УДК 541.183.2.678

Т.А. Терещенко, А.В. Шевчук, Э.Г. Привалко, В.В. Шевченко

ЗОЛЬ-ГЕЛЬ СИНТЕЗ И СВОЙСТВА ОРГАНО-СИЛИКАТНЫХ ГИБРИДНЫХ КОМПОЗИТОВ НА ОСНОВЕ ОЛИГОУРЕТАНОВ РАЗЛИЧНОЙ СТРУКТУРЫ

Синтезированы олигоуретановые прекурсоры на основе карбофункциональных кремнийсодержащих олигодиолов и олигооксипропиленгликоля, содержащих концевые триэтоксисилильные или гидроксиметильные группы. С использованием золь-гель технологий на основе этих прекурсоров получены органо-силикатные гибридные композиты и исследовано влияние ряда факторов на их структуру и свойства.

Органо-силикатные гибридные композиты (ОСК) являются материалами нового поколения, сочетающими преимущества органических полимеров и неорганических материалов. Применение золь-гель технологий для синтеза ОСК позволяет получать гибридные материалы высокой степени чистоты, характеризующиеся сочетанием органической и неорганической фаз на молекулярном уровне вследствие их ковалентного и/или физического связывания. Для этой цели используют различные полимеры — полиакриловую кислоту, полиимиды, полиоксазолины, поливинилпирролидон, поливинилацетат, полиметилметакрилат, поливинилиденфторид, полидиметилсилоксаны, полиуретаны и др. [1-6]. Среди многообразия полимеров, потенциально способных как к сильным межмолекулярным взаимодействиям, так и к образованию ковалентных связей с силикатной фазой, особенно перспективными являются полиуретаны. Их применение позволяет в широких пределах варьировать свойства органической фазы. изменяя химическую природу составляющих гибких и жестких блоков. В частности, представляет интерес использование в качестве гибкого блока карбофункциональных кремнийсодержащих олигомеров. Однако работы в области синтеза и свойств ОСК на основе олигосилоксануретанов ограничены системами, содержащими незначительное (≤ 3 %) количество силикатной фазы [7]. Следует отметить, что в настоящее время для введения кремнийорганических олигомеров в ОСК с варьируемым содержанием силикатной фазы [4-6] наиболее часто используют а, ω-дигидроксиполидиметилсилоксаны.

Цель настоящей работы — синтез олигоуретановых прекурсоров на основе карбофункциональных олигосилоксандиолов либо олигооксипропиленгликоля, отличающихся типом концевых групп, а также золь-гель синтез и исследование влияния ряда факторов на структуру и свойства ОСК на их основе.

В качестве исходных веществ для синтезов были использованы олигооксипропиленгликоль (ОПГ, M_n =1000 г/моль), α, ω -бис(гидроксиметил)олигодиметилсилоксаны (ГМДС, M_n =300, 500, 830, 1360 г/моль), полученные методом анионной теломеризации октаметилциклотетрасилоксана [8], 2,4-толуилендиизоцианат (2,4-ТДИ, $t_{\rm кип}$ =121 °C/10 мм рт.ст), γ -аминопропилтриэтоксисилан (АГМ-9, $t_{\rm кип}$ =76 °C/5 мм рт.ст), тетраэтоксисилан (ТЭОС, $t_{\rm кип}$ =78 °C/22 мм рт.ст). В качестве растворителя использован безводный диоксан.

