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ESTIMATION OF THE POTENTIAL GRAVITATIONAL ENERGY  
OF THE EARTH BASED ON REFERENCE DENSITY MODELS 

 
The estimation of the Earth’s gravitational potential energy E based on the given density distribution is 

considered. The global density model was selected as combined solution of the 3D continuous distribution and 
reference radial piecewise profile with basic density jumps as sampled for the PREM density. This model 
preserves the external gravitational potential from zero to second degree/order, the dynamical ellipticity, the 
planet’s flattening, and basic radial density-jumps. The rigorous error propagation of adopted density 
parameterization was derived to restrict a possible solution domain. Comparison of lateral density anomalies 
with estimated accuracy of density leads to values of the same order in uncertainties and density heterogeneities. 
As a result, radial-only density models were chosen for the computation of the potential energy E. E-estimates 
were based on the expression )( min WWE Δ+−=  derived from the conventional relationship for E through the 
Green’s identity. The first component  expresses some minimum amount of the work W and the second 
component  represents a deviation from  treated via Dirichlet’s integral on the internal potential. 
Relationships for the internal potential and E, including error propagation were developed for continuous and 
piecewise densities. Determination of E provides the inequality with two limits for E-values corresponding to 
different density models. The upper limit E

minW
WΔ minW

H agrees with the homogeneous distribution. The minimum amount 
EGauss corresponds to Gauss’ continuous radial density. All E-estimates were obtained for the spherical Earth 
since the ellipsoidal reduction gives two orders smaller quantity than the accuracy Eσ = ±0.0025×1039 ergs of 

the energy E. Thus, we get a perfect agreement between = −2.5073×10GaussE 39 ergs, =E  −2.4910×1039 ergs 

derived from the piecewise Roche’s density, = −2.4884×10PREME 39 ergs based on the PREM model, and E-
values from simplest models separated into core and mantle only. Distributions of the internal potential and its 
first and second derivatives were derived for piecewise and continuous density models. Influence of the secular 
variation in the zonal coefficient 20C  on global density changes is discussed using the adopted 3D continuous 
density model as restricted solution of the three-dimensional Cartesian moments problem inside the ellipsoid of 
revolution.  
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Introduction 
Determination of the 3D density distribution δ 

inside the Earth’s interior Σ from given external 
potential data requires a solution of the inverse 
problem of the gravitational potential. This problem 
has no unique solution and treats traditionally as 
improperly posed problem due to a violation of 
conditions of solvability. One of suitable solutions 
follows from Mescheryakov’s [5] theorem: “if the 
numerical value of the Earth’s gravitational 
potential energy E and the density on the Earth’s 
surface σ are given prior, this problem transforms 
to a properly posed problem in the Tikhonov sense” 
[9] with representation of δ through the three-
dimensional Cartesian moments of the density of a 
gravitating body. The gravitational potential energy 
E taken with the sign (−) represents the quadratic 
functional  of δ [27] and therefore can 
be applied for a stable solution of the discussed 
inverse problem. This functional W represents the 
work of gravitation required to transport the 

masses, having the total Earth’s mass M, from a 
state of infinite diffusion to their actual condition 
inside the planet. A remarkable expression for the 
work W gives Dirichlet’s integral  on the 
gravitational potential V being extended throughout 
all space ([29], [19], [1]). To make the concept of 
potential energy useful, in addition to standard 
definition of E we need appropriate explicit 
relationships for the energy E and accurate 
numerical E-value based on the known Earth’s 
reference models of density.  

( EW −= )

),( VVD

One of possible approaches leads to the search 
of the stationary value E or the so-called Gauss’ 
problem ([14], [1]). Gauss proved in his famous 
memoir [14] that EW −=  has some minimal 
value . Thomson and Tait [29] wrote, in 
particular: “The manner in which Gauss 
independently proved Green’s theorems is more 
immediately and easily interpretable in terms of 
energy”. Therefore, Gauss’ results can be treated as 
one of deep and central topics of the potential 

minW
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theory having the direct connection with Dirichlet’s 
problem and Green’s function. The minimum 
amount of W is , if all masses 
are concentrated on the boundary σ considered as a 
level surface where the gravitational potential 

= const and M is the Earth’s mass [1]. 
According to Moritz [27] a remarkable summary of 
Gauss’ problem for the homogeneous sphere reads: 
“minimum and maximum potential energy 
correspond to physically (for the Earth) 
meaningless cases: a surface distribution and a 
mass point. The ‘true’ Earth lies somewhere in 
between”.  

2/0min VMW ⋅=

0V

It is obvious that the potential energy E can be 
estimated from the known density δ and the internal 
gravitational potential. However only some E-
estimates are found in the literature usually for the 
homogeneous planet and a body differentiated into 
several homogeneous shells ([27], [11], [12], [28] 
with references). The simplest continuous 
Legendre-Laplace law, Roche’s law (as solutions of 
the Clairaut’s equation), Bullard’s model, and 
Gaussian (normal) distribution together with the 
piecewise Roche’s profile with 7 basic shells as 
sampled for the PREM density [13] were applied in 
[23] for several estimations of the potential energy 
E that lead to the inequality with minimum limit 
corresponding to Gauss’ radial profile.  

In contrast to the last paper this study aims to 
derive according to Maxwell [26] other kind of 
expression for the gravitational potential energy 

 based on the first Green’s 
identity. This representation allows a simple 
estimation of  and important treatment of the 

deviation  from this minimal amount  as 

Dirichlet’s integral on the internal potential  
generated by an adopted density distribution. 

)( min WWE Δ+−=

minW
WΔ minW

iV

The Earth’s mass and three principal moments 
of inertia represent initial information for unique 
and exact solution of the restricted 3D Cartesian 
moments problem [5], providing in this way the 
global density δ inside the ellipsoidal planet and the 
gravitational potential energy E. This model 
includes the reference piecewise radial profile with 
density jumps from discontinuities in seismic 
velocities as sampled for PREM. Such combined 
model of global piecewise density was adopted to 
preserve the external gravitational potential from 
zero to second degree/order, the dynamical 
ellipticity HD, the planet’s flattening f, and radial 
jumps of density. Components of the Earth’s tensor 
of inertia are derived from the consistent set of the 
five 2nd degree harmonic coefficients mC2 , mS2  
and HD ([24], [22]) and used for the computation of 
the density δ. It has to be pointed out, that accuracy  

of this global density should be derived especially 
from error propagation to restrict the possible 
solution domain in such a way that a reasonable 
solution may be selected either from spatial or 
radial density. Accuracy estimation of the 
gravitational potential energy is also applied 
additionally to restrict the solution either inside the 
ellipsoidal Earth or spherical planet.  

Therefore, this study focuses on (a) the 
determination of the 3D global density distribution 
from the Earth’s fundamental parameters including 
error propagation; (b) the background of adopted 
restrictions of possible solutions domain taking into 
account accuracy estimation; (c) the derivation of 
formulae for the internal potential and the 
gravitational potential energy )( min WWE Δ+−= ; 
(d) the estimation of the potential energy 

PREMEE =  based on the most widely used PREM 
density model. Distributions of the internal 
potential and its first and second derivatives are 
also given for the Earth’s continuous and piecewise 
density models. The influence of the secular non-
tidal drift in the second-degree zonal coefficient 

20C  on density changes is discussed based on the 
adopted 3D global density model. 

