кой модели реальному процессу проверялась сравнением константы K_3 , полученной расчетным путем по математической модели со значением, взятым из литературы [9], отклонение их значений составляет не более 0.22 логарифмических единиц; сравнением кривых титрования, полученных экспериментальным путем (на рисунке это точки) с кривыми титрования рассчитанными по математической модели (на рисунке — линии), доверительные границы не превышают 0.1 единицы pH.

Полученные значения логарифмов индивидуальных констант равновесия процесса комплексообразования в системе кобальт (II)—фенантролин—дипептид аланилового ряда (аланилаланин, аланилнорвалин, аланилнорлейцин, аланилвалин, аланиллейцин) приведены в табл. 2.

РЕЗЮМЕ. рН-Метрично досліджено процес комплексоутворення у змішанолігандній системі кобальт (II)—фенантролін—дипептид в інертній атмосфері при 25 °C та йонній силі 0.1 (KNO₃). Запропоновано схему рівноваг, що містить як утворення змішанолігандних, так і однорідних комплексів, складено математичну модель процесу і розраховано індивідуальні константі рівноваг усіх стадій процесу.

SUMMARY. We have studied process of complex formation in mixed ligand system of cobalt (II)—phenantro-

Донецкий государственный технический университет

lin—dipeptide at the inert atmosphere at 25 $^{\circ}$ C and ion force 0.1 (KNO₃), with the help of pH-measuring. We propose a scheme of equilibriums. That includes both formation of mixed ligand complexes and homogeneous complexes. Also we have make up mathematical model and have calculated individual equilibrium constants of all steps of this process.

- 1. Паладе Д.М., Ганнова Ю.Н. // ВХХТ. -2002. -№ 4. -С. 22—25.
- Химмельблау Д. Прикладное нелинейное программирование. - М.: Мир, 1975.
- 3. Ожерельев И.Д., Антонова Г.В. // Деп. ОНИИ-ТЭХИМ, № 1150-XII 86, 1987.
- Щербакова Э.С., Бугаевский А.А., Карпов И.И. и др. Математические вопросы исследования химических равновесий. -Томск: Изд-во Томск. унта, 1978.
- 5. *Ожерельев И.Д.* Автореф. дис. ... канд. хим.наук. -Одесса, 1987.
- 6. Паладе Д.М., Ганнова Ю.Н. // Вопросы химии и хим. технол. -2002. -№ 1. -С. 11—14.
- 7. Паладе Д.М., Ишков Б.В., Ганнова Ю.Н. // Координац. химия. -2003. -29, № 2. -С. 117—121.
- 8. *Паладе Д.М., Ганнова Ю.Н., Ішков Б.В. //* Наук. праці ДонНТУ. Сер. хім. і хім. технол. -2001. -Вип. 33. -С. 8—19.
- Константы устойчивости комплексов металлов с биолигандами / Под ред. К.Б. Яцимирского. -Киев: Наук. думка, 1979.

Поступила 28.04.2005

УДК 541.182:549.514

Д.В. Шистка, Е.И. Оранская, И.Г. Шапиро, Ю.И. Горников, В.В. Брей

ФАЗОВЫЙ СОСТАВ И КАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ WO₃/ZrO₂, ДОПИРОВАННОГО ЭЛЕМЕНТАМИ II—VI ГРУПП

Изучены фазовый состав и каталитическая активность WO₃/ZrO₂, допированного ионами Zn²⁺, Al³⁺, Cr⁶⁺, Si⁴⁺, Ti⁴⁺, Sn⁴⁺, Ce³⁺, VO²⁺ и Bi³⁺, в реакции деалкилирования кумола. Показано, что допирование WO₃/ZrO₂ различными элементами приводит как к повышению, так и к понижению его каталитической активности. Найдена корреляция между каталитическими свойствами и изменением температурных границ существования тетрагональной фазы оксида циркония в допированном WO₃/ZrO₂.

