учных работников и инженеров. -М.: Наука, 1968. 9. *Rudzinski W., Everett D.H.* Adsorption of gases on heterogeneous surfaces. -London: Acad. Press., 1992.

 Bogillo V.I. // Adsorption on New and Modified Inorganic Sorbents / Eds. A. Dabrowski, V.A. Tertykh. -Amsterdam: Elsevier, 1996. -P. 135—184. -Ch. 1.7.

Институт геологических наук НАН Украины, Киев

- 11. Puziy A.M., Volcov V.V., Poznayeva O.I. et al. // Langmuir. -1997. -13. -P. 1303—1306.
- Kuo S.L., Hines A.L., Dural N.H. // Separation. Sci. Technol. -1991. -26. -P. 1077—1091.
- 13. Богилло В.И., Чуйко А.А. // Докл. НАН Украины. Сер. Б. -1993. -№ 4. -С. 121—125.

Поступила 31.08.2004

УДК 54-165:538.22

Е.В. Зиновик, М.А Зиновик

ВОССТАНОВЛЕНИЕ МЕДЬСОДЕРЖАЩИХ ТВЕРДЫХ РАСТВОРОВ СО СТРУКТУРОЙ ШПИНЕЛИ

Исследованы кристаллохимические превращения до полного восстановления водородом твердых растворов $Cu_xMn_{1-x}Fe_2O_4$ составов с x = 0.2, 0.5, 0.8 и выведены общие уравнения, позволяющие описывать эти процессы во всем интервале концентраций ($0 \le x \le 1$). Внесены принципиальные уточнения в характер процессов, представленных в литературе. Получены концентрационные зависимости равновесного давления кислорода P_{O_2} на низкокислородной границе гомогенности твердых растворов со структурой шпинели в пределах всей области их существования. Для растворов ($MnFe_2O_4$)_{x1} ($Cu_{0.5}Fe_{2.5}O_4$)_{x2} ($CuFe_2O_4$)_{1-x1-x2}, имеющих более важное прикладное значение, кроме того, изучены зависимости $lgPO_2(1/T)$ и получено уравнение связи PO_2 с составом и температурой $lg[P_O \cdot \Pi a^{-1}] \pm 0.4 = 12.8 - 3.7x_1 - 2.8x_2 - 10280/T$, позволяющее проводить синтез однофазных растворов по программе.

Исследование процессов восстановления многокомпонентных оксидных твердых растворов представляет большой интерес для черной и цветной металлургии. Это связано с проблемой комплексной переработки полиминерального сырья путем селективного извлечения из него металлов. Кроме того, такие исследования позволяют получить информацию об условиях образования и разложения растворов, необходимую для синтеза новых материалов. В настоящей работе объектом изучения выбраны твердые растворы

 $Cu_xMn_{x-1}Fe_2O_4$, которые используются при изготовлении элементов для радиоэлектронной техники и являются удобной моделью исследования процессов восстановления [1—4]. Последнее вызвано присутствием металлов с переменной валентностью, обусловливающих сложные окислительно-восстановительные и структурные превращения. Имеющиеся в литературе сведения по их изучению [5] недостаточны и ненадежны.

Так, процессы восстановления изучались только на начальных стадиях. Некоторые полученные данные противоречат законам термодинамики. Отсутствуют уравнения, описывающие процессы восстановления растворов всех составов до конечной стадии, а также данные по условиям синтеза и охлаждения однофазных растворов. Восполнение этого пробела — цель настоящей работы.

Образцы готовили способом порошковой металлургии. Технология их и методы исследования описаны нами в работах [6, 7].

На рис. 1 представлены зависимости равновесного давления кислорода P_{O_2} и параметров кристаллических решеток α шпинельной и закисной фаз от степени восстановления η шпинельных твердых растворов Cu_xMn_{1-x}Fe₂O₄ (x = 0.8, 0.5 и 0.2) при 1273 К. За 100 % восстановления принято полное удаление кислорода из раствора.

Фазовые переходы и катионные превращения в фазах вызывают изменения характера зависимостей $P_{O_2}(\eta)$ и $\alpha(\eta)$. Поэтому процесс восстановления растворов можно разбить на шесть этапов.

Первый этап характеризуется снижением P_{O_2} и ростом α шпинельной фазы (рис. 1). При этом, по данным рентгенофазового анализа, появляется ромбоэдрическая фаза CuFeO₂, которая сосуществует со шпинельной фазой. Данные работ [8, 9] позволяют заключить, что указанные изменения являются следствием восстановления CuFe₂O₄ и обогащения твердого раствора ферритом Cu_{0.5}Fe_{2.5}O₄, имеющим большее значение α и меньшее — P_{O_2} .