 
Basic relationships  

for the Earth’s global density distribution 
As a preparation, consider according to 

Mescheryakov [7] the mathematical model of the 
3D global density distribution of the Earth having a 
shape of the ellipsoid of revolution with the 
flattening f and the semimajor axis a: 

∑
=

ρ−ρθ⋅−δ=δ
k

j
jjh

1
)(~

.                (1) 

In the expression above δ~  represents the exact 
(restricted by the order 2) solution of the three-
dimensional Cartesian moments problem for the 
continuous mass density distribution, hj is the j-
density jump at the relative boundary Rrjj /=ρ  
(R=6371 km is the mean Earth’ radius),  

  
   
   

θ
j

j
j

⎩
⎨
⎧

>ρ−ρ⇒
<ρ−ρ⇒

=ρ−ρ
01
00

)( ,        (2) 

is the Heaviside’s function, and  is the 

relative distance. The relationship for 

Rr /=ρ

δ
~

 as the 
mentioned solution of the Cartesian moments 
problem reads 

+λϑρ++=λϑρδ 22
1

2
1 cossin(),,(~ KFK  
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where  is expressed via the flattening f of 
the ellipsoidal Earth assuming a homothetic 
stratification f=const;  is the mean density; ρ 
( ) is the relative distance from the origin 
of the coordinate system to a current point, ϑ and λ 
are the polar distance and longitude of this point. 
Another two parameters from Eq. (3) are the 
functions of k given density jumps  

f−=χ 1

mδ
10 ≤ρ≤

∑
=

ρ−−ρ−=
k

j
jjjhF

1
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∑
=

ρ−ρ=
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jjjhF

1

23
2 )1(

4
35

.           (8b) 

Eq. (3) is given in the geocentric coordinate system 
of the principal axes of inertia ( A , B , C ) and 
agreed with the Earth’s mass M and all components 
of the Earth’s tensor of inertia to preserve in this 
way the external gravitational potential from zero to 
second degree/order, the dynamical ellipticity HD, 
and the planet’s flattening f. Mechanical parameters 
in Eqs. (4–7) are expressed through the 
dimensionless Cartesian moments of the density of 
a gravitating body (see definition in Grafarend et al. 
[15]) restricted here by the order n=p+q+r=2: 

)(  ,1)( nrqpdzyx
Ma

I rqp
npqr =++τδ=δ ∫

τ

 (9) 

which for n=2 can be computed by means of the 
Earth’s mass and the dimensionless principal 
moments of inertia A, B, and C normalized by the 
factor 1/Ma2:  

,
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  (10) 

where A, B, and C can be expressed via the 2nd-
degree harmonic coefficients 20A , 22A  given in the 
principal axes system and the dynamical ellipticity 
HD: 
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Eqs. (10) lead to the following relationship for the 
Trace(I) of the tensor of inertia I: 

)()(Trace CBA ++=I             (12а) 

)(2)(Trace 002020200 III ++=I .    (12b) 
Thus, in the above formulae x, y, z are the 

Cartesian coordinates of an internal point; dτ is the 
volume element of the ellipsoid of revolution; 

2220 , AA  are the fully normalized (non-zero) 
harmonic coefficients adopted here as Stokes 
constants in the Earth’s principal axes system 

CBAO . 
The corresponding radial density distribution or 

the well-known Roche’s model is the average of 
Eq. (1) over the surface of ellipsoid ρ=const (see 
Eq. (23b)): 

⎪⎭

⎪
⎬
⎫

ρ+=ρδ

ρ−ρθ−ρ++ρδ=ρδ ∑
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( )[ ]000
2

002020200 3/5
12
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which is agreed with the Earth’s mass and the mean 
moment of inertia Im because the parameters D and 
K can be expressed via M and Im.  

It has to be noted, that Eq. (1) and Eq. (13) lead 
to significant differences about the origin between 
such global density distributions and well-known 
density models. To avoid these differences we will 
use one modification of the considered approach 
given by Mescheryakov [6], which is based on the 
additional information about piecewise radial 
density profile such as PREM [13] including 
density jumps.  

If some piecewise reference radial density 
model R)(ρδ  is given, it is easy to verify that this 
modification for the global density model 

),,( λϑρδ  ( 1/0 ≤=ρ≤ Rr , R=6371km) can 
be written in the following manner 

[ ]( )RR )(),,(~)(),,( ρδ−λϑρδ+ρδ=λϑρδ (15a) 

),,()(),,( R λϑρδΔ+ρδ=λϑρδ ,      (15b) 
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were derived by subtracting from Eqs. (4 – 7) 
the corresponding Cartesian moments , , RI000

RI200
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RI020 , and  of the reference density : RI002 R)(ρδ
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The reference model R)(ρδ  includes individual 
information about density jumps, the mean density 

, and the mean moment of inertia , which 
have been selected preliminary for the construction 
of the radial profile 

R
mδ

R
mI

R)(ρδ . In contrast to 
Mescheryakov’s solution [6] the Cartesian 
moments , , , and  were adopted 
here for one common set of the conventional 
constants  and  of the model (15) and density 

jumps entering into  [23]: 
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This radial density  is also treated within 
the ellipsoid of revolution if we use according to 
Moritz [27] the following formula for the radius 
vector r

R)(ρδ

e by applying the first order theory 
(disregarding  and other higher powers of f): 2f

⎥⎦
⎤

⎢⎣
⎡ ϑ⋅−= )(cos

3
21 2PfRre ,      (23a) 

where  is the 2nd-degree Legendre 
polynomial. Eq. (23a) results from the average of r

)(cos2 ϑP
e 

over the unite sphere that gives the mean Earth’s 
radius R=6371 km. It has to be pointed out, that all 
basic formulas [Eq. (1) to Eq. (22)] are valid for a 
homothetic stratification (geometrically similar) 
when f=const inside the ellipsoidal Earth ([7], [6]). 
Hence, if the set of the internal ellipsoidal surfaces 

 is labeled by the associated mean radius r of a 
sphere we get  

er~

⇒⎥⎦
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By averaging ),,( λϑρδ  over the ellipsoid 
surface we define the piecewise )(ρδ  function 
inside the ellipsoid of revolution as 

[ ]
( )[ ⎪⎭

⎪
⎬
⎫

Δ−χΔ+Δ+Δδ=Δ

Δρ+Δ+ρδ=ρδ

,3/5
12
35

,)()(

000
2

002020200

2
R

IIIID

DK

m

with the treatment of the reference density R)(ρδ  
also within the ellipsoidal Earth. Since the 
dimensionless radius ρ is constant for each  the 

radial densities 
er~

R)(ρδ  and  are also constant 
by Eq. (24) at the ellipsoidal surface (23b).  