Вольфраматсодержащий диоксид циркония, как и сульфатированный ZrO_2 , относится к твердым суперкислотам ($H_0 \le -14.52$) [1] и рассматривается как перспективный катализатор для процессов изомеризации *н*-C₄-C₇ алканов [2, 3] и ацилирования ароматических соединений, в частности, анизола [4]. Известно, что промоти-

рование SO^{2-}_{4}/ZrO_{2} оксидами железа, марганца [5], кремния [3], алюминия [6], галлия [7] повышает активность катализаторов изомеризации. Для WO_{3}/ZrO_{2} каталитический эффект при допировании его ионами различных элементов изучен в меньшей степени. Промотирующее влияние $Al_{2}O_{3}$ для вольфраматсодержащего ZrO_{2} отмеча-

[©] Д.В. Шистка, Е.И. Оранская, И.Г. Шапиро, Ю.И. Горников, В.В. Брей, 2006

Таблица 1

Состав, удельная поверхность и активность образцов WO₃/ZrO₂ в реакции деалкилирования кумола

Допирую- щий элемент	Содержание допирующего элемента, % ат.	Гемпература кальциниро- вания, ^о С	Цвет образца	Удельная поверхность <i>S</i> _{уд} , м ² /г	Температура макси- мальной скорости образования С ₆ Н ₆ , ^о С	Удельная интенсивность 78 а.е.м., в/м ²	
		700	Желтый	50	130	1.0	
Zn	3.7	700	Белый	20	170	0.5	
		800	Зеленый	15	190	0.3	
Al	2.9	700	Желтый	28	120	1.3	
		800	"	27	130	1.0	
Si	1.8	700	Белый	7	140	1.0	
		800	Желтый	4	100	1.3	
Ti	3.8	700	Белый	26	140	0.6	
		800	Светло-желтый	28	100	2.3	
Sn	5.1	700	Белый	16	140	1.7	
		800	Желтый	28	110	2.4	
Ce	2.5	700	"	43	140	0.8	
		800	Коричневый	16	120	0.5	
Bi	4.1	800	Желтый		200	_	
V	3.0	800	Зеленый	7	240	0.1	
Cr	6.0	700	Коричневый	53	110	3.5	
		800	"	16	90	3.7	

лось при изомеризации *н*-гептана [8] и *н*-бутана [9]. В настоящей работе синтезированы образцы вольфраматсодержащего ZrO_2 с добавками ионов ряда элементов (Al, Ti, Si, V, Cr, Zn, Sn, Ce, Bi), изучен их фазовый состав, а также каталитичес-кая активность в термопрограммированной реакции крекинга кумола.

Получение образцов допированного WO₃/ ZrO₂ основывалось на методе соосаждения гидроксидов циркония и вольфрама в присутствии карбамида [3]. В качестве компонентов реакционной смеси использовались: ZrOCl₂·8H₂O ч., перекристаллизованный, раствор мета-вольфрамата аммония, приготовленный из (NH₄)₄W₅O₁₇·2.5H₂O ч., а также AlCl₃·6H₂O ч., TiCl₄ ч., SnCl₂·2H₂O ч., ZnCl₂·2H₂O ч., VOSO₄ ч., Bi(OOCCH₃)₃ ч., Ce(NO₃)₃· 6H₂O ч., (NH₄)₂Cr₂O₇ х.ч., Si(OC₂H₅)₄ ч., перегнанный, (NH₂)₂CO ч.д.а. Атомное соотношение Zr: W во всех образцах составляло 8:1 (11 % ат. W, 19 % вес. WO₃). Содержание допирующих ионов по отношению к Zr составляло 2.5-6 % ат. (табл. 1). В качестве примера приводится методика синтеза WO₃/ZrO₂—Al₂O₃. Растворяли 87.3 г ZrOCl₂·8H₂O в 600 мл дистиллированной воды. Затем при перемешивании последовательно прибавляли 7.5 мл раствора метавольфрамата аммония (4.3 г·моль W/л) и раствор хлорида алюминия (2.4 г AlCl₃·6H₂O в 20 мл H₂O). Раствор кипятили с обратным холодильником 30 мин. Затем при интенсивном перемешивании добавляли раствор CO(NH)₂ и кипятили 6 ч. После охлаждения до комнатной температуры раствор подщелачивали аммиаком до рН 9—9.6. Полученный гидроксидный гель промывали водой до отрицательной реакции AgNO₃ на Cl⁻ионы и сушили на воздухе при 120 °C. Затем ксерогели прокаливали в течение 1 ч при 500, 600, 700 и 800 °C.

