УДК 546:548.736

О.І. Романів, Л.Г. Аксельруд, В.М. Давидов, Р.Є. Гладишевський

ВПЛИВ ЧАСТКОВОГО ЗАМІЩЕННЯ Sr(Ca) НА Y, Pb АБО Ві НА СТІЙКІСТЬ ТА КРИСТАЛІЧНУ СТРУКТУРУ СПОЛУКИ (Sr₈Ca₆)Cu₂₄O₄₁

Сполуку (Sr₈Ca₆)Cu₂₄O₄₁ синтезовано твердотільною реакцією при 920 °С впродовж 24 год в атмосфері повітря. Вона кристалізується з композитною неспіввимірною структурою (надгрупа *P:F222:-1-11, a=11.3745(7), b=12.9798(9), c*₁=2.7493(4), *c*₂=3.9132(3) Å, *q*=0.7026), яку можна для зручності описати співвимірною надструктурою (просторова група *Cccm, a=11.377(1), b=12.983(1), c=27.395(2)* Å). Часткове заміщення (Sr, Ca) на Y, Pb або Bi (5 % мас.) по-різному модифікує зигзагоподібні (Cu₂O₃) та прямі (CuO₂) ланцюжки квадратів CuO₄. У випадку заміщення на Y період трансляції вздовж напряму укладки шарів (параметр *b*) зменшується. Синтез із невеликими кількостями PbO або Bi₂O₃ значно знижує температуру розкладу фази (Sr₈Ca₆)Cu₂Q₄₁.

Серед купратів значний інтерес викликають сполуки з шаруватими структурами. До цієї групи належать високотемпературні надпровідники, структури яких побудовані укладкою чотирьох видів атомних шарів [1]. В усіх шарах катіони утворюють квадратні сітки. Один з чотирьох видів шарів побудований виключно з атомів металу, тоді як решта містять також атоми оксигену, що розміщаються в центрах квадратів із атомів металу або в центрах сторін квадратів. Вважається, що надпровідність має місце в шарах із малих квадратів CuO₄, з'єднаних між собою вершинами (склад шару CuO₂; рис. 1, *a*). Наприклад, у псевдо-тетрагональній структурі одного з найперспективніших для застосування надпровідників з високою критичною температурою

Рис. 1. Укладка квадратів CuO_4 в структурах високотемпературних надпровідників (*a*), в структурі сполуки $Sr_2Cu_3O_5$ (б) (атоми Cu — великі кулі, атоми O — малі кулі).

Bi-2212 (ідеальний склад Bi₂Sr₂CaCu₂O₈₊₆, *T*_c=90 К) послідовність укладки шарів така: -ВіО-SrO-CuO₂-Ca-CuO₂-SrO-BiO-. Присутність в структурі додаткових атомів оксигену (δ ≤ 0.22), які знаходяться в шарах BiO, є необхідною для існування цієї надпровідної фази [2]. Зміна парціального тиску кисню при синтезі приводить до модифікації вмісту оксигену в фазі і тим самим до зміни її надпровідних властивостей. Такого ж результату можна досягти частковим заміщенням Bi^{3+} на Pb^{2+} [3] або Ca^{2+} на Y^{3+} [4]. Крім того, відомо [1], що для фази Bi₂Sr₂CaCu₂O_{8+δ}, як і для спорідненої Ві2Sr2Ca2Cu3O10+8, в положеннях Са завжди присутня невелика кількість Ві (до 10 % ат.). До родини високотемпературних надпровіників належить також сполука CaCuO₂ [5], в тетрагональній структурі якої шари CuO₂ чергуються із шарами Са.

Існують також шаруваті купрати, в яких квадрати CuO₄ з'єднані між собою як вершинами, так і сторонами. Це так звані ladder compounds (сполуки багатоланкової схеми), які описуються формулою Sr_{n-1}Cu_{n+1}O_{2n} (n = 3, 5, 7...) [6]. В шарах Cu_{n+1}O_{2n} зигзагоподібні ланцюжки квадратів CuO₄ із спільними сторонами (склад шару Cu₂O₃) зв'язані з *m* шарами прямих ланцюжків квадратів CuO₄ із спільними вершинами (рис. 1, δ), що приводить до альтернативної загальної формули: (m+1)Sr + Cu₂O₃ + mCuO₂ \rightarrow Sr_{m+1}Cu_{m+2}O_{2m+3} (m = 0, 1, 2...). Структури цих сполук описуються ромбічною симетрією. Слід зауважити, що даний тип сполук можна синтезувати тільки при високому тиску.