Исследование продуктов осуществляли методами инфракрасной спектроскопии (ИКС), физико-механических испытаний и дифференциальной сканирующей калориметрии (ДСК). Для ряда образцов ОСК было определено содержание гельфракции. Исследованиям подвергали образцы ОСК, выдержанные в течение 14 дней. Анализ методом ИКС осуществляли на спектрометре UR-20 в области поглощения 600—4000 см⁻¹ при 20 ± 1 °C. Образцы готовили в виде таблеток с КВг либо в виде пленок. Пленочные образцы были исследованы с помощью метода многократно нарушенного полного внутреннего отражения (МНПВО) с использованием кристалла KRS-5 с кратностью отражения n=4. Исследования методом ДСК осуществляли с помощью дифференциального сканирующего калориметра ДСК-Д при скорости нагревания образцов 2 К/мин в интервале температур 150-475 К. Относительная погрешность измерений составляет ± 3 %. Для определения со-

[©] Т.А. Терещенко, А.В. Шевчук, Э.Г. Привалко, В.В. Шевченко, 2006

держания гель-фракции в ОСК использовали диоксан и диметилформамид.

Для полученных ОСК введена номенклатура: олигоуретан—(X)—Y, где указаны тип олигоуретанового прекурсора; (X) значение M_n для ГМДС; Y — содержание ТЭОС, % от суммарной массы (олигоуретан + ТЭОС).

Нами были разработаны методы синтеза олигоуретановых золь-гель прекурсоров, содержащих гибкие олигоэфирные либо олигодиметилсилоксановые фрагменты и различные концевые группы — триэтоксисилильные либо гидроксиметильные, обладающие различной способностью к связыванию с силикатной фазой в условиях низкотемпературного (30 °C) золь-гель процесса.

Синтез олигоуретановых прекурсоров с концевыми триэтоксисилильными группами, осуществляли по предполимерному способу в соответствии со схемой:

 $(C_2H_5O)_3Si-(CH_2)_3-NHCONH-R'-CONH-R'-NHCONH-(CH_2)_3-Si(OC_2H_5)_3,$

где R= $[CH_2CH(CH_3)O]_n$, n=18 — прекурсор серии OVM; R = $\{CH_2[Si(CH_3)_2O]_ySi(CH_3)_2O\}$; y=2.4, 10, 16 — прекурсоры серии KOVM; R'= = 2,4-C₆H₃(CH₃).

На первой стадии взаимодействием ОПГ либо ГМДС с двукратным мольным избытком 2,4-ТДИ в массе были получены изоцианатные форполимеры (ИФП), которые на второй стадии обрабатывали АГМ-9 при соотношении NCO : NH₂ =1:1 при 30 °C в диоксане. ИФП и прекурсоры на основе ОПГ, представляющие собой прозрачные бесцветные продукты, были охарактеризованы методами функционального анализа (ИФП) и ИКС. Характеристическими для данных продуктов являются полосы валентных колебаний карбонильной группы в мочевинном (1680—1660 см⁻¹) и в уретановом звеньях (1735 см⁻¹). Ряд характеристик прекурсоров приведен в табл. 1.

Таблица 1

Характеристики гибридных прекурсоров с концевыми триэтоксисилильными группами

Тип прекурсора*	Содержан групп в ИФП,	ние NCO- исходном % мас.	М _п прекурсора, г∕моль		
	Найдено	Вычислено	Найдено	Вычислено	
ОУМ КОУМ-300 КОУМ-830 КОУМ-1360	5.96 11.92 6.73 4.70	6.23 12.63 6.96 4.92	1851 1145 1690 2230	1790 1090 1620 2150	

* Для КОУМ указаны значения M_n исходных ГМДС.

ИФП на основе ГМДС, представляющие собой продукты белого цвета различной вязкости, были охарактеризованы методом функционально-

го анализа. Прекурсоры на их основе прозрачные продукты желтого цвета — были охарактеризованы методом ИКС. ИКспектры содержат характеристические по-

лосы валентных колебаний связей Si(CH₃)₂ (1260 см⁻¹), Si–O–Si (1100—1000 см⁻¹), в этом же интервале длин волн находится полоса валентных колебаний Si–O–C-связей (1120—1080 см⁻¹). Идентифицированы также полосы валентных колебаний карбонильной группы в мочевинном (1680 —1660 см⁻¹) и в уретановом (1735 см⁻¹) звеньях. Ряд характеристик прекурсоров приведен в табл. 1.