)(ρδ

 
Error propagation  

and lateral density heterogeneities 
To prepare error propagation from starting 

values to the Earth 3D global density distribution 
we should keep in mind that information about 
accuracy of the adopted mean density , the 

mean moment of inertia , and density jumps in 

various piecewise radial profiles  (such as 
PREM) are not found in literature or were not 
easily accessible to the authors. For this reason we 
will treat the reference density model 

R
mδ

R
mI

R)(ρδ

R)(ρδ  as 
exact constituent or “normal density” and come 
therefore only to the accuracy estimation of the 
density distribution  [Eq. (3)] since ),,(~

λϑρδ

),,(~
λϑρδ  is involved in Eq. (16) by Eq. (15) in 

the implicit form. Thus, the variance-covariance 
matrix of the principal moments of inertia, accuracy 
of the mean density 

mδ
σ  and accuracy of the 

flattening fσ  were chosen as initial data.  
Given as initial information is the vector a 

containing the degree 2 harmonic coefficients 

2220 , AA  in the principal axes system and the 
dynamical flattening HD,  

[ ]T2220 ,, DHAA=a ,                 (25) 
(the symbol T denotes transposition) and the (3×3) 
variance-covariance matrix  of the parameters 
(25). Starting from the formulae of Eqs. (3) to (14) 
the necessary matrices of partial derivatives and 
variance-covariance matrices of the corresponding 
parameters are obtained by applying the error 
propagation rule.  

aaC

Thus, defining the vector  
[ ]TA,B,C=J ,                     (26) 

by differentiating Eq. (26) in view of Eqs. (11) we 
get the (3×3) matrix of partial derivatives of the 
vector  with respect to the vector a: J
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]
 (24) 

Hence Eq. (27) allows to apply the error 
propagation rule for the computations of the 
variance-covariance matrix  of the principal 
moments of inertia A, B, and C from the variance-

JJC
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covariance matrix :  aaC
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Then the accuracy  of the mean moment of 
inertia reads  
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In order to create the covariance matrix  of 

the normalized Cartesian moments , , and 

 [Eq. (10)] we define the new vector 

22IIC

200I 020I

002I

[ ]T0020202002 III=I ,             (30) 
and, taking into account Eq. (10), we find the 
(3×3)-matrix of partial derivatives 
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so that the variance-covariance matrix  
becomes 
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Then, the determination of the variance-
covariance matrix  provides a simple 
possibility to estimate accuracy of 1D and 3D 
density distributions. For the radial density 

22IIC

)(~
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partial derivatives of the vector  
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the variance-covariance matrix : 
DDKK 11

C
T

pp11 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
p

KC
p

KC 1D1D
DD KK ,       (34) 

by involving additionally to  accuracy 

estimates of the mean density  and the 

flattening  in the variance-covariance matrix 

:  
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As a result, by differentiating Eq. (13) for  

with respect to the elements of  
we get accuracy of the radial density profile 
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Accuracy ),,(~
λϑρδσ  of the 3D density 

distribution [Eq. (3)] can be derived in a similar 

manner after determination of the matrix 
p

K
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partial derivatives of the vector 
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Table 1 illustrates adopted initial parameters 
and their accuracy. Accuracy estimation 

mδσ  of the 

mean density δm requires additional remarks 
because δm represents a scale factor of the 
considered theory [Eq. (3) to Eq. (40)]. If 

= (398600.4418±0.0008)×10GM 9 m3s-2 and the 
gravitational constant G = (6.673±0.010)×10-11 
m3kg-1s-2 suggested by the IERS Conventions 2003 
[25] are selected, we get 

mδ
σ = 0.08 g/cm3. 

According to the IAG recommendations for G and 
GM in Table 1 another values of the mean density 

mδ = (5.51483±0.0026) g/cm3 and 
mδ

σ = 0.0026 
g/cm3 were estimated.  

Thus, the global density distribution and 
accuracy at different depths were based on the 
flattening f, the principal moments of inertia A, B, 
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and C from Table 1, and the value 

mδ = (5.51483±0.0026) g/cm3. The principal 
moments of inertia (given here in the zero 
frequency tide system) are results from the 
adjustment [22] of the 2nd-degree harmonic 
coefficients of 6 gravity field models (EGM96, 
GGM01S, GGM02C, EIGEN-CHAMP03S, 
EIGEN-GRACE02S, EIGEN-GL04S1) and 7 
values HD of the dynamical ellipticity all 
transformed to the common value of precession 
constant at epoch J2000. 

 
Table 1. 

Initial parameters and their accuracy 
Reference Adopted parameters 
Groten [16] G=(6.67259±0.0003)⋅10-11  

m3kg-1s-2

Groten [16] GM=(398600.4418±0.0008)⋅ 
109m3s-2

Marchenko [22] A=0.32961274±0.0000005 
Marchenko [22] B=0.32962001±0.0000005 
Marchenko [22] C=0.33069901±0.0000005 
Marchenko and 
Schwintzer [24] 1/f=298.25650 ± 0.00001 

 
Table 2 lists necessary parameters for the 
determination of the 3D and 1D density 
distributions and their accuracy based on these 
principal moments of inertia and variance-
covariance matrix taken from [22].  

Finally, the density distribution [Eqs. (15 – 16)] 
and accuracy [Eq. (37)] at different depths were 
found from the consistent set of the Earth’s 
fundamental parameters under the conditions to 
conserve the Earth’s mass ( mδ ), f, and all principal 
moments (A, B, C) of inertia. The reference radial 
density profile  in Eq. (15) was selected in  R)(ρδ

 

the form of the simple piecewise Roche’s law 
separated into seven basic shells [21], which is 
slightly different from the PREM-density.  
 

Table 2. 
Cartesian moments and other parameters of 3D and 

1D density distributions 
Para-
meter 

Value Para-
meter 

Value 

I200
0.16535314 
±0.00000025 K 10.5298 

±0.0005 g/cm3

I020
0.16534588 
±0.00000025 K1

-8.3587 
±0.0004 g/cm3

I002
0. 16426687 
±0.00000025 K2

-8.3594 
±0.0004 g/cm3

D -8.3583 
±0.0004 g/cm3 K3

-8.3567 
±0.0007 g/cm3

 

Therefore, with R)(ρδ  known as exact 

constituent, the accuracy estimation  [Eq. 

(37)] of the 3D continuous global density 
distribution  [Eq. (3)] (based only on 
the Earth’s mechanical parameters) and the lateral 
density heterogeneities 

),,(~
λϑρδσ

),,(~
λϑρδ

),,( λϑρδΔ  [Eq. (15)] are 
straightforward. 

Comparison of these lateral density anomalies 
),,( λϑρδΔ  (Fig. 1) with the accuracy  

at the same depths (Fig. 2) of the continuous 
constituent leads generally to values of the same 
order in uncertainties and density heterogeneities 
taken for various depths. Since discussed 
uncertainties are increasing when radius ρ is 
decreasing to zero (origin) [3] we will use below 
only radial density models for the determination of 
the gravitational potential energy E.  

),,(~
λϑρδ

σ

 
Fig. 1. Density anomalies [g/cm3]  

R)(),,(),,( ρδ−λϑρδ=λϑρδΔ  [Eq. (16)]  
at the mantle/crust boundary  

(r=6346.6 km) 

Fig. 2. Accuracy [g/cm3] ),,(~ λϑρδσ  [Eq. (37)]  
of the continuous constituent of 3D density 
distribution at the mantle/crust boundary 

(r=6346.6 km) 
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Basic relationships 
for the gravitational potential energy 

The computation of the Earth’s gravitational 
potential energy is based on the following 
conventional expression ([14], [29], [19], [1], [30], 
[27]):  

∫
τ

τ⋅δ⋅−=−= dVWE i2
1

,             (41) 

where  is the planet’s volume 

density,  is the Earth’s internal gravitational 
potential, τ is the planet’s volume enclosed by the 
surface σ, and W is the work of gravitation required 
to transport the masses M from a state of infinite 
diffusion to their actual condition inside the Earth.  