© О.І. Романів, Л.Г. Аксельруд, В.М. Давидов, Р.Є. Гладишевський, 2006

Рис. 2. Нескінченні прямі ланцюжки (*a*) і нескінченні зигзагоподібні ланцюжки (δ) з квадратів CuO₄ у структурі сполуки (Sr, Ca)₁₄Cu₂₄O₄₁ (атоми Cu — великі кулі, атоми O — малі кулі).

Останнім часом особливий інтерес привертають композитні купрати (spin-ladder compounds), які можна описати формулою [M₂Cu₂O₃]_m[CuO₂]_n, де М — в основному Sr та/або Са [7]. Їхні структури містять шари Cu₂O₃, подібні до описаних вище для сполук $\mathrm{Sr}_{m+1} \tilde{\mathrm{Cu}}_{m+2} \mathrm{O}_{2m+3}$ з m=0, що чер-гуються з шарами CuO_2 , які побудовані з одинарних прямих ланцюжків із квадратів CuO₄. Квадрати у цих ланцюжках мають спільні сторони. Таким чином, різниця між двома видами шарів атомів Cu та O у купратах $[M_2Cu_2O_3]_m[CuO_2]_n$ полягає в способі з'єднання квадратів CuO₄. В одному випадку квадрати утворюють, за рахунок спільних сторін, ізольовані нескінченні прямі ланцюжки (рис. 2, а), тоді як у другому — вони формують, також за рахунок спільних сторін, нескінченні зигзагоподібні ланцюжки, які в свою чергу з'єднуються між собою вершинами квадратів (рис. 2, δ). Склад першого виду шарів описується формулою CuO₂, а другого — Cu₂O₃; вони мають прямокутну плоску групу симетрії с2тт. Два види шарів чергуються вздовж напряму укладки та розділені третім видом шару, що складається з рядів атомів Sr та/або Ca (рис. 3). Обидва види ланцюжків квадратів CuO₄, а також ряди атомів

Рис. 3. Ряди атомів (Sr, Ca) в структурі сполуки (Sr, Ca) $_{14}$ Cu $_{24}$ O $_{41}$.

Рис. 4. Укладка шарів у структурі сполуки $(Sr, Ca)_{14}$ -Cu₂₄O₄₁ (шари з атомів Cu та O представлено квадратами, атоми (Sr, Ca) — кулями).

Sr та/або Са простягаються вздовж одного напряму. Один із представників серії $[M_2Cu_2O_3]_m$ - $[CuO_2]_n$ — сполука (Sr₈Ca₆)Cu₂₄O₄₁ (m=7, n=10) [8]. Її структура, що описується ромбічною просторовою групою *Ссст* з $a \approx 11.4$, $b \approx 12.9$ і $c \approx 27.4$ Å, представлена на рис. 4. Ланцюжки простягаються вздовж кристалографічного напряму [001], тоді як нашарування здійснюється вздовж [010]. Шари CuO₂ мають $y \approx 0$ та 1/2, (Sr,Ca) — $y \approx 1/8$, 3/8, 5/8 та 7/8, а Cu₂O₃ — $y \approx 1/4$ та 3/4.

Структуру сполуки (\bar{Sr}_8Ca_6)Cu₂₄O₄₁ можна також розглядати і як композитну неспіввимірну [9], що складається з двох підграток. Їхні структури можна описати ромбічною центросиметричною просторовою групою *Fmmm* або її нецентросиметричними варіантами *Fmm2* і *F*222 [10]. Обидві підкомірки мають однакові значення параметрів *a* та *b* (*a* ≈ 11.4, *b* ≈ 12.9 Å), тоді як параметри *c* є різними ($c_1 \approx 2.8$ і $c_2 \approx 3.9$ Å відповідно).

У даній роботі представлено результати дослідження впливу часткового заміщення (Sr, Са) на Y, Pb або Bi на стійкість і кристалічну структуру сполуки (Sr₈Ca₆)Cu₂₄O₄₁. Ця сполука є побічним продуктом при синтезі високотемпературних надпровідників $Bi_2Sr_2CaCu_2O_{8+\delta}$ ($T_c=$ =90 K) ta $Bi_2Sr_2Ca_2Cu_3O_{10+\pi}(T_c=110 \text{ K})$ i xapakтеризується значною областю гомогенності щодо співвідношення Sr та Ca. При складі (Sr_{0.4}Ca_{13.6})Cu₂₄O_{41.84} вона також проявляє надпровідні властивості з критичною температурою $T_{c} = 12 \text{ K}$, однак лише при високому тиску (3 ГПа) [11]. Як відомо з літератури, структурні дослідження цієї сполуки проводились, як правило, методом монокристалу; монокристали вирощували з стехіометричних розплавів або розплавів. збагачених CuO. Автори роботи [12] повідомляли про синтез сполуки $(Sr_{14-x}Ca_x)Cu_{24}O_{41}$ $(0 \le x$ ≤ 9) твердотільною реакцією при 960°°C в атмосфері кисню впродовж 24 год з одним проміжним перетиранням зразка. Для отримання полікристалічних зразків цієї сполуки з x=13.6 застосовували синтез при тиску 0.2 ГПа ($p(O_2)=$ =0.04 ГПа) [11]. У роботі [13] зазначалося, що заміщення (Sr, Ca)²⁺ навіть невеликою кількістю La³⁺ приводить до суттєвої зміни електронних властивостей.