[©] Е.В. Зиновик, М.А Зиновик, 2006

Рис. 1. Изменение равновесного давления кислорода (1, 1'), параметров кристаллических решеток закисной (2, 2') и шпинельной (3, 3') фаз при восстановлении (1273 K) твердых растворов $Cu_x Mn_{1-x} Fe_2O_4$ с x=0.8; 0.2 (*a*) и x=0.5 (б) (x — данные [8]).

С учетом изложенного кристаллохимические превращения на этом этапе восстановления рас-

А творов $Cu_x Mn_{1-x} Fe_2O_4$ (0 < x ≤ 1) можно выразить уравнением:

$$Cu_{x}Mn_{1-x}Fe_{2}O_{4} + mH_{2} =$$

$$= (1 - m)[(CuFe_{2}O_{4})_{x-2m/1-m} \times (Cu_{0.5}Fe_{2.5}O_{4})_{m/1-m}(MnFe_{2}O_{4})_{1-x/1-m}] +$$

$$+ 1.5mCuFeO_{2} + mH_{2}O.$$
(1)

Конец этапа наступает при полном восстановлении $CuFe_2O_4$, то есть завершении перехода Cu^{2+} в Cu^+ . Из уравнения (1) следует, что для составов с x = 1, 0.8, 0.5 и 0.2 это произойдет соответственно при m = 0.5, 0.4,0.25 и 0.1, которым отвечают $\eta = 12.5$, 10, 6.25 и 2.5 % ($m = \eta/25$) и составы шпинельной фазы, обозначенные на рис. 2 точками Б — $\tilde{C}u_{0.5}Fe_{2.5}O_4, \tilde{B}_1 - (Cu_{0.5}Fe_{2.5}O_4)_{2/3}$ (MnFe₂O₄)_{1/3}, $\tilde{B}_2 - (Cu_{0.5}Fe_{2.5}O_4)_{1/3}$ (MnFe₂O₄)_{2/3} и $\tilde{B}_3 - C_3$ (Cu_{0.5}-Fe_{2.5}O₄)_{0.11}(MnFe₂O₄)_{0.89}. Изменения состава шпинельной фазы, а также зависимости lgPO, от состава при восстановлении растворов показаны на рис. 2 соответственно линиями А–Б, А₁–Б₁, А₂–Б₂, А₃–Б₃ и А'– Б', А'₁–Б'₁, А'₂–Б'₂, А'₃–Б'₃, проходящими внутри треугольника твердых растворов $(CuFe_2O_4)_{C1}(Cu_{0.5}Fe_{2.5}O_4)_{C2}(MnFe_2O_4)_{1-C1-C2}.$ Для x=0 линии нанесены по данным работы [8]. Согласно [10] концентрационная зависимость параметра решетки этих растворов подчиняется правилу аддитивности и описывается уравнением:

$$a(\text{Å}) = 8.389 \cdot C_1 + 8.414 \cdot C_2 + + 8.511 \cdot (1 - C_1 - C_2), \qquad (2)$$

где C_1 , C_2 , $(1-C_1-C_2)$ — концентрации $CuFe_2O_4$, $Cu_{0.5}Fe_{2.5}O_4$, $MnFe_2O_4$ соответственно.

Рассчитанные по уравнению (2) концентрационные зависимости параметра решетки в сечениях A_1-B_1 , A_2-B_2 и A_3-B_3 в пределах точности измерений согласуются с экспериментальными *, что подтверждает предложенный механизм кристаллохимических превращений по уравнению (1).

На втором этапе фазовый состав остается прежним. Однако зависимости $\alpha(\eta)$, $P_{O_2}(\eta)$ и P_{O_2} от состава резко изменяются по причи-

не качественного изменения шпинельной фазы при переходе от первого этапа ко второму: магне-

^{*} Поскольку $m = \eta/25$ и состав согласно (1) для заданного значения x зависит от m, то легко перейти от концентрационной зависимости α к зависимости $\alpha(\eta)$, представленной на рис. 1, и обратно.

Рис. 2. Зависимость равновесного давления кислорода от состава шпинельной фазы при восстановлении твердых растворов $Cu_x Mn_{1-x} Fe_2 O_4$ при 1273 К (П — данные [8]).