),,( λϑδ=δ r

iV

However we prefer to use another treatment of 
Eq. (41) in terms of the internal potential only that 
leads to the equivalent and useful relationship for 
the energy E. Since our basic model of density [Eq. 
(15)] includes density jumps and represents some 
piecewise bounded function, let us suppose that 

 is defined on the Hilbert space )(2 Σ∈δ L )(2 ΣL  
of square-integrable functions inside the Earth’s 
interior Σ. In this case the internal potential  has 
generalized second derivatives and satisfies 
Poisson’s equation in almost all points of Σ [8], 
[18]:   

iV

δπ−=∇ GVi 42 ,     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

∇
−=δ

G
Vi

4

2

.        (42) 

Substitution of Eq. (42) into Eq. (41) by means 
of the first Green’s identity applied with Maxwell 
[26] to Eq. (41) gives 

∫
τ

=τ∇⋅
π

−= dVV
G

W ii
2

8
1

 

⎥
⎦

⎤
⎢
⎣

⎡
τ−σ

∂
∂

π
−= ∫∫

τσ

dVVDd
n
VV

G ii
i

i ),(
8

1
, (43) 

=τ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=τ ∫∫
ττ

d
z
V

y
V

x
VdVVD iii

ii

222

),(  

∫
τ

τ= dVi
2grad .  (44) 

Green’s transformation [Eq. (43)] is valid if we 
suppose that the function  and its first derivatives 
are continuous or even piecewise [2]. Eq. (44) 
denotes always-nonnegative Dirichlet’s integral. 
Note that initial Eq. (41) may also be transformed 
via Green’s identity as [19]: 

iV

∫∫
ϖτ

τ=τ⋅δ⋅π dVVDdV iii ),(4 ,        (45) 

where Dirichlet’s integral is extended throughout 
all space ϖ . The interpretation of Dirichlet’s 

integral in terms of the gravitational potential 
energy follows from Eq. (45).  

Let us now assume that the boundary σ 
represents a level surface where the gravitational 
potential const0 ==VVi . By this Eq. (43) gives 

⎥
⎦

⎤
⎢
⎣

⎡
τ−σ

∂
∂

π
−= ∫∫

τσ

dVVDd
n
V

V
G

W ii
i ),(

8
1

0 (46а) 

∫
τ

τ
π

+= dVVD
G

MV
W ii ),(

8
1

2
0         (46b) 

as a consequence of Gauss’ theorem [19], [17] 
applied to the first integral in the brackets of Eq. 
(46):  

∫
σ

σ
∂
∂

=π− d
n
VGM i4 .                 (47) 

According to Dirichlet’s principle [19], [27] the 
work EW −=  has some minimal value  if 
all masses are concentrated on the level surface σ 
when the gravitational potential  and 
the interior is empty. In this case the internal 
potential 

minW

const0 =V

const0 ==VVi  represents the 
harmonic function inside the surface σ and leads to 
zero Dirichlet’s integral in Eq. (46). Thus, the 
minimum amount of W becomes  

2/0min VMW ⋅= ,                (48) 
and represents the solution of the variational Gauss’ 
problem [14], [1]. Substitution of Eq. (48) into Eq. 
(46) leads to the following basic formulae 

),( min WWE Δ+−=  

.),(
8

1
∫
τ

τ
π

=Δ dVVD
G

W ii            (49) 

Thus, other kind of expression for E, given 
under the assumption that the boundary σ is a level 
surface, provides a simple estimation of  and 
remarkable treatment of the deviation  from 
this minimal amount  as non-zero Dirichlet’s 
integral when all masses are distributed inside 

minW
WΔ

minW
τ  

according to an adopted density law. 
Now we consider the application of Eq. (49) to 

the spherically symmetric density distribution 
)(rδ=δ  within the spherical Earth. In this case 

the gravitational potential  will 
coincide with the potential of a point mass and the 
potential 

const0 =V

RGMV /0 =  of the surface distribution 

const)( =δ=δ R . By this Eq. (48) becomes 

RGMW 2/2
min = ,                  (50) 

usually related to a homogeneous planet [1]. The 
second term WΔ  in Eq. (49) transforms to  
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=′′⎟
⎠
⎞

⎜
⎝
⎛

′
′

π
π

=Δ ∫
R

i rdr
rd
rdV

G
W

0

2
2)(

8
4

 

∫∫ ′=′′⎟
⎠
⎞

⎜
⎝
⎛

′
′

=
RR

rdU
G

rdr
r

rGM
G 0

2

0

2
2

2 2
1)(

2
1

, (51) 

where according to Moritz [27] the gravity 
(gravitational attraction)  inside a stratified 
spherical Earth is expressed through the part of the 
Earth’s mass : 

)(rg

)(rM

2
)()()(

r
rGM

dr
rdVrg i =−= ,           (52) 

( )∫ ′′⋅′δπ=
r

rdrrrM
0

24)( .             (53) 

Therefore, the gravitational potential energy of 
the spherically symmetric density distribution 

 becomes )(rδ=δ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′⎟

⎠
⎞

⎜
⎝
⎛

′
′

+−= ∫
R

rd
r

rGM
GR

GME
0

22 )(
2
1

2
  (54а) 

[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= 2

,0

2

22
1

2 RL
U

GR
GME .          (54b) 

The first term within brackets of Eq. (54) 
represents the minimal work of gravitation required 
to transport masses, having the total Earth’s mass 
M, from a state of infinite diffusion onto the 
spherical planet with the radius R. Obviously, the 
mass  given by Eq. (53) represents the part 
of mass of the spherical Earth restricted by the 
radius r.  

)(rM

 

GM/r 

U(r)=GM(r)/r 

Vi 

r [km]

 
Fig. 3. Normalized values of the point 

potential , the internal potential iV , and 
the function  given for the 

homogeneous spherical Earth 

rGM /
rrGMrV /)()( =

 

In view of Eq. (49) or Eq. (51) the integral in 
the second term is bounded and can be treated 
through the norm [ ]  of the simple function 

RL
U

,02

rrGMrU /)()( =  in the Hilbert space L2 of 
square-integrable functions on the segment [0, R]. 
Fig. 3 shows normalized values of different 
functions computed for the homogeneous spherical 
Earth having the same value on the Earth’s sphere. 
Fig.3 illustrates also zero value of 

rrGMrU /)()( =  when  and singularity 
of the point potential  at the origin.  