У цій роботі зразки складу (Sr₈Ca₆)_{1-r}M_x- $Cu_{24}O_{z}$, ge M = Y, Pb ado Bi, x=0.53 (5 % mac. Y); x = 0.24 Ta 0.49 (5 Ta 10 % Mac. Pb); x=0.23та 0.48 (5 та 10 % мас. Ві) виготовляли з відповідних кількостей SrCO₃ (чистота — 99.5 % мас.), CaCO₃ (99 % мас.), CuO (99.7 % мас.), Y₂O₃ (99.5 % мас.), РbO (99.9 % мас.) та Ві₂O₃ (99.9 % мас.). Був також виготовлений зразок складу (Sr_{6.75}Ca_{5.06}-Cu_{2.19})Cu₂₄O₇. Суміші перетирали в агатовій ступці впродовж 10 хв після додавання кожного наступного компоненту. З метою розкладу карбонатів отриману суміш нагрівали у корундових тиглях при температурі 920 °С на повітрі впродовж 24 год у муфельній печі Vulcan А-550 з автоматичним регулюванням температури \pm 1.5 °С. Середня швидкість нагрівання становила 25 °/хв. Ступінь термолізу карбонатів, який контролювали шляхом зважування шихти до та після нагрівання, становив більше 99 % мас. Після охолодження до кімнатної температури суміш оксидів перетирали та пресували у таблетки діаметром 0.7—1.0 см і товщиною 0.7 см під тиском 0.025 ГПа (маса таблетки становила ~1.5 г). Завершальною стадією синтезу було спікання на повітрі при температурі 920, 940, 960 або 980 °C впродовж доби.

Рентгенівський фазовий аналіз проводили на основі дифрактограм, одержаних на дифрактометрі ДРОН-2,0 (Fe K_{α} -проміння). Зйомка здійснювалась за схемою Брегга–Брентано. Еталонами для порівняння були порошкограми вихідних окси-

дів, а також теоретично розраховані рентгенограми (програма PowderCell-2,3 [14]) відомих бінарних і багатокомпонентних сполук. Для уточнення параметрів елементарної комірки було використано програму LATCON [15].

3 метою повного визначення кристалічної структури методом порошку використано масиви дифракційних даних, одержаних на автоматичних дифрактометрах HZG-4a (проміння CuK_{α} , крок 0.05°20 в інтервалі 5—140°20, час вимірювання в кожній точці 18 с) та Bruker-D8 (проміння CuK_{α1}, графітовий монохроматор, крок 0.01443°20 в інтервалі 4—130°20, час вимірювання в кожній точці 8 с) з наступним уточненням структурних параметрів методом Рітвельда за допомогою програм DBWS-9807 [16] та WinCSD [17]. Вихідні моделі для структурних уточнень у три- та чотиривимірному просторі були взяті з робіт [9, 18, 19]. Кількість уточнюваних координатних і теплових параметрів атомів у структурі М₁₄Си₂₄О₄₁ з просторовою групою Ссст була 39, тоді як у випадку чотиривимірного простору — лише 11. Для опису профілю піків в обидвох випадках використано функцію псевдо-Войта.

Диференціальний термічний та термогравіметричний аналізи проводили з використанням приладу TAG 24 SETARAM. Зразки нагрівали зі швидкістю 2 ⁰/хв у потоці суміші газів 80 % Ar—20 % O₂. В якості еталона використовували порошок Al₂O₃. Точність визначення втрати маси при термогравіметрії становила 10⁻⁷ г.