Полученные прекурсоры вводили в золь-гель процесс по реакциям гомополимеризации (2) либо сополимеризации (3). При гомополимеризации образование ОСК происходит вследствие гидролиза-соконденсации молекул прекурсора (схема (2)).

Формирующаяся силикатная фаза имеет эмпирическую формулу (SiO_{1.5})_{*n*}. В процессах сополимеризации для формирования ОСК использовали олигомерный прекурсор и ТЭОС (схема (3)).

$$C_{2}H_{5}O \rightarrow Si-(CH_{2})_{3}-NHCONH-R'- NHCOO-R-CONH-R'- NHCONH-(CH_{2})_{3}-Si \xrightarrow{OC_{2}H_{5}}OC_{2}H_{5} \rightarrow OC_{2}H_{5} \rightarrow OC_$$

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 3

В данном случае ОСК отличается от представленного схемой (2) повышенным содержанием силикатной фазы смешанной эмпирической формулы $(SiO_{1.5})_n + (SiO_{2.0})_m$, где значения *n* и *m* определяются соответственно исходными количествами прекурсора и ТЭОС.

В качестве катализатора золь-гель полимеризации использовали HCl в виде 0.15 N водного раствора. Зольный раствор синтезировали при 30 °C, формирование ОСК осуществляли в следующем режиме: сушка при комнатной температуре, термообработка и вакуумирование при 80 °C. Отдельные образцы подвергали дополнительной термообработке при 150 °C. Полученные ОСК представляют собой пленки, прозрачные для образцов на основе ОПГ и прозрачные либо опалесцирующие — для образцов на основе ГМДС.

Синтез олигоуретановых прекурсоров с концевыми гидроксиметильными группами осуществляли взаимодействием двукратного мольного избытка ГМДС с 2,4-ТДИ в толуоле либо в массе:

$$2HO-R-H + OCN-R'-NCO \rightarrow$$

$$+ HO-R-CONH-R'-NHCOO-R-H , \qquad (4)$$

где R={CH₂[Si(CH₃)₂O]_ySi(CH₃)₂CH₂O}, y=2.4, 5, 10, 16; R'=2,4-C₆H₃(CH₃) — прекурсоры серии КОУД. Полученные прекурсоры были охарактеризованы методами функционального анализа (табл. 2) и ИКС.

ИК-спектры КОУД содержат $\sim R'- NHCOO-CH_2[Si(CH_3)_2-O]_y Si(CH_3)_2-CH_2 O-Si_0 (5)$ характеристические полосы ва-

Таблица 2

Характеристики прекурсоров с концевыми гидроксиметильными группами

Тип	Содержани групп,	ие СН ₂ ОН- % мас.	<i>М</i> _{<i>n</i>} , г/моль		
прекурсора	Найдено	Вычислено	Найдено	Вычислено	
КОУД-300 КОУД-500 КОУД-830	8.01 5.29 3.34	7.95 5.25 3.39	770 1170 1850	780 1180 1830	

лентных колебаний связей Si(CH₃)₂ (1260 см⁻¹), Si–O–Si (1100—1000 см⁻¹), полосу валентных колебаний карбонильной группы в уретановом звене (1735 см⁻¹), а также полосу валентных колебаний OH-групп (~3450 см⁻¹).

Для получения ОСК на основе КОУД был использован ТЭОС при различных соотношениях КОУД : ТЭОС. Золь–гель процесс осуществляли при приведенных выше условиях; полученные ОСК представляют собой прозрачные либо опалесцирующие пленки.