0=r
rGM /

If the function )(rδ=δ  corresponds to the 
piecewise density of the layered Earth, Eq. (54) can 
be transformed by the partial integration to the 
following relationship 

∑
=

=
k

j
jEE

1
,   (j=1,2,…k),           (55) 

where  expresses the contribution of the energy 
of the j-shell in the total value E. 

jE

 
E-estimates for simplest radial density models 
As a preparation, consider additionally to the 

homogeneous Earth the determination of E for the 
following radial-only continuous density profiles: 
the law of Legendre-Laplace, the law of Roche (as 
solutions of the Clairaut’s equation), the Bullard’s 
model, and the Gaussian (normal) distribution (Fig. 
4). Therefore, in order to determine the 
gravitational potential energy E we use density laws 
from Table 3 initially for the spherical Earth. The 
parameters of the simplest density models (Fig. 4) 
listed in Table 3 were derived from the solution of 
the inverse problem based on the well-known 
conditions to keep the Earth’s mean density mδ , 

the mean moment of inertia , and the density mI sδ  
on the Earth’ surface [27]. Only first two conditions 
are applied to the determination of the continuous 
Roche’s model. Thus, we get the following 
expressions for the parameters of the law of 
Legendre-Laplace [20]: 

[ ] ⎪
⎪
⎭

⎪⎪
⎬

⎫

γγ−γ⋅
δγ

=δ

⎥⎦
⎤

⎢⎣
⎡ −⎥

⎦

⎤
⎢
⎣

⎡
−

δ
δ

⋅=γ

,
cossin3

,
3
214

3

0

2

m

m
m

s I  (56) 

the law of Roche  

[ ]

[ ]

[ ] ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−δ=δ

δ−δ=

−δ==δ

,27
4
5

,
3
5 

,2110
8
5

0

0

mms

m

mm

I

b

Ia
 (57) 

the Bullard’s model  
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( )[ ]

( )[ ]

( )[ ] ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−δ−δ=

δ−−δ=

−δ−δ==δ

,2754
32
63

,41445
16
35

,1027712
32
5

0

mms

smm

mms

Ic

Ib

Ia

 (58) 

and the Gauss’ model [21]: 

(

where 0δ  is the density at the origin; erf(x) is the 
integral of the Gaussian distribution from 0 to x.  

) ⎪
⎪
⎭

⎪⎪
⎬

⎫

β−β⋅β⋅π⋅
β⋅δβ⋅

=δ

⎥
⎦

⎤
⎢
⎣

⎡
δ
δ

−=β

,
2)(erf)exp(3

)exp(4

,11

2

23

0

2

m

m

s

mI  (59) 

Fig. 4 illustrates the radial continuous density 
profiles (Legendre-Laplace law, Roche’s law, 
Bullard’s model, and Gauss’ model) now obtained 
by means of Eqs. (56–59) through adopted in Table 
3 set of parameters based on the mean moment of 
inertia = 0.3299773±0.0000005 taken from 

Table 1, the mean density 
mI

mδ  = 5.51483±0.0026 

g/cm3, and the density on the Earth surface sδ  = 
2.67 g/cm3. 

 
Table 3. 

Expressions for different radial density models ( Rr /=ρ ) 
Model Expression Values of parameters 

Homogeneous planet const)( == mr δδ  mδ = 5.51483 g/cm3

Legendre-Laplace law γργρδδ /)sin()( 0=r  δ0 =10.993 g/cm3, γ=2.4929 
Roche’s law 2)( ρδ bar +=  a =10.583, b=−8.447 [g/cm3] 

Bullard’s model 42)( ρρδ cbar ++=  a =11.585, b=−13.121, c= 4.206 [g/cm3] 

Gauss’ model 
(Marchenko, 2000) 

)exp()( 22
0 ρβδδ −=r  δ0 =13.097 g/cm3, β=1.26126 

 
Table 4. 

Internal potential Vi (spherical Earth) for different radial density models 
Model Expression for the internal gravitational potential 
Homogeneous 
planet )3(

3
2)( 22 rRGrV m

i −=
δπ

 

Legendre-
Laplace law ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= γ

γ
γ

γ
δπ cos)/sin(4)( 2

2
0

r
RrRRGrVi  

Roche’s law [ ])5(3)3(10
15

)( 44222
2 RrbRraR

R
GrVi −+−−=
π

 

Bullard model [ ])7(10)5(21)3(70(
420
4)( 66442224

4 RrcRrbRRraR
R
GrVi −+−+−−=
π

 

Gauss’ model ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= )exp(2)/(erf)( 2

2

2
0 ββπ

β
δπ

βr
RrRRGrVi  

 
Taking into account the expressions above, the 

relationships for the internal potential Vi 
corresponding to the mentioned set of density laws 
were derived (Table 4). In contrast to the previous 
paper [23] we prefer Eq. (54) for the computation 
of the potential energy E of the spherical Earth for 
different radial density models. 

Thus, explicit relationships (Table 5) for the 
estimation of the gravitational potential energy E of 
the spherical Earth were obtained via two 
components  and minW WΔ  treated as some 
minimal work and Dirichlet’s integral, respectively. 
With the above-mentioned mδ , , , and values 
of parameters from Table 3 given for the law of 
Legendre-Laplace, the law of Roche, the Bullard’s 

model, and the Gaussian distribution numerically 
we get estimations of the energy E given in Table 6, 
which includes E-values given by Mescheryakov 
[4] and Rubincam [28] for further comparisons.  

mI sδ

Thus, there are the following limits for all 
computed E: 

minHEarthGauss WEEE −<≤≤ .        (60)  

The amount minW−  corresponds to the surface 
distribution of the total Earth’s mass M. The upper 
limit  agrees with the homogeneous Earth. The 

difference between  and 
HE

2/2
min GMW −=−
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r [km]

Roche’s model 

Legendre-Laplace 
model 

PREM model 

Bullard’s model 

Gauss’ model 
δ(r)  

Fig. 4. Legendre-Laplace, Roche, Bullard, and 
Gauss continuous densities compared with the 

PREM-density model δ(ρ) [g/cm3] 

Table 6. 
Estimations of the gravitational potential energy E 

(spherical Earth) 

Model minW , 
ergs×10-39

WΔ , 
ergs×10-39

E, 
ergs×10-39

Mescheryakov [4] – – −2.34 
Rubincam [28] – – −2.45 
Homogeneous 
Earth 

1.8687 0.3737 –2.2425 

Legendre-Laplace 
model 1.8687 0.5965 –2.4652 

Roche’s model 1.8687 0.6101 –2.4788 
Bullard’s model 1.8687 0.6132 –2.4820 
Gauss’ model  1.8687 0.6386 –2.5073 

 

RGME 5/3 2
H −=  has the well-known value 

. The minimum amount  
corresponds to the Gauss’ model. The inequality 
(60) has the following explanation. The first term of 
the Taylor series expansion of the potential energy 

RGM 10/2
GaussE

 
Table 5. 