У табл. 1 наведено результати структурного уточнення в тривимірному просторі на основі дифракційних даних для полікристалічного зразка (Sr₈Ca₆)Cu₂₄O_z, виготовленого при температурі 920 °C в атмосфері повітря. Зразок виявився практично однофазним; вміст додаткової фа-

Таблиця 1

Результати уточнення структури $M_{14}Cu_{24}O_{41}$ (просторова група *Cccm*, послідовність зайнятих правильних систем точок $m^{13}l^4k^3j^2i^2gfcb$) у зразках, синтезованих при 920 °C (метод порошку, дифрактометр HZG-4a)

Параметри	Sr ₈ Ca ₆ (99.0)	$Sr_{7.70}Ca_{5.77}Y_{0.53}$ (99.1)	$Sr_{7.86}Ca_{5.90}Pb_{0.24}$ (97.8)	Sr _{7.87} Ca _{5.90} Bi _{0.23} (97.1)		
1 1	% мас.					
a, Å	11.377(1)	11.363(1)	11.382(1)	11.377(1)		
b, Å	12.983(1)	12.947(2)	12.979(1)	12.976(1)		
<i>c</i> , Å	27.395(2)	27.419(3)	27.369(1)	27.373(2)		
<i>R</i> _B , %	6.88	6.71	11.16	9.38		
<i>R</i> _p , %	2.13	2.69	2.85	2.49		
$R_{\rm wp}, \%$	2.92	3.74	4.56	3.62		
S	1.62	1.84	2.85	2.08		

Рис. 5. Дифрактограми зразків (Sr₈Ca₆)Cu₂₄O₄₁, (Sr_{7.70}Ca_{5.77}Y_{0.53})Cu₂₄O_z, (Sr_{7.86}Ca_{5.90}Pb_{0.24})Cu₂₄O_z і (Sr_{7.87}Ca_{5.90}Bi_{0.23})Cu₂₄O_z (зліва — за результатами уточнення у тривимірному, справа — у чотиривимірному просторі); дифрактометр HZG-4a, CuK_{α}-проміння.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 8

Таблиця 2

Результати уточнення структури індивідуальних фаз у зразку ($Sr_{6.75}Ca_{5.06}Cu_{2.19}$) $Cu_{24}O_z$, синтезованому при 920 °C (метод порошку, дифрактометр Bruker-D8)

Параметри	(Sr ₈ Ca ₆)Cu ₂₄ O ₄₁ (82.8(3)), Cccm	CuO (17.2(3)), C2/c			
	% мас.				
a, Å	11.3778(4)	4.6981(4)			
b, Å	12.9830(5)	3.4136(3)			
<i>c</i> , Å	27.3932(10)	5.1304(4)			
β, ^o		99.693(5)			
<i>R</i> _в , %	7.88	3.32			
<i>R</i> _p , %	3	.27			
$R_{\rm wp}, \%$	5	.45			
S	3	.18			

зи — СиО з моноклінною структурою (просторова група С2/с) не перевищив 1 % мас. Визначені параметри елементарної комірки для основної, ромбічної фази добре узгоджуються з даними монокристального дослідження [8]. Як показано у табл. 1, зразок складу (Sr_{7 70}Ca_{5 77}Y_{0 53})Cu₂₄O₇ також практично однофазний; аналогічно до попереднього випадку виявлено ~1 % мас. CuO. Порівняння параметрів елементарної комірки ромбічної фази у цьому зразку з параметрами для незаміщеної фази вказує на помітне зменшення параметру b. Тому можна стверджувати, що атоми У включаються у структуру, частково замішаючи атоми Sr та/або Са в їхніх положеннях, і таке заміщення приводить до ущільнення шарів вздовж напряму укладки. Це добре узгоджується з геометричними міркуваннями, оскільки йон має менший радіус (1.04 Å), ніж йони Sr^{2+} чи Ca²⁺ (1.32 та 1.14 Å відповідно) [20]. При синтезі з невеликими кількостями Ві2O3 такий ефект проявляється меншою мірою (див. табл. 1), оскільки у статистичній суміші $(Sr_{0.57}Ca_{0.43})^{24}$ (1.24 Å) та Bi³⁺ (1.17 Å) значення йонних радіусів близькі. Зразок складу (Sr_{7.87}Ca_{5.90}Bi_{0.23})Cu₂₄O_z містить лише одну додаткову фазу — ~3 % мас. ČuO, що свідчить про входження атомів Ві у структуру основної фази. Аналіз дифрактограми зразка складу (Sr_{7.86}Ca_{5.90}Pb_{0.24})Cu₂₄O_z виявив присутність, крім основної фази M_{14} Cu₂₄O₄₁, також CuO та слідів (Sr, Ca)₂PbO₄ із ромбічною структурою (просторова група *Pbam*). Значення параметру *b* для фази М₁₄Си₂₄О₄₁ вказує, що Рb знаходиться переважно в ступені окиснення 2+ (r(Pb²⁺)=1.33, $r(Pb^{4+})=0.92$ Å). Що стосується параметрів *а* та

c елементарних комірок, то при частковому заміщенні (Sr, Ca) на Y параметр a дещо зменшується, тоді як параметр c збільшується. У випадку Ві та Pb спостерігається зворотна закономірність. Дифрактограми досліджуваних зразків представлено на рис. 5. Слід зауважити, що збільшення температури синтезу від 920 до 980 °C привело до результатів, аналогічних описаним вище. При температурі 1000 °C спостерігалося топлення зразків.