Дифрактограммы исследуемых образцов регистрировали на автоматическом дифрактометре ДРОН-4-07 с фокусировкой рентгеновского пучка по Брэггу–Брентано, в излучении Си K_{α} и Ni-фильтром в отраженном пучке. Средний размер кристаллитов тетрагонального оксида циркония (T-ZrO₂) рассчитывали по уширению линии (101) по формуле Шеррера методом аппроксимаций с использованием автоматизированной методики [10]. Содержание тетрагональной модификации оксида циркония (*C*) определяли по соотношению интенсивностей основных линий тетрагональной и моноклинной фаз ZrO₂ по формуле [11]:

$$C = 100 \cdot \frac{I_{\rm T}}{I_{\rm T} + (I_{\rm M1} + I_{\rm M2})/2}$$
 (% Bec.),

где I_T — интенсивность линии (101) тетрагона-

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 9

льной фазы ZrO_2 ; I_{M1} , I_{M2} — интенсивности линий (-111) и (111) моноклинной фазы ZrO_2 .

Удельную поверхность образцов определяли методом тепловой десорбции аргона.

На каталитическую активность синтезированные образцы WO_3/ZrO_2 тестировали в термопрограммированной реакции деалкилирования кумола с использованием масс-спектрометра МИ-1201 [3]. Образцы массой 10 мг предварительно вакуумировали при температуре 300 °C. После адсорбции кумола при комнатной температуре образцы вакуумировали и в режиме линейного нагрева (10 °C/мин) регистрировали температурные зависимости токов ионов кумола С₆H₅⁺ (77 а.е.м.) и бензола C₆H₆⁺ (78 а.е.м.).

Известно, что при прокаливании WO_3/ZrO_2 образуется тетрагональная фаза ZrO_2 , на поверхности кристаллов которой находятся вольфраматные кластеры с сильнокислотными центрами и неактивные микрокристаллы WO_3 [12, 13]. На рис. 1 представлены дифрактограммы образцов WO_3/ZrO_2 , содержащих оксиды титана, хрома, кремния и ванадия. Данные о фазовом составе этих образцов и содержании T-ZrO₂ в составе

кристаллической фазы оксида циркония в зависимости от температуры прокаливания приведены в табл. 2. Анализ дифрактограмм образцов допированного WO₃/ZrO₂ показывает, что для них сохраняется та же схема фазовых превращений с увеличением температуры прокаливания, что и для обычного WO_3/ZrO_2 . А именно, при 600 °C из аморфной фазы, наблюдающейся при 500 °C, формируется фаза тетрагонального ZrO2. При повышении температуры до 700 °С образуется также слабокристаллическая фаза WO₃. Увеличение температуры прокаливания образцов до 800 °С сопровождается дальнейшей кристаллизацией моноклинной модификации WO3 и частичным превращением тетрагонального оксида циркония в его моноклинную модификацию. Образование кристаллических фаз оксидов допирующих элементов не наблюдалось в исследуемых образцах. Влияние допирующих элементов на фазовые превращения WO₃/ZrO₂ проявилось в следующем. Так, можно выделить группу ионов $Ti^{4\bar{+}},\ Cr^{6+},\ Zn^{2+}$, Sn^{4+}, Ce^{3+}, Bi^{3+}, при введении которых в WO₃/ZrO₂ и прокаливания образцов при 800 °C наблюдается одновременное превращение тетра-

Рис. 1. Дифрактограммы образцов WO_3/ZrO_2 , допированных ионами титана (*a*), ванадия (*b*), хрома (*b*), кремния (*c*), прокаленных при 500 (*1*), 600 (*2*), 700 (*3*) и 800 °C (*4*). Обозначения на рисунках: W — пики, соответствующие WO_3 , M — M–ZrO₂, T — T–ZrO₂.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 9

Таблица 2

Температурная зависимость фазового состава и дисперсности тетрагонального оксида циркония в допированном WO₃/ZrO₂