тит Fe₃O₄ сменил CuFe₂O₄ (вместо Cu²⁺ появились Fe²⁺). Состав шпинельной фазы изменяется на этом этапе в пределах концентрационного треугольника растворов (Cu_{0.5}Fe_{2.5}O₄)_{C2} (Fe₃O₄)_{C3} (MnFe₂O₄)_{1-C2-C3}; содержание Cu_{0.5}Fe_{2.5}O₄ уменьшается, а Fe₃O₄ и фазы CuFeO₂ увеличивается в соответствии с уравнением:

$$Cu_{x}Mn_{1-x}Fe_{2}O_{4} + mH_{2} =$$

$$= (1-m)[(Cu_{0.5}Fe_{2.5}O_{4})_{2x-3m/1-m}(MnFe_{2}O_{4})_{1-x/1-m} \times (Fe_{3}O_{4})_{2m-x/1-m}] + 1.5mCuFeO_{2} + mH_{2}O. (3)$$

Конец этапа характеризуется остановкой снижения P_{O_2} (рис. 1). Для растворов с x = 1, 0.8,0.5, 0.2 этап заканчивается при $\eta = 15.7, 12.2, 7.6,$ 3 % соответственно. Согласно уравнению (3) это отвечает составам: $Cu_{0.15}Fe_{2.85}O_4$ (B); $(Cu_{0.5}Fe_{2.5}-O_4)_{0.276}$ (MnFe₂O₄)_{0.389} (Fe₃O₄)_{0.335} (B₁); $(Cu_{0.5}Fe_{2.5}-O_4)_{0.126}$ (MnFe₂O₄)_{0.719} (Fe₃O₄)_{0.155} (B₂); $(Cu_{0.5}Fe_{2.5}-O_4)_{0.045}$ (MnFe₂O₄)_{0.91} (Fe₃O₄)_{0.045} (B₃) (рис. 2).

Такой механизм кристаллохимических превращений на втором этапе подтверждается согласием в пределах погрешности эксперимента зависимостей $a(\eta)$, представленных на рис. 1, и рассчитанных с учетом (3) и уравнения [10]:

$$a(\text{\AA}) = 8.414C_2 + 8.395C_3 + 8.511(1-C_2-C_3), \quad (4)$$

здесь C_2 , C_3 — концентрации $Cu_{0.5}Fe_{2.5}O_4$, Fe_3O_4 .

На третьем этапе восстанавливается фаза постоянного состава $CuFeO_2$ до меди и шпинельной фазы состава $Cu_{0.15}Fe_{2.85}O_4$ [11] по уравнению:

$$ACuFeO_{2} + \Delta mH_{2} = (A - 1.68\Delta m)CuFeO_{2} + + 0.59\Delta mCu_{0.15}Fe_{2.85}O_{4} + 1.59\Delta mCu + + \Delta mH_{2}O,$$
(5)

где А — количество фазы CuFeO₂ в конце второго этапа, определяемое по уравнению (3).

Конец третьего этапа наступает при полном восстановлении CuFeO₂, то есть A–1.68 $\Delta m = 0$. Откуда $\Delta m = A/1.68$. Учитывая, что $\Delta \eta = 25 \cdot \Delta m$, этап заканчивается при $\eta = \eta_2 + 25\Delta m$. Здесь η_2 соответствует концу второго этапа. Поскольку P_{O_2} постоянно, изменение шпинельной фазы при восстановлении может происходить только по линии составов с одинаковым P_{O_2} (изобаре), равным P_{O_2} для CuFeO₂ и Cu_{0.15}Fe_{2.85}O₄, то есть $lg[P_{O_2} \cdot \Pi a^{-1}] = -1.7$ (среднее из данных [12] и рис. 1). На рис. 2 эта линия обозначена буквами B– B₃. На ней располагаются твердые растворы B, B₁,B₂, B₃, отвечающие началу этапа. В них при восстановлении CuFeO₂ растворяется Cu_{0.15}Fe_{2.85}O₄ и их составы изменяются по изобаре в интервалах B₁- Γ_1 (x=0.8), B₂- Γ_2 (x=0.5), B₃- Γ_3 (x =0.2)*.