В результаті структурного уточнення зразка складу (Sr_{6.75}Ca_{5.06}Cu_{2.19})Cu₂₄O_z встановлено, що атоми Cu не утворюють статистичної суміші з атомами Sr та Ca в інтервалі температур синтезу 920—980 °C. Як видно з табл. 2, зразок, отриманий при 920 °C, виявився двофазним і містить (Sr₈Ca₆)Cu₂₄O₄₁ та CuO у співвідношенні, яке відповідає вихідному складу.

Збільшення вмісту Ві чи Рb до 10 % мас. у зразках, синтезованих при 920 °С, не привело до зміни параметрів елементарної комірки для купрату $M_{14}Cu_{24}O_{41}$. Однак рентгенофазовий аналіз вказав на збільшення вмісту додаткових фаз. У випадку Pb значно підвищився вміст плюмбату (Sr, Ca)₂PbO₄ та оксиду CuO, тоді як у випадку Ві на дифрактограмах появилися відбиття, які, на жаль, не вдалося приписати відомим сполукам із бісмутом.

Нижче та на рис. 6, 7 наведено результати диференціального термічного та термогравіметричного аналізів:

M:
$$Sr_8Ca_6 Sr_{7.87}Ca_{5.90}Bi_{0.23} Sr_{7.86}Ca_{5.90}Pb_{0.24}$$

 $T^{\text{onset o}}C: 973 965 954$

Температура розкладу сполуки (Sr₈Ca₆)Cu₂₄O₄₁ при нагріванні становить 973 °С (рис. 6). Як видно з даних, наведених вище, для зразка

Рис. 6. Криві диференціального термічного аналізу: $I = (Sr_8Ca_6)Cu_{24}O_{41}; 2 = (Sr_{7.87}Ca_{5.90}Bi_{0.23})Cu_{24}O_z;$ $3 = (Sr_{7.86}Ca_{5.90}Pb_{0.24})Cu_{24}O_z.$

71

Таблиця З

Параметри підкомірок для композитної структури М₁₄Сu₂₄O₄₁, надгрупа *P:F222:-1-11* (зразки синтезовані при 920 °С, метод порошку, дифрактометр HZG-4a)

М	а	b	<i>c</i> ₁	<i>c</i> ₂	V ₁	V ₂	a
	Å				Å ³		1
(Sr_8Ca_6)	11.3745(7)	12.9798(9)	2.7493(4)	3.9132(3) 3.9153(4)	405.90(9)	577.74(9) 575.6 (1)	0.7026
$(Sr_{7.86}Ca_{5.90}Pb_{0.24})$ $(Sr_{7.86}Ca_{5.90}Pb_{0.24})$ $(Sr_{7.87}Ca_{5.90}Bi_{0.22})$	11.33 ⁹ (1) 11.3815(3) 11.3818(3)	12.943(1) 12.9788(3) 12.9787(3)	2.7537(2) 2.7538(2)	3.9101(1) 3.9101(1)	404.4 (1) 406.77(4) 407.02(4)	577.59(4) 577.61(4)	0.7043 0.7043

(Sr_{7.87}Ca_{5.90}Bi_{0.23})Cu₂₄O₇ температура розкладу складного купрату понизилась на 8 °С. Таким чином, можна стверджувати, що додавання навіть незначних кількостей Ві₂О₃ (атоми Ві, як зазначено вище, включаються в структуру у положення атомів Sr чи Ca) приводить до помітного пониження температури розкладу фази. Більш суттєве пониження температури розкладу зафіксовано для зразка (Sr_{7.86}Ca_{5.90}Pb_{0.24})Cu₂₄O₇. Як видно з рис. 6, крива ДТА для цього зразка, крім ендотермічного ефекту при температурі 954 °С, що відповідає розкладу фази $M_{14}Cu_{24}O_{41}$, містить додатковий пік при 874 °С. Як зазначалося, рентгенофазовий аналіз зразка (Sr_{7.86}Ca_{5.90}Pb_{0.24})Cu₂₄O_z виявив, крім основної фази, невеликі кількості СиО та (Sr, Ca)₂PbO₄. Згідно з роботою [21], температура топлення плюмбату кальцію становить 980 °C, однак присутність РЬО понижує цю температуру до 847 °С. Таким чином, можна припустити, що пік при 874 °С зумовлений розкладом фази (Sr, Ca)₂PbO₄. Як видно з рис. 7, ендотермічний ефект при температурі ~874 °С супроводжується втратою маси, що, ймовірно, обумовлено розкладом плюмбату з відновленням Pb⁴⁺