Допи- рующий элемент	500 °C		600 °C		700 °C		800 °C	
	Фазовый состав	<i>D</i> , нм	Фазовый состав	<i>D</i> , нм	Фазовый состав	D, нм	Фазовый состав	<i>D</i> , нм
Al	Аморфная фаза		Аморфная фаза, сл. крист. ZrO ₂		T–ZrO ₂ , (100), крист. WO ₃	14.1	T–ZrO ₂ , (95), M–ZrO ₂ , крист, WO ₂	15.2
Si	Аморфная фаза		Аморфная фаза		T–ZrO ₂ , (100), аморфная фаза	9.8	Т-ZrO ₂ , (80), M-ZrO ₂ , крист WO.	12.6
Ti	T–ZrO ₂ , (100)	13	T–ZrO ₂ , (100)	15.9	T–ZrO ₂ , (100)	16.1	$T-ZrO_2$, (93), $M-ZrO_2$,	17.6
V	Аморфная фаза		T–ZrO ₂ , (100), крист. WO ₃	9.8	T–ZrO ₂ , (100), крист.WO ₃	12.2	$T-ZrO_2$, (78), $M-ZrO_2$,	25.6
Cr	Аморфная фаза, сл. крист.Т–ZrO ₂		T–ZrO ₂ , (100)	16.5	T–ZrO ₂ , (100), крист. WO ₃	17.2	т—ZrO ₂ , (96), M–ZrO ₂ ,	18.6
Zn	Аморфная фаза		T–ZrO ₂ , (100)	9.7	T–ZrO ₂ , (100)	10.8	Т-ZrO ₂ , (95), M-ZrO ₂ , крист WO ₂	16.0
Sn	Аморфная фаза		Аморфный, сл. крист. ZrO		T-ZrO ₂ , (100), аморфный WO ₂	13.8	$T-ZrO_2$, (96), крист. WO ₂	15.3
Ce	Аморфная фаза		$T-ZrO_2$, (100)		T–ZrO ₂ , (100)	11.1	T-ZrO ₂ , (91), M-ZrO ₂ , крист. WO ₃	19.2
Bi	Аморфная фаза, сл. крист. ZrO ₂		T–ZrO ₂ , (100)	11.2	T–ZrO ₂ , (100), аморфный WO ₃	14.8	T–ZrO ₂ , (39), M–ZrO ₂ , крист. WO ₃	24.4

П р и м е ч а н и е. Т — тетрагональный ZrO₂, М — моноклинный ZrO₂, сл. крист. — слабо кристаллический; в скобках указано содержание T–ZrO₂ в % вес. от общего содержания кристаллического ZrO₂.

гональной модификации ZrO_2 в моноклинную и кристаллизация моноклинного WO_3 . Ко второй группе можно отнести ионы Al^{3+} и VO^{2+} , введение которых приводит к уменьшению температуры кристаллизации моноклинного WO_3 до 700 и 600 °C соответственно. Введение ионов Ti⁴⁺ способствует снижению температуры кристаллизации T-ZrO₂ до 500 °C, что близко к температуре кристаллизации (470 °C) ZrO₂ из его гидроксида, и ингибированию нежелательной кристаллизации фазы WO_3 (табл. 2). Введение ионов Si⁴⁺ приводит к общему снижению степени кристалличности получаемых образцов WO_3/ZrO_2 —SiO₂ и повышению нижней границы образования кристаллического ZrO_2 . Последнее характерно и для образцов WO_3/ZrO_2 —Al₂O₃.

Таким образом, сравнение температур фазовых превращений в образцах WO_3/ZrO_2 , допированных ионами AI^{3+} , Ti^{4+} , VO^{2+} , Cr^{6+} , Zn^{2+} , Sn^{4+} , Ce^{3+} , Bi^{3+} и Si^{4+} , показывает, что ионы Ti^{4+} , Cr^{3+} и Bi^{3+} способствуют расширению температурной области существования T-ZrO₂ при сохранении аморфного состояния WO_3 . В других образцах температурные границы существования тетрагонального ZrO_2 сдвигаются в ту или иную сторону при одновременном изменении фазового состояния WO_3 .