Так, для состава с x=0.5 из уравнения (3) в конце второго этапа количество CuFeO₂ составляет 0.456 моль. Полное восстановление этой фазы по уравнению (5) дает 0.16Cu_{0.15}Fe_{2.85}O₄. Растворение последней в шпинели состава B₂ формирует в конце третьего этапа ($\Delta m = 0.271$; $\eta_2 = 7.6$ %; $\eta = 14.3$ %) шпинельную фазу состава Γ_2 — (Cu_{0.5}Fe_{2.5}O₄)_{0.159}(MnFe₂O₄)_{0.584}(Fe₃O₄)_{0.257}. Для растворов с x = 0.8 и 0.2 конец этапа наступает при $\eta = 23$ и 5.75 % соответственно. Им отвечают составы в точке Γ_1 — (Cu_{0.5}Fe_{2.5}O₄)_{0.284}

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 8

^{*} Для x=1 состав шпинельной фазы сохраняется постоянным (В — Cu_{0.15}Fe_{2.85}O₄), но увеличивается ее количество.

(MnFe₂O₄)_{0.260}(Fe₃O₄)_{0.456} и Γ_3 — (Cu_{0.5}Fe_{2.5}O₄)_{0.062} - (MnFe₂O₄)_{0.849} (Fe₃O₄)_{0.089} (рис. 2).

Параметр кристаллической решетки на этом этапе уменьшается (рис. 1) вследствие снижения содержания в шпинельной фазе компонента с наибольшим значением α -MnFe₂O₄. Рассчитанные значения α на этапе хорошо согласуются с экспериментальными.

Следует отметить, что восстановление CuFeO₂ до Си и Fe₃O₄, предполагаемое в работе [5], термодинамически невозможно, так как фазе CuFeO₂ при 273 К соответствует $lg[Po_2 \cdot \Pi a^{-1}] = -(1.6 - 1.8)$ (рис. 1 и [12]), а $Fe_3O_4 = -7.8$ (рис. 2 и [7, 13]). Кроме того, согласно [5] на начало восстановления $CuFeO_2$ при одном и том же P_{O_2} в равновесии находятся твердые растворы (Cu_{0.5}Fe_{2.5}O₄)₇ $(MnFe_2O_4)_{1-z}$, для которых z изменяется от 0.11 до 0.67. В действительности же им соответствуют разные P_{O_2} , отличающиеся от P_{O_2} CuFeO₂ на 2-3 порядка (см. рис. 2, линии Б'-Б', и В'-В',). В процессе восстановления CuFeO₂ эти растворы, если следовать [5], обогащаются Fe₃O₄, для которых P_{O_2} еще ниже. А это ведет к дальнейшему сильному изменению равновесного PO, (рис. 2), что противоречит термодинамике восстановления фазы постоянного состава (P_{O_2} =const).

Четвертый этап характеризуется сосуществованием меди и шпинельной фазы, а также снижением P_{O_2} и α (рис. 1) вследствие восстановления оставшегося в растворе $Cu_0 {}_5Fe_2 {}_5O_4$:

$$Cu_{x}Mn_{1-x}Fe_{2}O_{4} + mH_{2} =$$

$$= (1 - 0.25m)[(Cu_{0.5}Fe_{2.5}O_{4})_{2x-1.5m/1-0.25m} - (MnFe_{2}O_{4})_{1-x/1-0.25m} \cdot (Fe_{3}O_{4})_{1.25m-x/1-0.25m}] +$$

$$+ (x - 0.75m)Cu + mH_{2}O. \qquad (6)$$

Составы шпинельных фаз изменяются по линиям В-Д, Γ_1 -Д₁, Γ_2 -Д₂, Γ_3 -Д₃, a lgP_{O₂} — по линиям В'-Д', Γ'_1 -Д'₁, Γ'_2 -Д'₂, Γ'_3 -Д'₃ соответственно для растворов с x = 1.0, 0.8, 0.5, 0.2 (рис. 2). Этап заканчивается полным восстановлением Cu_{0.5}Fe_{2.5}O₄. Из уравнения (6) следует, что это происходит при $\eta = 33.3 \%$ для x=1.0; 26.7 % (x=0.8); 16.7 % (x=0.5); 6.7 % (x=0.2), которым отвечают составы: Д — Fe₃O₄, Д₁ — (MnFe₂O₄)_{0.275}; (Fe₃O₄)_{0.727}; Д₂ — (MnFe₂O₄)_{0.6}(Fe₃O₄)_{0.4}; Д₃ — (MnFe₂O₄)_{0.857}(Fe₃O₄)_{0.143}.

Рассчитанные с учетом уравнений (4) и (5) значения α в пределах точности измерений согласуются с экспериментальными.