Рис. 7. Криві термогравіметричного аналізу: $I = (Sr_8Ca_6)Cu_{24}O_{41}; 2 = (Sr_{7.87}Ca_{5.90}Bi_{0.23})Cu_{24}O_z; 3 = (Sr_{7.86}Ca_{5.90}Pb_{0.24})Cu_{24}O_z.$

Таблиця 4

Координати атомів для композитної структури $M_{14}Cu_{24}O_{41}$ (параметри приведені для чотирьох зразків, синтезованих при 920 °C з різними M у такій послідовності: $M_1 = (Sr_8Ca_6), M_2 = (Sr_{7.70}Ca_{5.77}Y_{0.53}), M_3 = (Sr_{7.86}Ca_{5.90}Pb_{0.24}), M_4 = (Sr_{7.87}Ca_{5.90}Bi_{0.23})$

Атом	ПСТ*	x	у	z	$B_{i30}, Å^2$
Cu1	4(<i>b</i>)	0	0	1/2	1.00(4)
		0	0	1/2	0.78(3)
		0	0	1/2	1.00(8)
		0	0	1/2	1.55(4)
01	8(<i>e</i>)	0.1212(6)	0	0	1.10(2)
		0.1163(7)	0	0	1.25(12)
		0.1119(2)	0	0	0.90(3)
		0.1135(5)	0	0	1.16(12)
M_1	8(i)	1/4	0.6219(1)	1/4	0.67(3)
M ₂		1/4	0.6222(2)	1/4	0.59(2)
M_3		1/4	0.6209(5)	1/4	0.68(2)
M_4		1/4	0.6212(1)	1/4	1.26(3)
Cu2	8(j)	0.0844(2)	1/4	1/4	0.59(3)
		0.0830(2)	1/4	1/4	0.64(2)
		0.0853(7)	1/4	1/4	0.60(7)
		0.0844(2)	1/4	1/4	1.33(3)
02	4(c)	1/4	1/4	1/4	0.72(2)
		1/4	1/4	1/4	0.60(2)
		1/4	1/4	1/4	0.80(5)
		1/4	1/4	1/4	0.50(2)
O3	8(j)	0.5897(7)	1/4	1/4	0.44(13)
		0.5851(9)	1/4	1/4	0.50(2)
		0.5830(3)	1/4	1/4	1.10(3)
		0.5864(7)	1/4	1/4	1.60(2)

* ПСТ — правильна система точок.

до Pb²⁺ (отже, втратою оксигену). Результати уточнення структурних парамет-

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 8

Таблиця 5

Міжатомна відстань	(Sr ₈ Ca ₆)	(Sr _{7.70} Ca _{5.77} Y _{0.53})	(Sr _{7.86} Ca _{5.90} Pb _{0.24})	(Sr _{7.87} Ca _{5.90} Bi _{0.23})
Cu1-4O1	1.947	1.907	1.875	1.888
Cu2-1O2	1.884	1.897	1.874	1.885
Cu2-2O3	1.958	1.958	1.955	1.955
Cu2-1O3	1.980	1.910	1.916	1.944
M-101	2.165	2.201	2.229	2.218
M-101	2.193	2.228	2.257	2.246
M-2O3	2.467	2.499	2.533	2.502
M-2O2	2.567	2.563	2.574	2.573

Міжатомні відстані (Å) для композитної структури $M_{14}Cu_{24}O_{41}$ (зразки синтезовані при 920 °С, похибки не перевищують 0.010)