Следует отметить, что использование прекурсоров с триэтоксисилильными группами — ОУМ, КОУМ — однозначно определяет формирование ковалентных связей между фазами в ходе зольгель процесса. Возможные типы связей прекурсоров, содержащих гидроксиалкильные группы, наиболее полно исследованы для ОСК на основе эпоксисоединений [9, 10]. В данных системах при повышенных температурах термообработки установлено образование межфазных ковалентных связей вследствие взаимодействия гидроксиалкильных и силанольных групп. В исследуемых нами ОСК на основе КОУД также возможно формирование Si-O-C связей между органической и силикатной фазами вследствие взаимодействия CH₂OH-групп КОУД и SiOH-групп силикатной фазы при соответствующей термообработке:

В ходе исследований нами была изучена возможность протекания данной реакции в интервале 80—150 °С. Очевидно, прохождение химических процессов в ходе термообработки должно отразиться на теплофизических и физико-механических характеристиках таких ОСК. Теплофизические характеристики и структуры образцов изучали методом ДСК, результаты представлены в табл. 3. На основании анализа кривых температурной зависимости теплоемкости образцов было установлено, что для ОСК скачки теплоемкос-

Стеклование, К Стеклование, К Номенклатура ΔC_{p1}/ΔC_{p2}, Дж/(г·К) $\frac{\Delta C_{p1}}{\Delta C_{p2}},$ Дж/(г·К) Номенклатура ОСК ОСК T_{g1}/T_{g2} $\Delta T_1 / \Delta T_2$ T_{g1}/T_{g2} $\Delta T_1 / \Delta T_2$ 259/---ОУС-0 20/---0.33/-КОУД-(830)-50* 300 / 390 20/36 0.21 / 0.22 255 / ----0.34 / ----ОУС-5 28/---КОУС-(830)-0 264 / ----20 / ----0.28 / ----255 / ----32/-0.30/---КОУС-(830)-30 370/---28 / -ОУС-15 0.27 / ----ОУС-50 309 / 378 32 / 40 0.23 / 0.20 КОУС-(830)-50 385 / ----38 / ----0.25 / ----0.50/---КОУС-(830)-50* 361 / 400 24 / 24 0.13 / 0.20 КОУД-(300)-30 278/-28 / ----166 / — 285 / 376 36/38 0.38 / 0.22 ГМДС-300 8/___ 0.66/-КОУД-(300)-50 10/----0.28 / ----0.52/---КОУД-(300)-50* 371/-36/-ГМДС-830 155 / ----КОУД-(830)-50 287 / 390 24/32 0.31 / 0.26 ОПГ-1000** 205 / ----6/----

Таблица 3 Теплофизические характеристики ОСК

* Образцы после дополнительной термообработки при 150 °C; ** литературные данные [11].

ти ΔC_p наблюдаются при температурах, значительно превышающих температуры интервала стеклования индивидуальных ОПГ либо ГМДС. Известно, что введение уретановых звеньев в олигоэфиры [11] либо в олигосилоксаны [12] не приводит к столь существенному повышению температуры стеклования. Следовательно, результаты ДСК свидетельствует о встраивании олигоуретановых прекурсоров в сетчатые структуры.

Как следует из табличных данных, в исследуемых образцах, независимо от природы гибкой фазы, с увеличением количества силикатной фазы возрастают температуры стеклования T_{g1} и уменьшаются значения ΔC_{p1} , что указывает на ограничение подвижности гибкой фазы. При введении 50 % ТЭОС в ОСК на основе ОУМ и КОУД на кривых ДСК наблюдается появление второго скачка теплоемкости, природа которого рассмотрена ниже.

Введение малых количеств силикатной фазы (5 и 15 % ТЭОС) в ОСК на основе ОУМ приводит к некоторому снижению T_g . Указанные количества ТЭОС недостаточны для формирования непрерывной силикатной сетки, и снижение T_g объясняется пластифицирующим действием низкомолекулярных производных ТЭОС [13]. С увеличением количества ТЭОС формирующаяся силикатная сетка уменьшает подвижность гибких фрагментов, что приводит к увеличению T_g . Значительное ограничение подвижности гибкой фазы наблюдается при введении 50 % ТЭОС; при введении 70 % ТЭОС в ОСК скачок теплоемкости в исследуемом температурном интервале не наблюдается.

