М. Рождественская, 2006

Этот метод используется для извлечения ионов щелочных металлов, а также некоторых двухвалентных катионов, в частности Ni^{2+} из разбавленных растворов. Для извлечения Ni^{2+} в качестве ионообменного материала используют низкосшитые ионообменные смолы [1—3]. К недостаткам этих ионитов следует отнести их невысокую химическую стабильность и низкую селективность