На пятом этапе в равновесии находятся: медь, шпинельная и вюститная фазы переменного состава. По мере восстановления закономерно снижаются P_{O_2} и параметры кристаллических решеток шпинельной α и вюститной $\alpha_{\rm B}$ фаз, что свидетельствует об уменьшении концентрации соответственно MnFe₂O₄ и MnO, имеющих более высокие значения этих параметров, чем Fe₃O₄ и FeO. Причем по мере приближения к концу этапа количество шпинельной фазы уменьшается, а значения P_{O_2} и α приближаются к таковым для Fe₃O₄. В конце этапа шпинельная фаза исчезает, а вюститная находится в максимальном количестве. Кристаллохимические превращения при восстановлении растворов Cu_xMn_{1-x}Fe₂O₄ всех составов описываются уравнением:

$$Cu_{x}Mn_{1-x}Fe_{2}O_{4} + mH_{2} =$$

$$= (1 + x - m)[(MnFe_{2}O_{4})_{(1-x) - (3m-4x)y/(1+x-m)}, (Fe_{3}O_{4})_{1-[(1-x) - (3m-4x)y/(1+x-m)]}] + (3m - 4x) \cdot \cdot Mn_{y}Fe_{1-y}O + xCu + mH_{2}O.$$
(7)

Конец этапа наступает при 1+x-m=0, то есть когда m=1+x. Для растворов с x=1 это происходит при m=2 ($\eta=50$ %), с x=0.8 при m=1.8 ($\eta=45$ %), с x=0.5 при m=1.5 ($\eta=37,5$ %), с x=0.2 при m==1.2 ($\eta=30$ %) и с x=0 при m=1 ($\eta=25$ %).

Из уравнения (7) видно, что состав шпинельной фазы зависит от состава вюститной фазы $Mn_yFe_{1-y}O$. Последний можно найти по параметру решетки α_B (рис. 1) и зависимости $\alpha_B(y)$, представленной на рис. 3, которая описывается уравнением:

$$\alpha_{\rm p} = 4.3 + 0.143y \,. \tag{8}$$

Получая из рис. 1 значение $\alpha_{\rm B}$ при некотором η (в пределах этапа), из уравнения (8) находят *у*, то есть состав вюститной фазы. Затем подста-

Рис. 3. Изменение параметра кристаллической решетки от состава твердых растворов $Mn_yFe_{1-y}O$, находящихся в равновесии со шпинельной фазой при 1273 К. Δ — данные работы [13].

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 8

Таблица 1

Состав и параметр решетки шпинельной фазы и состав вюститной фазы при восстановлении твердого раствора $Cu_{0.5}Mn_{0.5}Fe_2O_4$ на пятом этапе (η =16.7—37.5 %)

Значение η, %	Состав вюститной фазы	Состав шпинельной фазы	Экспериментальный α_{3} и рассчитанный по уравнению (4) $\alpha_{3}/\alpha_{p}, Å$
16.7		$(MnFe_2O_4)_{0.6}(Fe_3O_4)_{0.4}$	$\alpha_{\rm p} = 8.463 / \alpha_{\rm p} = 8.465$
20.0	Mn _{0.289} Fe _{0.711} O	$(MnFe_2O_4)_{0.549}(Fe_3O_4)_{0.451}$	8.460/ 8.459
27.5	Mn _{0.266} Fe _{0.734} O	(MnFe ₂ O ₄) _{0.388} (Fe ₃ O ₄) _{0.612}	8.438/ 8.436
35.0	$Mn_{0.224}Fe_{0.776}O$	$(MnFe_2O_4)_{0.08}(Fe_3O_4)_{0.92}$	8.403/ 8.405
37.5	$Mn_{0.2}Fe_{0.8}O$	—	—

новкой значения у в (7) определяют состав шпинельной фазы, соответствующий заданному η . Сравнение экспериментального значения параметра решетки (рис. 1) с рассчитанным по уравнению (4) позволяет заключить о правильности такого подхода. Полученные таким путем данные для раствора с x=0.5 представлены в табл. 1. Они подтверждают справедливость подхода и реальность процессов, описываемых уравнением (7) *.

Шестой этап характеризуется равновесием вюститной фазы переменного состава с медью и железом, снижением P_{O_2} и ростом α_B . Изменение P_{O_2} и а вызвано уменьшением в растворе вюстита FeO, имеющего более высокое, чем MnO, равновесное давление кислорода и меньший параметр решетки. На этом этапе из раствора Mn_y-Fe_{1-y}O восстанавливаются FeO до железа по уравнению **:

$$Cu_{x}Mn_{1-x}Fe_{2}O_{4} + mH_{2} =$$

$$= (4 - m)Mn_{(1-x)/(4-m)}Fe_{1-(1-x)/(4-m)}O +$$

$$+ (m - x - 1)Fe + xCu + mH_{2}O.$$
(9)

Это уравнение подтверждается, в частности, согласием экспериментальных значений $\alpha_{\rm B}$ (рис. 1) с рассчитанными по уравнению (8) для вюститного твердого раствора составов, получаемых из (9) для выбранных значений η .