Следует отметить, что значения Tg OCK на

основе олигосилоксануретановых прекурсоров независимо от типа концевых групп существенно превышают данные значения для исходных ГМДС. Вероятно, в системах на основе КОУД в результате термообработки при 80 °C в соответствии с формулой (5) происходит формирование ковалентных связей между фазами. В то же время для данных ОСК наблюдается различный характер зависимости теплофизических характеристик от параметров термообработки. Как видно из сравнения кривых температурной зависимости, $\Delta C_{\rm p}$ образцов КОУМ-(830)-50 и КОУМ-(830)-50* (рисунок), дополнительная термообработка образца КОУМ-(830)-50 при 150 °С приводит к появлению двух скачков теплоемкости, что указывает на увеличение степени микрогетерогенности образца. Очевидно, причиной этого является частичная

Кривые температурной зависимости ΔC_p для ОСК на основе олигосилоксануретанов: 1 - КОУД-(300)-50*;2 - КОУД-(300)-50; 3 - КОУД-(830)-50*; 4 - КОУД-(830)-50; 5 - КОУМ-(830)-50*; 6 - КОУМ-(830)-50.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 3

сегрегация силикатной фазы вследствие углубления процессов формирования внутрифазных SiO-Si-связей.

Образцы на основе КОУД отличаются от образцов на основе КОУМ наличием гидроксиметильных групп. Дополнительная термообработка при 150 °С КОУД-(830)-50, характеризующегося наличием двух скачков теплоемкости (рисунок) и исходным содержанием гидроксиметильных групп ~3.4 % мас., приводит к уменьшению интервала между значениями T_{g1} и T_{g2} на 13 К (табл. 3, КОУД-(830)-50 и КОУД-(830)-50*).

В то же время аналогичная термообработка КОУД-(300)-50, характеризующегося наличием двух скачков теплоемкости и большим исходным содержанием гидроксиметильных групп (~8.0 % мас.), приводит к появлению на кривой ДСК одного скачка теплоемкости (рисунок, КОУД-(300)-

50 и КОУД-(300)-50*). Следовательно, дополнительная термообработка ОСК на основе КОУД при 150 °С приводит к уменьшению их микрогетерогенности, что может быть обусловлено формированием Si–O–C-связей в соответствии с формирование в ОСК на основе КОУД в интервале температур 80—150 °С межфазных Si–O–C-связей в соответствии с формулой (5), а также на развитие этих процессов с повышением температуры.

Как известно, в структуре ОСК наряду с фазой, обогащенной органическим полимером, имеются аморфные силикатные кластеры, релаксация которых, согласно данным [14], наблюдается при температурах более 600 К, что в данном случае затрудняет их идентификацию методом ДСК. Наряду с этим следует отметить, что согласно известной модели [1] в структуре ОСК в составе силикатных доменов наряду с высококонденсированными силикатными кластерами содержатся частично конденсированные [силоксановые] кластеры. Как следует из данных табл. 4, ряд образцов характеризуется наличием двух температур стеклования и значения T_{g2} незначительно зависят от природы гибкой фазы (сравн. ОУМ-50, КОУД-(300)-50, КОУД-(830)-50). Можно предположить, что в данной области наблюдается стеклование частично конденсированных силоксановых кластеров, связанных с уретановыми либо уретанмочевинными звеньями органической фазы, однако данное предположение нуждается в дополнительных исследованиях.