Two components  and  from Eq. (54) for the estimation of the potential energy minW WΔ )( min WWE Δ+−=  
(spherical Earth) 

Model RGMW 2/2
min =  GVW RL 2/2

),0(2
=Δ  

Homogeneous 
planet 

( ) 52298 RG mδπ  ( ) 522458 RG mδπ  

Legendre-
Laplace law 

[
]1cossin2

cos)1(8 22
6

52
0

2

+−

−−

γγγ

γγ
γ
δπ RG

 ][ 22
6

52
0

2

sin2cossin4
γ+γ−γγγ

γ
δπ RG

 

Roche’s law [ ]2
52

35
225

8 baGR
+

π
 [ ]22

52

73035
1575

16 babaGR
++

π
 

Bullard model [ ]2
52

152135
11025

8 cbaGR
++

π
 [

])74252457021021

5005090090105105
4729725
8

22

2
52

cbcb

acabaGR

+++

++
π

 

Gauss’ model 
[

]22

6

252
0

2

)(erf)exp(

2
2

)2exp(

ββπ

β
β

βδπ

−

−
−RG

 ][ 2
6

52
0

5

)(erf)2(erf2
2

βπββ
β
δπ

−
RG

 

 
GaussE , corresponding to the Gauss’ model from 

Table 5, represents the gravitational potential 
energy of the homogeneous Earth . Generally 
speaking every expression from Table 5 includes 
the main term, which is equal to . But the sum 
of other terms with  leads on the whole to a 

smaller E than the value  (Table 6). It has to be 
pointed out, that the energy E derived by 
Mescheryakov [4] as 

HE

HE
HE

HE

MVE m−=2  was based on 
the known Earth’s mass M and the mean-value 

theorem after preliminary computation of the mean 
value Vm of the internal potential Vi inserted as 
Vi=Vm in Eq. (41). The estimation of E given by 
Rubincam [28] was found for the spherical Earth 
differentiated into homogeneous core and 
homogeneous mantle with one jump at the core-
mantle boundary. To verify the inequality (60) we 
will apply a similar approach to the above-
discussed profiles using the direct approximation of 
the PREM density by these four simplest piecewise 
two shells with the same basic jump at the models 
separated into core/mantle boundary. Fig. 5 
illustrates results of such approximations, which are 
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characterized by r.m.s. deviations from the PREM 
density based in each case on the additional 
conditions to keep , , and . Despite the 
best value of r.m.s. for the Bullard’s model we  

mδ mI sδ

prefer to use below also a simplest law of Roche 
because of a smaller number of the parameters  

and  (j=1,2,…k) introduced for each shell.  
ja

jb
 

3/437.0.. cmgsmR =  

Gauss’ 
model 

r [km] 

δ(r) 

r.m.s.=0.437g/cm3 

 

 

Legendre-
Laplace 
model 

r [km] 

δ(r)

r.m.s.=0.430g/cm3

 

 

Bullard’s 
model 

r [km] 

δ(r) 

r.m.s.=0.322g/cm3 

 

 

Roche’s 
model 

r [km] 

δ(r) 

r.m.s.=0.409g/cm3

 

Fig. 5. Results of the direct approximation of the PREM density by some piecewise models with 
two shells taking into account one basic jump at the core/mantle boundary 

 
Table 7. 

Estimations of E for the spherically symmetric 
Earth with basic jump at the core/mantle boundary 

Model Value E 
Homogeneous Earth (2 shells) −2.4401×1039 ergs
Rubincam [28] (2 shells) −2.45    ×1039 ergs
Legendre-Laplace model  
(2 shells) −2.4944×1039 ergs

Roche’s model (2 shells) −2.4938×1039 ergs
Bullard’s model (2 shells) −2.4907×1039 ergs
Gauss’ model (2 shells) −2.4940×1039 ergs

 
The comparison of E-estimates from Table 6 

(continuous radial density) and Table 7 (spherical 
Earth with one jump, k=2) gives better-quality 

agreement between the values E when the basic 
jump of density at the core/mantle boundary is 
taking into consideration. E-estimates given in 
Table 7 fulfill again to the inequality (60) with two 
limits  and  from Table 6. In the case of 
these piecewise radial models with one jump of 
density at the core/mantle boundary (Table 7) all 
values of E are very close to the minimum amount 
of . That is why the accuracy estimation 

 for  was derived by error 

propagation under the assumption that  depends 

only on accuracy of the mean density  and the 

mean moment of inertia  given above. 

GaussE HE

GaussE
E

E Gaussσ=σ GaussE

Eσ

mδ

mI
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Numerically we get = (-2.5073±0.0025)× 
×10

GaussE
39 ergs. Therefore, if a spherical Earth 

differentiates into present-day core and mantle we 
get in view of the estimated accuracy Eσ = 
±0.0025)×1039 ergs a perfect accordance between 
E-values corresponded to the layered Legendre-
Laplace, Roche, Bullard, and Gauss models with 2 
shells. This quantity Eσ  is certainly larger than E-
estimate contained in the 2nd-degree harmonics 
[28] and for this reason we will use again radial-
only piecewise density models for the 
determination of the Earth’s potential energy E. 

 
Gravitational potential energy  

based on piecewise density models 
The internal potential  inside the ellipsoid of 

revolution with the radial density 
iV

)( Rr ⋅ρ=δ  
was adopted according to Moritz [27], p.41: 

∫

∫

∫∫
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π
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π
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8
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4
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2
0

5
23

0

2

, (61) 

where the radius vector  of the ellipsoid and the 
radius r of the associated mean sphere are 
connected by Eq. (23b). Then in Eq. (61) we 
express  by Eq. (23b) and get   

er~

er~
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⎡ ϑ⋅+= )(cos

3
211

~
1

2Pf
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.          (62) 

Substitution of Eq. (62) into Eq. (61) gives for 
the homothetic stratification f=const: 
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the internal potential of the heterogeneous 
ellipsoidal Earth [Eq. (63)] in the form of the 
internal potential of the heterogeneous spherical 
planet  reduced to  by the ellipsoidal 

reduction  [Eq. (64)]. Eqs. (63–64) allow the 
direct computation of the gravitational potential 
energy E in the obvious form  

sphere
iV iV

ell
iVΔ

ellsphere EEE Δ+= ,                 (65) 
if inserted into Eq. (41) or Eq. (54). Nevertheless,  

taking into consideration the flattening  we will 
estimate the corresponding ellipsoidal reduction 

f

ellEΔ  beforehand. Since all E-values of the 
piecewise radial models with one density-jump 
(Table 7) are very close to the lower limit  in 
Eq. (60) it is enough to estimate  by applying 
again the Gauss’ continuous model 

 inside the ellipsoid with 

the homothetic stratification ( ). With 
adopted parameters numerically we get 

≈ 0.000045×10

GaussE

ellEΔ

)exp()( 22
0 ρβ−δ=ρδ

const=f

Gauss
ellell EE Δ=Δ 39 ergs two orders 

smaller value than accuracy Eσ = ±0.0025)×1039 
ergs. Hence, it is sufficient to accept the reduction 

= 0 in Eq. (63) for the internal potential .  ell
iVΔ iV
Now we can consider a general polynomial 

representation of piecewise density within the 
spherical planet 

∑∑
==

=ρ=δ
jj n

i
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j
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ii
jj rAar

00
)( , ,  (66) Rr /=ρ

where  is the maximal degree of polynomial (66) 
in the j shell; r is the current radius within the j 
shell; the initial coefficients  [g/cm

jn

ja 3] are given 
for each j shell separately with the artificial zero 
shell = 0, = 0, which is involved for the 

generalization of basic formulae;  are 
the coefficients of the polynomial approximation in 
relation to r; R is the Earth’s mean radius.  