Конец этапа характеризуется полным восстановлением FeO до Fe, то есть при (m - x - 1) = 2. Для раствора с x=1 это произойдет при m=4 ($\eta=$ =100 %); с x=0.8 при m=3.8 (η= =95 %); с x=0.5 при m=3.5 (η= =87.5 %); с x=0.2 при m=3.2 (η= =80 %); с x=0 при m=3 (η=75 %). Оксид марганца МпО водородом не восстанавливается, поэтому за пределами шестого этапа в равновесии сосуществует МпО + Fe + Cu. Для растворов с x=1 отсутствует МпО, а с x=0 — Cu, что также вытекает из уравнения (9).

 8.438/ 8.436
 Таким образом, предложенные уравнения позволяют количественно описать кристаллохимические превращения, происходящие при восстановлении как медного и марганцевого ферритов, так и их твердых растворов.

Из рис. 2 следует, что для получения однофазных твердых растворов в системе $CuFe_2O_4$ — $MnFe_2O_4$ — Fe_3O_4 (необходимых, в частности, при изготовлении элементов радиоэлектронной техники) требуется знание зависимости P_{O_2} от тем-

Рис. 4. Температурная зависимость $\lg P_{O_2}$ над твердыми растворами, находящимися в равновесии с CuFeO₂ (*I*—5) (данные авторов) и с Mn_yFe_{1-y}O (6) [13], составов: *I* — CuFe₂O₄; 2 — Cu_{0.8}Mn_{0.2}Fe₂O₄; 3 — Cu_{0.5}Mn_{0.5}-Fe₂O₄; 4 — (CuFe₂O₄)_{0.3}(Cu_{0.5}Fe_{2.5}O₄)_{0.3}(MnFe₂O₄)_{0.4}; 5 — Cu_{0.2} Mn_{0.8}Fe₂O₄; 6 — MnFe₂O₄.

^{*} Такое же согласие α наблюдается и для растворов остальных составов. ** Как и в остальных уравнениях, здесь не учитывается кислородная нестехиометрия оксидов, ибо она относительно невелика и не может повлиять на характер кристаллохимических превращений, описываемых нами.

Таблица 2 Зависимость DH₀ от состава ($-\Delta \overline{H}_{0 \text{ cp}} = 98.4 \pm 8.4$)

Состав	–∆ И ₀, кДж/г∙ат
$\begin{array}{c} CuFe_2O_4\\ Cu_{0.8}Mn_{0.2}Fe_2O_4\\ Cu_{0.5}Mn_{0.5}Fe_2O_4\\ (CuFe_2O_4)_{0.3}(Cu_{0.5}Fe_{2.5}O_4)_{0.3}(MnFe_2O_4)_{0.4}\\ Cu_{0.2}Mn_{0.8}Fe_2O_4\\ MnFe_2O_4\end{array}$	90.0 97.1 104.7 104.3 106.3 308.2

пературы для растворов каждого состава. Для растворов некоторых составов в системе (MnFe₂-O₄)_{x1}(Cu_{0.5}Fe_{2.5}O₄)_{x2}(Fe₃O₄)_{1-x1-x2} (A), имеющей важное практическое значение [3, 14], такие зависимости для низкокислородной границы гомогенности представлены на рис. 4. Получим общее выражение зависимости $P_{O_2}(T)$, пригодное для раствора любого состава этой системы.

Из данных рис. 4 по известной формуле

$$\Delta H_0 (\kappa \Pi \varkappa / r.-a\tau) =$$

= 19.154 \cdot 10^{-3} \delta lg^{1/2} P_{O_2} / \delta (1/T) (10)

были вычислены значения парциальной энтальпии растворения кислорода (табл. 2). Видно, что для медьсодержащих растворов системы A ($x_1 \le 0.2$) $\Delta \overline{H}_0$ изменяется мало. Поэтому зависимость $\lg Po_2(1/T)$ можно выразить через среднее значение $\Delta \overline{H}_0$, равное 98.4 кДж/г·ат:

$$\lg P_{O_2} = A - 10280/T , \qquad (11)$$

А — значение $\lg P_{O_2}$ при некоторой температуре. Оно зависит от состава.