Результаты определения предела прочности при

Таблица 4 Физико-механические характеристики образцов ОСК

Номенклатура ОСК	σ , МПа	ε, %	Номенклатура ОСК	σ , МПа	ε, %
010 (0		110		0.6	- 1
ОУМ-0	6.1	110	коуд-(300)-30	0.6	64
ОУМ-30	17.3	37	КОУД-(300)-50	3.7	35
ОУМ-30*	29.4	18	КОУД-(300)-50*	35.7	7
ОУМ-50	45.6	11	КОУД-(500)-30	0.7	67
КОУМ-(830)-0	2.9	87	КОУД-(500)-30*	1.2	61
КОУМ-(830)-20	3.6	65	КОУД-(500)-50	1.8	42
КОУМ-(830)-50	4.2	51	КОУД-(500)-50*	16.2	24
КОУМ-(830)-50*	5.8	27	КОУД-(830)-20	0.4	62
КОУМ-(1360)-0	1.8	125	КОУД-(830)-50	1.1	43
КОУМ-(1360)-30	3.4	67	КОУД-(830)-50*	2.6	26

* Образцы после дополнительной термообработки при 150 °С.

растяжении (σ) и относительного удлинения при разрыве (ϵ) ряда ОСК представлены в табл. 4. Для образцов ОУМ-70, КОУМ-(300)-0, КОУМ-(300)-20, КОУМ-(300)-50, КОУД-(300)-70 вследствие их хрупкости указанные характеристики не были определены.

Общей закономерностью для всех серий образцов является повышение значений σ и уменьшение значений ϵ с увеличением содержания силикатной фазы. Введение 50 % ТЭОС приводит к существенному снижению значений ϵ , что в соответствии с данными работы [1], а также с результатами ДСК может указывать на инверсию фаз. Силикатная фаза с увеличением ее количества становится непрерывной, что проявляется в резком уменьшении значений ϵ и сопровождается значительной усадкой систем. Последнее характерно для образцов с содержанием ТЭОС 70 %, представляющих собой хрупкие стекла.

Большая прочность образцов на основе КОУМ-(830), в сравнении с образцами на основе КОУД-(830), свидетельствует о влиянии типа концевых групп прекурсоров на свойства ОСК. Образцы на основе КОУД характеризуются существенным повышением значений σ после дополнительной термообработки, что может быть обусловлено развитием как конденсационных процессов в силикатной фазе, так и процесса формирования межфазных Si-O-C связей в соответствии с формулой (5).

Как следует из данных табл. 4, ОСК, содержащие олигодиметилсилоксановые гибкие фрагменты, характеризуются низкими значениями **о**, что объясняется присущими полидиметилсилоксанам низкими механическими характеристиками. В то же время для синтезированных нами ОСК на основе КОУМ-1360 значения $\sigma \sim 3$ МПа достигаются введением 30 % ТЭОС (табл. 4), тогда как для ОСК на основе α, ω -дигидроксиполидиметилсилоксанов, синтезированных авторами работы [4] по схеме (6), при близких степенях полимеризации олигосилоксанового фрагмента аналогичные значения *у* достигаются при введении 60 % ТЭОС:

$$Si(OC_{2}H_{5})_{4} + 4 H_{2}O \xrightarrow{H^{*}} Si(OH)_{4} + 4 C_{2}H_{5}OH;$$

$$2Si(OH)_{4} + HO_{1} - Si(CH_{3})_{2} - O_{1x}H \xrightarrow{H^{*}}$$

$$\xrightarrow{H^{*}} \xrightarrow{O}_{O} - Si - O_{1x}Si \xrightarrow{O}_{O} - Si_{1x}Si \xrightarrow{O}_{O} - Si_{1x} - Si$$

где x=8, 24.

Полученные результаты свидетельствуют об увеличении прочности при введении уретановых звеньев в ОСК на основе олигодиметилсилоксанов. Очевидно, это связано с усилением межмолекулярных взаимодействий в органической фазе за счет уретановых групп [11], а также с усилением межфазных взаимодействий за счет водородного связывания уретановых групп и силанольных групп силикатной фазы. Анализ ИК-спектров показал, что при формировании ОСК на основе КОУД наблюдается появление интенсивного плеча в низкочастотной области полосы амид-1 (1735 см⁻¹), что можно рассматривать как увеличение

Таблица 5

C	одержание	гель-ф	рракции	В	ОСК	на	основе	ко	У,	Д	•
---	-----------	--------	---------	---	-----	----	--------	----	----	---	---