В табл. 2 приведены значения среднего размера кристаллитов (D), тетрагональной модификации ZrO₂ в исследуемых образцах. Для допированных образцов WO₃/ZrO₂ они находятся в пределах 10—16, 11—17 и 15—25 нм для температур прокаливания 600, 700 и 800 °С соответственно. Наименьшие значения размера кристаллитов T-ZrO₂ характерны для WO_3/ZrO_2 —SiO₂. Для исходного WO_3/ZrO_2 этот параметр составляет 12—17 нм при температурах прокаливания 600—700 °С. Такие относительно малые значения D можно объяснить присутствием оксида вольфрама на поверхности частиц диоксида циркония, что ограничивает рост кристаллов ZrO_2 . Известно, что наличие обволакивающего слоя одной фазы на поверхности частиц другой фазы приводит к снижению интенсивности и размытию дифракционных линий последней [14], то есть к занижению значений D, в данном случае для T-ZrO₂.

Реакция деалкилирования кумола обычно используется для тестирования кислотных катализаторов. Протонирование бензольного кольца стимулирует распад кумола на бензол и пропилен. Показано, что температура образования бензола снижается с повышением гамметовской кислотности катализаторов [15]. На рис. 2 представлены типичные ТПР-спектры образования бензола на допированных образцах WO₃/ZrO₂, в табл. 1 указаны температуры максимальной скорости выделения ($T_{\rm M}$) и нормированные интенсивности тока ионов бензола (78 а.е.м.). Следует отметить, что допированные образцы, как и исходный WO₃/ZrO₂,

проявляют активность только после их кальцинирования при 700-800 °C. По температуре и интенсивности максимального выделения ионов бензола при крекинге кумола изучаемые образцы можно разделить на три группы. Так, допирование WO_3/ZrO_2 ионами Cr^{6+} , Sn^{4+} и Ti^{4+} привов дит к заметному увеличению интенсивности выделения бензола при сохранении значений Т_м на уровне, соответствующем не допированному образцу. Известно, что WO₃/TiO₂ относится к сверхкислотам [16]. Повышение концентрации сильных В-центров на поверхности образцов, содержащих ионы Cr^{6+} и Sn^{4+} , очевидно, следует связывать с изменением электроноакцепторных свойств решетки T-ZrO₂. Введение в матрицу ZrO₂ ионов Al^{3+} , Si^{4+} и Ce^{3+} оказывает незначительное влияние на активность соответствующих образцов WO₃/ZrO₂ (табл. 1, рис. 2). К третьей, неактивной группе относятся образцы, допированные ионами Zn^{2+} , VO^{2+} и Bi^{3+} . Для этих образцов наблюдается значительное повышение температуры максимальной скорости выхода бензола, что свидетельствует о снижении силы их В-центров. Также для них характерна низкая удельная поверхность S_{уд} (табл. 1).

В процессе кристаллизации диоксида циркония из его гидроксида происходит конденсация

Рис. 2. ТПР-спектры образования бензола (m/e=78) из кумола (m/e=77) на WO₃/ZrO₂ (a) и образцах WO₃/ZrO₂, модифицированных ионами Sn⁴⁺ (δ), Si⁴⁺ (δ), VO²⁺ (c).

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 9

гидроксильных групп, вследствие чего возникает определенный дефицит ионов кислорода в решетке. Поскольку для циркония не характерно образование ионов Zr^{3+} , свободный электрон локализуется на анионной вакансии. Наличие анионных вакансий характерно для тетрагональной и кубической модификаций ZrO_2 с 8-координированными ионами Zr^{4+} [17]. Введение в решетку T- ZrO_2 двух- и трехзарядных ионов (Zn^{2+} , Al^{3+} , VO^{2+} , Bi^{3+}) может привести к уменьшению числа анионных вакансий, а введение высокозарядных катионов (Cr^{6+}) — к их увеличению. Этим может объясняться изменение кислотности нанесенных на ZrO_2 вольфраматных кластеров.

Таким образом, промотирование вольфраматсодержащего ZrO_2 ионами Ti^{4+} , Sn^{4+} и Cr^{6+} приводит к повышению активности катализаторов в реакции крекинга кумола. Напротив, введение в решетку WO_3/ZrO_2 ионов Zn^{2+} , VO^{2+} и Bi^{3+} ведет к снижению его активности.

РЕЗЮМЕ. Вивчено фазовий склад і каталітичну активність WO₃/ZrO₂, допованого йонами Zn²⁺, Al³⁺, Cr⁶⁺, Si⁴⁺, Ti⁴⁺, Sn⁴⁺², Ce³⁺, VO²⁺ і Bi³⁺, у реакції деалкілування кумолу. Показано, що допування WO₃/ZrO₂ різними елементами приводить як до підвищення, так і до зниження його каталітичної активності. Знайдено кореляцію між каталітичними властивостями і зміною температурних границь існування тетрагональної фази оксиду цирконію в допованому WO₃/ZrO₂.