Из рис. 4 следует, что при содержании в растворах системы A $MnFe_2O_4 \le 0.2$ зависимость lgP_{O_2} от состава близка к линейной и при 1273 К выражается уравнением:

$$lg[P_{O_2} \cdot \Pi a^{-1}] \pm 0.3 = x_1 + 1.9x_2 + + 4.7(1 - x_1 - x_2).$$
(12)

Подстановкой этого выражения $\lg P_{O_2}$ в (11) находится А:

$$A = 12.8 - 3.7x_1 - 2.8x_2.$$
(13)

Из уравнений (11) и (13) получается зависимость $\lg P_{O_2}$ от состава и температуры растворов A при $x_1^2 \le 0.2$:

$$lg[P_{O_2} \cdot \Pi a^{-1}] \pm 0.4 = 12.8 - 3.7x_1 - 2.8x_2 - 10280/T.$$
(14)

Установленная закономерность (14) имеет важное теоретическое и прикладное значение, так как позволяет простым расчетом находить в широком концентрационном и температурном интервалах равновесное давление кислорода для твердых растворов ($MnFe_2O_4$)_{x1}($Cu_{0.5}Fe_{0.5}O_4$)_{x2}-($CuFe_2O_4$)_{1-x1-x2} на низкокислородной границе области гомогенности, а следовательно, проводить синтез однофазных растворов по заданной программе.

РЕЗЮМЕ. Досліджені кристалохімічні перетворення до повного відновлення воднем твердих розчинів Си_xMn_{1-x}Fe₂O₄ складів з x = 0.2, 0.5, 0.8 і виведені загальні рівняня, що дозволяють описати ці процеси в усьому інтервалі концентрацій ($0 \le x \le 1$). Внесені принципові уточнення в характер процесів, приведених в літературі. Одержані залежності рівноважного тиску кисню та P_{O_2} на низькокисневій межі гомогенності твердих розчинів із структурою шпінелі в межах всієї області їх існування. Для розчинів (MnFe₂O₄)_{x1} (Cu_{0.5}Fe_{2.5}O₄)_{x2} (CuFe₂O₄)_{1-x1-x2}, що мають більш важливе прикладне значення, крім того, вивчені залежності $lgP_O(1/T)$ і одержаного рівняння зв'язку P_{O_2} із складом²і температурою $lg[P_O \cdot \Pi a^{-1}] \pm 0.4 = 12.8 - 3.7x_1 - 2.8x_2 - 10280/T, що дозволяє² проводити синтез одно$ фазних розчинів по програмі.

SUMMARY. Crystalchemical conversion of solid solutions $Cu_x Mn_{1-x}Fe_2O_4$ of compositions with x = 0.2, 0.5, 0.8 to complete hydrogen reduction are studies and general equations allaving to describe these processes in all concentration interial $(0 \le x \le 1)$ are deduced. The fundamental refinements are introduced in the character of the processes given in literature. Dependence of oxygen equilibrium pressure P_{O_2} on low oxyden dividing line of solid solutions homogenity with spinel structure within the limits of all their existance area. Furthermore, the dependences $lgP_{O_2}(1/T)$ for solution $(MnFe_2O_4)_{x1}(Cu_{0.5}Fe_2SO_4)_{x2}$ (Cu-Fe₂O₄)_{1-x1-x2}, beeng of more practical significance are studied and the equation of connection P_O with composition and temperature $lg[P_O \cdot \Pi a^{-1}] \pm 0.4 = 12.8 - 3.7x_1 - 2.8x_2 - 10280/T$ is obtained, allwing to conduct singl phase solution synthesis under the programm.

- 1. Jahn H.A., Teller E. // Proc. Rey. Soc., London. -1937. -A161. -C. 220.
- 2. Зиновик М.А. //. Электронная техника. Сер. материалы. -1974. -Вып. 3. -С. 16—22.
- 3. А.с. 427.401, СССР // Бюл. изобрет. -1974. -№ 17.
- 4. Чуфаров Г.И., Мень А.М., Балакирев В.Ф. и др. Термодинамика процессов восстановления окислов металлов. -М.: Металлургия, 1970.
- 5. Щепеткин А.А., Зиновик М.А., Чуфаров Г.И. // Журн. неорган. химии. -1970. -15, № 10. -С. 2633—2636.
- 6. Зиновик М.А., Щепеткин А.А., Чуфаров Г.И. // Докл. АН СССР. -1969. -187, № 6. -С. 1304—1307.
- 7. Зиновик М.А., Залазинский А.Г., Дубровина И.Н.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 8

и др. // Журн. физ. химии. -1984. -**58**, № 8. -С. 1930—1933.