Номенклатура	Экстра-	Гемпература термо-	F_{reop}^*	F _{рассч}	
ОСК	гент	обработки, ± 5 °С	% мас.		
КОУД-(300)-30	<u>ДМФА</u> диоксан	80	11.0	<u>12.6</u> 13.1	
КОУД-(300)-30	ДМФА	150	11.0	19.7	
КОУД-(300)-50	ДМФА диоксан	80	22.4	$\frac{28.1}{35.2}$	
КОУД-(300)-50	ДМФА	150	22.4	28.4	
КОУД-(830)-50	ДМФА диоксан	80	22.4	$\frac{26.6}{31.9}$	
КОУД-(830)-50	ДМФА	150	22.4	27.2	

* Значения соответствуют содержанию SiO₂-фазы при полной полимеризации ТЭОС.

числа водородносвязанных карбонильных групп вследствие образования водородных связей между органической и силикатной фазами [15].

В табл. 5 представлены выборочные результаты определения содержания гель-фракции (F) в образцах на основе КОУД. Для данных образцов значения F превышают теоретические значения, рассчитанные в предположении, что гельфракция сформирована силикатной фазой, что также указывает на формирование в образцах на основе КОУД ковалентных связей в соответствии с формулой (5).

Таким образом, с применением золь-гель технологий получены ОСК на основе олигоуретановых прекурсоров. Установлено, что аналогично введению триэтоксисилильных групп введение гидроксиметильных групп в олигоуретановые прекурсоры в сочетании с определенным режимом термообработки позволяет получать ОСК с ковалентно связанными фазами. Введение различных концевых групп в олигоуретановые прекурсоры изменяет характер зависимости микроструктуры ОСК от параметров термообработки. Последнее обусловлено преимущественным развитием разных процессов — при повышении температуры: формированием Si-O-C-связей между фазами в системах с гидроксиметильными группами либо образованием Si-O-Si-связей внутри силикатной фазы в системах, не содержащих гидроксиметильные группы, что усиливает сегрегацию силикатной фазы. Увеличение количества силикатной фазы приводит к повышению прочности и

жесткости, а также к усилению микрогетерогенности ОСК. Показано также, что введение уретановых звеньев в ОСК на основе олигодиметилсилоксанов позволяет повышать прочность систем при введении меньших количеств силикатной фазы.

РЕЗЮМЕ. Синтезовано олігоуретанові прекурсори на основі карбофункціональних кремнійвмісних олігодиолів і олігооксипропіленгліколю, які містять кінцеві триетоксисилільні або гідроксиметильні групи. Із застосуванням золь-гель технологій на основі цих прекурсорів отримано органосилікатні гібридні композити і досліджено вплив ряду факторів на їх структуру і властивості.

SUMMARY. A number of oligourethane precursors on the base of the carbofunctional oligosiloxane diols or oligooxypropylenglycol with triethoxysilyl or hydroxymethyl end-groups was synthesized. Organicsilicate hybrid composites based on such precursors were synthesized through a sol-gel synthetic route. The influence of several factors on the structure and properties of hybrid composites was identified.

- 1. Huang H.H., Wilkes G.L., Carlson J.G. // Polymer. -1989. -30, № 11. -P. 2001-2012.
- 2. *Tsai M.H.*, *Whang W.T.* // Ibid. -2001. -**42**, № 9. -P. 4197—4207.
- 3. Терещенко Т.А., Шевчук А.В., Шевченко В.В. // Вопросы химии и хим. технол. -2004. -№ 3. -С. 92—100.
- 4. *Huang H.H., Orler B, Wilkes G.L.* // Macromolecules. -1987. -20, № 6. -P. 1322–1330.
- 5. Sun C.-C., Mark J.E. // Polymer. -1989. -30, № 1. -P. 104—106.
- 6. Wilkes G.L., Orler B., Huang H.H. // Polymer Preprints. -1985. -26. -P. 300, 301.
- 7. Surivet F., Lam T.M., Pascault J.P., Mai C. / Macro-

Институт химии высокомолекулярных соединений НАН Украины, Киев molecules. -1992. -25. -P. 5742-5751.