0a 0r
ii

j
i
j RaA ⋅=

For further computation of  and minW WΔ  
through Eq. (54) we need a similar to Eq. (66) 
representation of the function  [Eq. (53)] via 
polynomials. When the radius 

)(rM
r  is considered 

within the j shell ( jj rrr <<−1 ) substitution of Eq. 

(66) into Eq. (53) for , representing the part 
of the Earth’s mass bounded by the radius 

)(rM
r , after 

simple algebraic manipulations gives  
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with the coefficients : m
jB
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and the squared mass  according to Eq. 
(67): 
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All this is substituted into Eq. (54) with the final 
result for  and :   minW WΔ
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keeping in mind that the radius of the artificial zero 
shell is = 0 and if the denominator (0r 1−+ mi ) is 
equal to zero we ignore such term in Eq. (73) 
because the corresponding coefficients = 
= 0 by Eq. (70). 

m
j

i
j BB =

 
Gravitational potential energy 

based on the piecewise Roche’s density model 
Taking into account a good agreement of the 

piecewise Roche-density model with the PREM 
density (Fig. 6), we will apply this radial density 
profile consisting from 7 shells and representing by 
polynomials of identical even powers within every 
shell [21] as initial information in the following 
form 

2
2

)( rca
R
rbar jjjjj +=⎟
⎠
⎞

⎜
⎝
⎛+=δ , 

(j=0,1,2,…k),  ,  (74) 0000 === cba
where adopted k=7; , , and  are 
the known coefficients of the model (74) given for 
each shell (Table 7) with the artificial zero shell 

 0, = 0. Note also that r.m.s. 
deviation between these models (Fig. 6) has the 
value 0.06 g/cm

ja ja 2/ Rbc jj =

=== 000 cba 0r

3 for the core-mantle area and 
increases only to 0.24 g/cm3 for the core-mantle-
crust. 

With = 0, =0, and a current point lied 
within the j-shell at the distance 

ell
iVΔ

r , the substitution 
of Eq. (74) into Eq. (53) provides the following 

r [km]

δ(r) 

Piecewise Roche’s model 

Piecewise PREM model  

 
Fig. 6. Piecewise Roche-density model with 7 
shells compared with the PREM-density model 

δ(ρ) [g/cm3] 
 

expression for the mass 
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Thus, according to Eqs. (75–76) in the case of 
the piecewise Roche’s density (74) the function 

 can be represented by polynomials of 
identical odd powers within every shell. By this, 
after some algebraic manipulations with Eq. (75) 
inserted into Eq. (54) we get a simple possibility of 
the determination of the energy E. The result is 
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where  expresses the contribution of the j-shell 

in the total value 
jw

WΔ . With adopted piecewise 
Roche’s density model we get the estimation of 

)( min WWE Δ+−=  [ = 1.8681×10minW 39 ergs, 
WΔ = 0.6269×1039 ergs] given in Table 8 also via 

the contributions  [Eq. (55)] of each shell. The jE
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Table 8. 
Estimation of the gravitational potential energy E derived from the piecewise Roche’s density model  

separated into 7 basic shells [21] 

Shell aj, g/cm3 bj, g/cm3 rj, km Contribution Ej       of 
each shell, ergs 

Ej , % 

1 (Inner core) 13.061 -8.891 −0.0541×1039  2.17 
2 (Outer core) 12.483 -8.343 −0.9159×1039  36.77 
3 (Lower mantle) 6.370 -2.574 −1.1625×1039  46.67 
4 (Upper mantle 1) 6.058 -2.577 −0.1527 ×1039  6.13 
5 (Upper mantle 2) 5.784 -2.524 −0.0954×1039  3.83 
6 (Upper mantle 3) 6.057 -2.903 −0.0998×1039  4.01 
7 (Crust) 6.622 -3.952 

1221.5 
3480.0 
5701.0 
5971.0 
6151.0 
6346.6 −0.0104×1039  0.42 

Total gravitational potential energy: −2.4910×1039 ergs  
 

quantity E = −2.4910×1039 ergs agrees with E-
estimates from Table 7 based on the radial models 
with one jump of density at the core/mantle 
boundary and fulfills to the inequality (60) at the 
vicinity of the minimum = (-2.5073± 
±0.0025)×10

GaussE
39 ergs. Taking into account the 

estimated above accuracy Eσ = ±0.0025×1039 ergs 
we get a remarkable accordance between = 
= -2.4910×10

E
39 ergs derived from the piecewise 

Roche’s density with 7 basic shells as sampled for 
PREM and the values E given by the simplest 
piecewise Legendre-Laplace, Roche, Bullard, and 
Gauss models with 2 shells. Note that all E-
estimates from Table 8 coincide exactly with the 
results based on the direct application of Eq. (41) 
and Eq. (55) [23].  

 
Gravitational potential energy  

based on the PREM density model 
Starting from 1981 PREM piecewise radial 

profile [13] represents the most widely used Earth’s 
density model and, therefore, one of suitable 
densities for the estimation of the gravitational 
potential energy E. In this case we must consider a 
piecewise polynomial representation of the general 
kind [Eq. (66)] and final Eqs. (72–73) for the 
computation of the gravitational potential energy E. 

Table 9 contains estimations of the total 
potential energy )( min WWE Δ+−=  [ = 
= 1.8685×10

minW
39 ergs, = −0.6199×10WΔ 39 ergs] and 

the contributions  [Eq. (55)] of each shell. The 

gravitational potential energy  = −2.4884× 
×10

jE

PREME
39 ergs agrees well with E-estimates from Table 

7 and Table 8 based on different piecewise radial 
models and fulfills to the inequality (60). In view of 
the estimated above accuracy Eσ = ±0.0025×1039 
ergs we get again remarkable agreement between 

= −2.4884×10PREME 39 ergs derived from the 
piecewise PREM density and all E-values given by 
the piecewise Roche’s density with 7 shells and all 
simplest piecewise models with 2 shells which are 

corresponded to the spherically symmetric Earth 
differentiated into core and mantle only. Gauss’ 
continuous model gives the lower limit 

= (-2.5073±0.0025)×10GaussE 39 ergs of E for all 
considered density distributions including PREM 
model.  

It has to be pointed out that we get different 
values of minimal work = 1.8687×10minW 39 ergs 
based on all continuous profiles given in Table 6, 

= 1.8681×10minW 39 ergs derived from the 

piecewise Roche’s density, and = 1.8687× 
×10

minW
39 ergs corresponded to the piecewise PREM 

density. Since every considered density profile 
includes individual information about the Earth’s 
mass and the value G Eq. (50) leads to the 
conclusion that this fact simply reflects different 
values GM adopted for the construction of these 
models. 

 
Internal potential and other related parameters 

of the Earth’s reference models 
Since the transformation of Eq. (41) into Eq. 