SUMMARY. Phase content and catalytic activity of WO₃/ZrO₂, doped with Zn²⁺, Al³⁺, Cr⁶⁺, Si⁴⁺, Ti⁴⁺, Sn⁴⁺, Ce³⁺, VO²⁺ i Bi³⁺ ions, in cumene cracking process have been studied. It is shown that doping of WO₃/ZrO₂ with different ions leads as to increasing and to decreasing of

Институт сорбции и проблем эндоэкологии НАН Украины, Киев Институт химии поверхности НАН Украины, Киев

it catalytic activity. A correlation between catalytic properties and temperature range existing of tetragonal zirconia in doped WO₃/ZrO₂ samples is determined.

- 1. *Hino M.*, *Arata K.* // J. Chem Soc., Chem. Commun. -1988. -№ 18. -P. 1259—1260.
- 2. Kuba S., Lukinskas P., Grasselli R.K. et al. // J. Catal. -2003. -216. -P. 353-361.
- Brei V.V., Melezhyk O.V., Prudius S.V. et al. // Stud. Surf. Sci. Catal. -2002. -143. -P. 387— 395.
- 4. Sakthivel R., Prescott H., Kemnitz E. // J. Molec. Catal. A. -2004. -223. -P. 137-142.
- 5. Scheithauer M., Bosh E., Schubert U.A. et al. // J. Catal. -1998. -177, № 1. -P. 137—146.
- 6. Gao Z., Xia Y., Hua W., Miao C. // Topics Catal. -1998. -6. -P. 101-106.
- 7. Chong-Jiang Cao, Song Han, Chang-Lin Chen et al. // Catal. Commun. -2003. -4. -P. 511—515.
- Hua W., Sommer J. // Appl. Catal. -2002. -232. -P. 129—135.
- 9. Wong S.T., Li T., Cheng S. et al. // J Catal. -2003. -215. -P. 45—56.
- Оранская Е.И., Горников Ю.И., Фесенко Т.В. // Зав. лаб. -1994. -60, № 1. -С. 28.
- 11. Pacheco G., Fripiat J.J. // J. Phys. Chem. B. -2000. -104. -P. 11906-11911.
- 12. Boyse R.A., Ko E.I. // J. Catal. -1997. -171. -P. 191-207.
- Barton, M. Shtein, R.D. Wilson et al. // J. Phys. Chem. B. -1999. -103. -P. 630—640.
- Ковба Л.М., Трунов В.К. Рентгенофазовый анализ. -М.: МГУ, 1976.
- 15. *Брей В.В.* // Теорет. и эксперим. химия. -2003. -**39**, № 1. -С. 60—63.
- 16. Arata K. // Adv. Catal. -1990. -37. -P. 165-211.
- Стрекаловский В.Н., Полежаев Ю.М., Пальгуев С.Ф. Оксиды с примесной разупорядоченностью: Состав, структура, фазовые превращения. -М.: Наука, 1987.

Поступила 14.04.2005

УДК 541.128.3 + 542.943.7

В.Я. Забуга, Г.Г. Цапюк, В.К. Яцимирський, А.В. Романівська, М.Ю.Федорчук КАТАЛІТИЧНА АКТИВНІСТЬ ОКСИДІВ МАРГАНЦЮ В РЕАКЦІЇ ОКИСНЕННЯ САЖІ

Досліджено окиснення сажі киснем повітря у присутності ацетату марганцю при атмосферному тискові в діапазоні температур 633—703 К. Встановлено, що за певних умов каталітичне окиснення сажі перебігає у двох різних стаціонарних режимах. Зроблено спробу оцінити константу швидкості лише каталітичного процесу, вичленивши її з ефективної константи $k_{\rm ef}$, яка характеризує сумарний процес і визначається при обробці експериментальної кінетичної кривої.

© В.Я. Забуга, Г.Г. Цапюк, В.К. Яцимирський, А.В. Романівська, М.Ю.Федорчук, 2006