- 8. Терещенко Т.А., Ласковенко Н.Н., Шевченко В.В // Вопросы химии и хим. технол. -2004. -№ 2. -С. 110--115.
- 9. Matejka L., Dukh O., Kolarik J. // Polymer. -2001. -41, № 6. -P. 1449—1459.
- 10. Hsu J.G., Ciang I.L., Lo J.F. // J. Appl. Polym. Sci. -2000. -78, № 9. -P. 1179—1190.
- 11. Керча Ю.Ю. Физическая химия полиуретанов. -Киев: Наук. думка, 1979.
- 12. Кузнецова В.П., Ласковенко Н.Н., Запунная К.В. Кремнийорганические полиуретаны. -Киев: Наук. думка, 1984.
- Hsiue G.H., Liu Y.L., Liao H.H. // J. Polym. Sci.:
 P. A: Polym. Chem. -2001. -39, № 3. -P. 986—996.
- 14. *Терещенко Т.А., Ласковенко Н.М. //* Укр. хим. журн. -2003. -**69**, № 10. -С. 119—123.

Поступила 26.10.2004

УДК 541.64:678.66

С.В. Головань, В.Ф. Матюшов

НЕНАСЫЩЕННЫЕ ОЛИГОАРИЛЭФИРКЕТОНЫ

Ацилированием по Фриделю-Крафтсу синтезированы ненасыщенные олигоарилэфиркетоны на основе малеинового ангидрида и дифенилового эфира. Строение олигомеров доказано методами ИК-спектроскопии и химического анализа. На их основе получены трехмерные сшитые полимеры термической полимеризацией по двойным связям и конденсацией с диамином.

Синтез полиарилэфиркетонов из реакционноспособных олигомеров находит все более широкое применение [1—3]. Получают такие олигоарилэфиркетоны (ОАЭК) двумя способами — по реакции нуклеофильного замещения, которая протекает при высокой температуре, и ацилированием по Фриделю–Крафтсу в мягких условиях. Второй метод является более перспективным, так как позволяет синтезировать олигомеры с высокореакционноспособными группами.

В настоящей работе исследовано получение ненасыщенных ОАЭК поликонденсацией дифенилового эфира (ДФЭ) с малеиновым ангидридом (МА) в присутствии безводного хлористого алюминия в хлорсодержащих углеводородах.

МА и ДФЭ очищали перегонкой в вакууме, а безводный хлористый алюминий — возгонкой. В качестве хлорсодержащих растворителей использовали хлороформ и хлористый метилен, которые сушили над хлористым кальцием с последующей перегонкой. Исходные компоненты растворяли при комнатной температуре в растворителе и в раствор небольшими порциями добавляли AlCl₃. Реакционную смесь выдерживали при температуре 20—50 °C в течение 6—8 ч, после чего отгоняли растворитель. Полученный осадок обрабатывали 0.1 н. раствором HCl, нагревали до температуры 80— 90 °C и выдерживали в течение 3 ч для разрушения комплекса олигомера с AlCl₃. Полученный продукт промывали горячей дистиллированной водой и сушили до постоянного веса.

Строение полученных олигомеров подтверждали химическим, элементным анализами и ИКспектроскопией. Содержание концевых карбоксильных групп в олигомерах определяли потенциометрическим титрованием. ИК-спектры продуктов реакции регистрировали на спектрометре IR 75, скорость сканирования — 64 см⁻¹. Образцы готовили в виде таблеток с КВг. Гель-фракцию сшитых полимеров определяли выдержкой образцов в концентрированной H₂SO₄ в течение трех

[©] С.В. Головань, В.Ф. Матюшов, 2006