- 8. Залазинский А.Г., Балакирев В.Ф. Чеботаев Н.М., Чуфаров Г.И. // Изв. вузов. Цвет. металлургия. -1970. -№ 5. -С. 22—24.
- 9. Сапожников Э.Я., Довидович А.Г., Зиновик М.А. и др. // Журн. неорган. химии. -1981. -26, № 7. -С. 1751—1754.
- Щепеткин А.А., Зиновик М.А., Чуфаров Г.И. // Докл. АН. СССР. -1970. -195, № 5. -С. 1155—1157.

Кировоградский национальный технический университет

- Залазинский А.Г., Балакирев В.Ф. Чеботаев Н.М., Чуфаров Г.И. // Изв. АН ССР. Неорган. материалы. -1970. -6, № 1. -С. 162, 163.
- 12. Залазинский А.Г., Балакирев В.Ф., Чуфаров Г.И. // Журн. физ. химии. -1969. -43, № 6. -С. 1636, 1637.
- 13. *Третьяков Ю.Д.* Термодинамика ферритов. -Л.: Химия, 1967.
- 14. Зиновик М.А. // Порошковая металлургия. -1976. -№ 3. -С. 69—72.

Поступила 28.01.2005

УДК 547.821

С.П. Пономаренко, Ю.Я. Боровиков, Т.Е. Сивачек, Д.Н. Вовк ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КОМПЛЕКСОВ ПИРИДИНА И ЕГО МЕТИЛЗАМЕЩЕННЫХ С ИОДОМ

В интервале температур 20—96 °С в разных агрегатных состояниях изучены удельная электропроводность и диэлектрическая проницаемость эквимольных безводных и гидратированных комплексов пиридина, 2-пиколина и 2,6-лутидина с иодом. Показано, что твердые комплексы обладают смешанной ионной и электропроводностью. Установлены два механизма термической генерации электроннодырочных пар. Данные по электропроводности отражали фазовые переходы при нагревании веществ и десорбцию из них газов при наложении на образцы переменного электрического поля.

Электрические свойства соединений связаны со многими особенностями их поведения в биологических системах [1]. В предыдущей работе [2] нами исследованы в кристаллическом состоянии удельная электропроводность (к) и диэлектрическая проницаемость (ε) активных росторегуляторов — комплексов N-окисленных пиридина и метилпиридинов с иодом. Для более полной характеристики свойств комплексов и последующего раскрытия механизма их действия на растения желательно было получить аналогичную информацию для комплексов иода с теми же неокисленными соединениями, что и было осуществлено в настоящей работе.

Методики измерений и способы получения различных кристаллических модификаций комплексов (I—III) (таблица) были те же, что и ранее [3]. Образцы для измерений брались в виде таблеток диаметром 10—20 мм, толщиной 1—4 мм, запрессованных под давлением 4000 атм. Энергии термической генерации ионов проводимости (W_u) и электроннодырочных пар (W_3) в твердых веществах рассчитывались по стандартным уравнениям [4, 5], преобразованным нами к виду:

$$W_{\rm II}, \, \Im B = 1.98 \cdot 10^{-4} {\rm tg}\alpha \,;$$
 (1)

$$W_{\rm p}, \, {\rm pB} = 3.97 \cdot 10^{-4} {\rm tg}\alpha \,, \, (1a)$$

где α — угол наклона зависимости lgк—1/*T* к оси обратных температур.

Уравнение типа (1) использовалось также для жидкой фазы [6]. Нами в соответствующих расчетах величины к "исправлялись" с учетом температурного изменения вязкости. Ее температурный коэффициент подобно большинству неассоциированных жидкостей [7] принимался равным 1 %/град.

По интенсивностям полос поглощения иода в электронных спектрах в области длин волн 360—520 нм мы установили, что доля свободного иода в свежеприготовленных твердых пленках безводных веществ обычно была близка к 17 %. В большинстве веществ в разной пропорции присутствовали внешние и более прочные внутренние (см. [3]) изомеры. В случае гидратированных комплексов реализовались только внутренние изомеры. В соответствии со значительной термической диссоциацией комплексов их температуры плавления часто были сильно растянуты, вещества выглядели "набрякшими", с помощью микроскопа между кристаллами можно было видеть жидкость, количество которой в свежеприготовленных образцах со временем медленно умень-

© С.П. Пономаренко, Ю.Я. Боровиков, Т.Е. Сивачек, Д.Н. Вовк, 2006