рів сполук $M_{14}Cu_{24}O_{41}$ в чотиривимірному просторі наведено в табл. 3-5. Параметри комірки а та b належать обом підграткам, тоді як параметр c_1 описує шари CuO2,
а c_2 — шари Cu2O3 та (Sr, Ca). Менший параметр с відповідає стороні квадрату СиО₄ (найкоротша відстань між атомами оксигену), а більший — його діагоналі (дві контактні відстані Си—О). Для складних шаруватих купратів значення відстаней d_{Cu-O} знаходяться, як правило, в межах 1.92—1.94 Å [1]. Відношення параметрів $c_1/c_2 \in$ значенням вектора модуляції (q) цих композитних неспіввимірних структур, які були уточнені в надгрупі P:F222:1-11 [17]. Часткове заміщення (Sr, Ca) на Y не змінює значення вектора модуляції (q= =0.7026), хоча параметри c_1 і c_2 дещо збільшилися (на ~0.056 %). Таке збільшення параметра вздовж напряму ланцюжків квадратів CuO₄ є незначним у порівнянні із зменшенням параметрів b (0.29 %) та a (0.14 %). Часткове заміщення (Sr, Ca) на Pb та Bi приводить до незначного зростання значення вектора модуляції (q=0.7043), що є результатом збільшення параметра c_1 (0.16 %) та зменшення с₂ (0.079 %). Такі зміни є помітнішими у порівнянні із збільшенням періоду повторюваності вздовж напряму [100] (~0.063 %) та зменшенням вздовж [010] (~0.009 %). Детальний аналіз міжатомних відстаней (табл. 5) показав, що заміщення (Sr, Ca) на Y, Bi або Pb приводить до деформації правильних квадратів CuO₄ в шарах CuO₂ (значне звуження сторони квадрату вздовж [100]). Навпаки, в шарах Cu₂O₃ спостерігається тенденція до вирівнювання сторін деформованих квадратів CuO_4 при частковому заміщенні в (Sr₈Ca₆)Cu₂₄O₄₁. Дифрактограми полікристалічних зразків зображені на рис. 5. Слід зауважити, що ідеальне значення вектора модуляції $q=c_1/c_2=1/\sqrt{2}$. У випадку апроксимації q=0.7, тобто співвимірності обох підкомірок при $c=10c_1=7c_2$, одержуємо надструктуру з просторовою групою *Ссст* (див. рис. 4).

Таким чином, проведене нами дослідження вказує на можливість синтезу однофазних зразків складних купратів $M_{14}Cu_{24}O_{41}$ в атмосфері повітря при звичайному тиску. Виявлено, що сполука (Sr₈Ca₆)-Cu₂₄O₄₁ може містити до 5 % мас. Y, Pb або Bi. Синтез з PbO

або Bi_2O_3 значно понижує температуру розкладу цієї фази. Часткове заміщення (Sr,Ca) на Y, Pb або Bi по-різному модифікує зигзагоподібні (Cu₂O₃) та прямі (CuO₂) ланцюжки квадратів CuO₄. Встановлення взаємозв'язків між особливостями структури сполук [M₂Cu₂O₃]_m[CuO₂]_n, які є нетиповими високотемпературними надпровідниками, та їхніми фізичними властивостями сприятиме розумінню природи високотемпературної надпровідності.

РЕЗЮМЕ. Соединение (Sr₈Ca₆)Cu₂₄O₄₁ синтезировано твердотельной реакцией при 920 °С на протяжении 24 ч в атмосфере воздуха. Оно кристаллизуется с композитной несоразмерной структурой (сверхгруппа P:F222:1-11, a=11.3745(7), b=12.9798(9), $c_1=2.7493(4)$, $c_2=3.9132(3)$ Å, q=0.7026), которую можно для удобства описать соразмерной сверхструктурой (пространственная группа *Ссст*, a=11.377(1), b=12.983(1), c=27.395(2) Å). Частичное замещение (Sr, Ca) на Y, Рb или Bi (5 % мас.) по-разному модифицирует зигзагообразные (Cu₂O₃) и прямые (CuO₂) цепочки квадратов CuO₄. В случае замещения на Y период трансляции вдоль направления укладки шаров (параметр *b*) уменьшается. Синтез с небольшими количествами PbO или Bi₂O₃ значительно понижает температуру разложения фазы (Sr₈Ca₆)Cu₂O₄1.

SUMMARY. The compound $(Sr_8Ca_6)Cu_{24}O_{41}$ was synthesized by solid state reaction at 920 °C for 24 h in air. It crystallizes with a composite incommensurate structure, which can be conveniently described in a commensurate superstructure. Structure refinements were carried out in the space group *Cccm* (*a*=11.377(1), *b*=12.983(1), *c*=27.395(2) Å) and the supergroup *P*:*F*222:-1-11 (*a*= =11.3745(7), *b*=12.9798(9), *c*₁=2.7493(4), *c*₂=3.9132(3) Å, *q*=0.7026). Partial substitution of (Sr, Ca) by Y, Pb or Bi modifies in a different way the Cu₂O₃ zigzag and CuO_2 straight chains of CuO_4 squares. In the case of substitution by Y, the translation period along the stacking direction of the layers (*b*-parameter) decreases. Syntheses with small amounts of PbO or Bi₂O₃ are further characterized by a lower decomposition temperature of the phase.

- Gladyshevskii R., Galez Ph. // Handbook of Superconductivity / Ed. Ch. Poole, Jr.-San Diego. -USA: Acad. Press., 2000. -Ch. 8. -P. 267—431.
- 2. Gladyshevskii R.E., Flukiger R. // Acta Cryst. B. -1996. -52. -P. 38—53.
- 3. Gladyshevskii R., Musolino N., Flukiger R. // Phys. Rev. B. -2004. -70. -P. 184522-184529.
- Calestani G., Rizzoli C., Francesconi M.G., Andreetti G.D. // Physica C. -1989. -161. -P. 598—606.
- Karpinski J., Schwer H., Mangelschols I. et al. // Ibid. -1994. -234. -P. 10—18.
- Hiroi Z., Azuma M., Takano M., Bando Y.A. // J. Solid State Chem. -1991. -95. -P. 230–238.
- Shvanskaya L., Leonyuk L., Babonas G.J. et al. // Advances in Structure Analysis / Ed. R. Kuzel & J. Hasek. -Prague, Czech Republic: Czech and Slovak Crystallographic Association, 2001. -P. 277–284.
- McCarron E.M., Subramanian M.A., Calabrese J.C., Harlow R.L. // Mat. Res. Bull. -1988. -23. -P. 1355—1365.
- 9. Siegrist T., Schneemeyer L.F., Sunshine S.A. et al. // Ibid. -1988. -23. -P. 1429--1438.

Львівський національний університет ім. Івана Франка

- International Tables for Crystallography / Ed. Th. Hahn. -Dordrecht, The Netherlands: Kluwer Acad. Publ., 2002.
- Uehara M., Nagata T., Akimitsu J. et al. // J. Phys. Soc. Jap. -1996. -65. -P. 2764—2767.
- Kato M., Shiota K., Koike Y. // Physica C. -1996.
 -258. -P. 284—292.
- Carter S.A., Batlogg B., Krajewski R.J. et al. // Phys. Rev. Lett. -1996. -77. -P. 1378—1381.
- 14. Kraus W., Nolze G. PowderCell for Windows. -Berlin, Germany: Federal Institute for Materials Research and Testing, 1999.
- 15. Schwarzenbach D. LATCON: Refine Lattice Parameters. -Lausanne, Switzerland: University of Lausanne, 1966.
- Wiles D.B., Sakthivel A., Young R.A. Program DBWS3.2 for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns. -Atlanta (GA), USA: School of Physics, Georgia Institute of Technology, 1998.
- Akselrud L., Grin Yu., Pecharsky V. et al. // Proc. Second Europ. Powder Diffraction Conf. -Enschede, The Netherlands, 1992. (Trans. Tech. Pub. -1993.
 -1. -P. 335—340).
- Jensen A., Larsen F., Iversen B. et al. // Acta. Cryst. B. -1997. -53. -P. 113—124.
- Jensen A., Petunuek V., Larsen F., McMarron E. // Ibid. -1997. -53. -P. 125—134.
- 20. Shannon R.D. // Acta Cryst. A. -1976. -32. -P. 751-767.
- 21. Kitaguchi H., Takada J., Oda K., Miura Y. // J. Mater. Res. -1990. -5. -P. 929-931.

Надійшла 16.02.2005

УДК 548.736:546.561

Г.В. Нощенко, Б.М. Михалічко, В.М. Давидов

СИНТЕЗ ТА КРИСТАЛІЧНА СТРУКТУРА РІЗНОГАЛОГЕНІДНОГО π-КОМПЛЕКСУ [HC≡CCH₂NH₃]CuCl_{1.13}Br_{0.87} *

3 допомогою змінно-струмного електрохімічного синтезу одержано якісні монокристали різногалогенідного цвіттер-йонного π-комплексу купруму (І) з пропаргіламонієм складу [HC≡CCH₂NH₃]CuCl_{1.13}Br_{0.87} і вивчено його кристалічну структуру.

Концентровані водні розчини CuCl та MCl $(M^+ - \kappa a \tau i o h u)$ лужних металів, амонію або органічних амінів) є ефективними каталізаторами численних перетворень ацетиленових вуглеводнів [1, 2]. Серед реакцій, які відбуваються в каталітичних розчинах системи Ньюленда, велике

практичне значення мають олігомеризація ацетилену, гідрогалогенування, гідроціанування, окисна дегідроконденсація ацетиленів тощо. Каталітична ж дія розчинів CuBr—MBr є менш ефективною [3]. Більше того, в проведених авторами [3] дослідженнях зазначається, що додавання до

^{*} Робота виконана за підтримки Державного фонду фундаментальних досліджень, грант Φ7/5572001.

[©] Г.В. Нощенко, Б.М. Михалічко, В.М. Давидов, 2006