(43) was made under the assumption that the 
internal potential  has continuous or piecewise 
first derivatives we will analyze additionally the 
function  and its derivatives for piecewise 
(PREM) and continuous (Gauss) radial models of 
the Earth’s density 

iV

)(rVi

)(rδ . According to Moritz 

(1990) the internal potential  of the stratified 
spherical planet represents the function of the 
current radius r:  

iV

=′′′δπ+′′′δ
π

= ∫∫
R

r

r

i rdrrGrdrr
r
GrV )(4)(4)(

0

2  

)()( 21 rVrV +=   (79) 
where the first term on the right-hand side in view 
of Eq. (53) corresponds to the external potential of 
the sphere bounded by the radius r:  
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Table 9. 
Estimation of the gravitational potential energy E derived from the PREM density models according to [13] 

Shell rj, km Contribution Ej of 
each shell, ergs Ej, % 

1 (Inner core) −0.0542×1039 2.18 1221.5 
2 (Outer core) −0.9128×1039 36.68 

3480.0 
3 (Lower mantle 1) −0.0598×1039 2.40 

3630.0 
4 (Lower mantle 2) −1.0390×1039 41.75 

5600.0 
5 (Lower mantle 3) −0.0623×1039 2.50 

5701.0 
6 (Upper mantle 1, Transition zone) −0.0397×1039 1.60 

5771.0 
7 (Upper mantle 2, Transition zone) −0.1126×1039 4.52 

5971.0 
8 (Upper mantle 3, Transition zone) −0.0951×1039 3.82 

6151.0 
9 (Upper mantle 4, LVZ) −0.0734×1039 2.95 

6291.0 
10 (Upper mantle 5, LID) −0.0297×1039 1.20 

6346.6 
11 (Crust 1) −0.0043×1039 0.17 

6356.0 
12 (Crust 2) −0.0050×1039 0.20 

6368.0 
13 (Ocean) 

 −0.0005×1039 0.02 

Total potential energy: −2.4884×1039 100.00 

 

r
rGMrdrr

r
GrV

r )()(4)(
0

2
1 =′′′δ

π
= ∫ .   (80) 

In the second term on the right-hand side we 
have  

∫ ′′′δπ=
R

r

rdrrGrV )(4)(2 .             (81) 

Let us now consider the element dm of mass of 
the ring (with infinitesimal thickness) oriented 
according to Fig. 7 along any chosen parallel with 
polar distance . It is evident that  is the 
radius of this ring,  is the meridian 
height, and  is radial thickness. Thus, the 
element dm  becomes 

ϑ )sin(ϑ⋅r
ϑ⋅= drdh

dr

drdrrrdm ϑ⋅⋅ϑ⋅⋅δ⋅π= )sin()(2   (82a) 
dhdrrr ⋅ϑ⋅⋅δ⋅π= )sin()(2 ,      (82b) 

where r  is the radius of the considered sphere. 
Note also that the integration over longitude was 
already carried out in Eqs. (82a−82b).  

Then if the element of mass is given by Eq. 

 

ϑ r 

r⋅sinϑ

 
Fig. 7. To the interpretation of Eq. (79) 

 
(82a) after computation of the mass by Eq. (53) we 
come to Eq. (80) for the external potential . 
Let us now the element of mass is written for the 
equatorial plane (

)(1 rV

)sin(ϑ = 1) by Eq. (82b):  
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drdhrrdm ⋅⋅πδ= )(2 .           (83) 
By introducing the surface density 

dhrr ⋅δ=μ )()( ,                    (84) 
we get 

drrrdm ⋅⋅πμ= )(2 .               (85) 
This relationship can be interpreted as an 

element of the mass of equatorial ring with the 
surface density  when the volume density 

 is condensed or compressed into a surface 
density . In terms of Eqs. (84–85) we get  

)(rμ
)(rδ

)(rμ

∫∫∫ ′′′μπ=′′′δπ==
R

r

R

r

R

r

rdrrrdhdrrdmm )(2)(2 , (86) 

the mass of the equatorial ring bounded by the 
radiuses r and R. Therefore, the comparison of Eq. 
(86) and Eq. (81) allows the following suggestion: 
by assuming the volume density  numerically 
equal to the surface density  when dh = 1 we 

come to a treatment of the potential V  using the 
mass of this equatorial ring (Fig. 7): 

)(rδ
)(rμ

2

GmrdrrGrV
R

r

2)(4)(2 =′′′δπ= ∫ .       (87) 

Eq. (80) and Eq. (87) can serve as a basis for 
computing the internal potential  of the stratified 
spherical Earth. Supposing now the planet 
separated into k shells and making some elementary 
transformation with Eq. (79), Eq. (80), and Eq. (87) 
we get  

iV
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The parameters above admit the following 
interpretation:  is the part of mass of the 
spherical Earth which is bounded by the radius r 
and possessed by the density distribution according 
to the j shell;  is the mass of the j spherical 

shell restricted by the radiuses  and ;  
is the part of mass of the equatorial disk of 
infinitesimal thickness (Fig. 7) which is bounded by 
the radius r and corresponded to the density 
distribution of j shell;  is the mass of the j 
equatorial ring of infinitesimal thickness restricted 
by the radiuses  and . 

)(rM j

jMΔ

jr 1−jr )(rmj

jmΔ

jr 1−jr
Now with the piecewise polynomial 

representation of general kind [Eq. (66)] after 
substitution of Eq. (66) into Eq. (79) and associated 
algebraic manipulations the expression for the 
internal potential corresponding to the density (66) 

reduces to Eq. (88);  and  are given 
by Eq. (68) and Eq. (69), respectively; the 
relationships for  and  are 

)(rM j jMΔ

)(rm j jmΔ

( ) ( )∑∫
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+
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i

i
i
j
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rdrrrm
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2

0 2
22)( ,(89)  

)()( 1−−=Δ jjjjj rmrmm .                (90) 
As a result, with the density distribution and 

internal potential given by Eq. (66) and Eq. (88), 
respectively, the computation of the gravity g and 

dr
dg

 are straightforward 

2
)()()(

r
rGM

dr
rdVrg i =−= ,        (91)  

=−=
rd
rVd
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2
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)(2)(4)(2)(2 −δπ=⎟
⎠
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⎝
⎛ +∇−= . (92) 

Because the density  is bounded and 
piecewise function the gravity  [Eq. (91)] 
represents continuous function (Fig. 9) overall on 
the segment [0, R] by Eq. (53) for . Eq. (92) 
is valid in almost all points of [0, R] excluding a 
finite number of points of discontinuity. These 
points have the same position as density jumps 

where the functions 

)(rδ
)(rg

)(rM

)(rδ  and 
dr
dg

 have two 

limits: limit from the left and limit from the right at 
the vicinity of each point of discontinuity.  

 
 

Vi

r [km]

PREM model 

Gauss’ model 

Potential differences (in %) 

 
Fig. 8. Distribution of the internal potential  
[m/s] in accordance with PREM and Gauss’ 

radial models. Differences between PREM and 
Gauss’ internal potentials are shown in 

percents [%] in relation to  

iV

)(rVi
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r [km]

9.8 m/s2 g 

Gauss’ model 

PREM model 

Fig. 9. Distribution of the gravity g [m/s2] in 
accordance with PREM and Gauss’ radial 

models 
 

Both functions  and )(rg
dr
dg

 have exact limits 

from the right at the point r=0.  
Thus, Fig. 8, Fig. 9 and Fig. 10 illustrate 

distribution of the internal potential  [Eq. 

(88)], the first derivative of  taken with sign (−) 
as gravity  (gravitational attraction) [Eq. (91)] 
and the second derivative of  taken with sign (−) 

as 

)(rVi

iV
)(rg

iV

dr
dg

 [Eq. (92)], respectively, in accordance with 

the PREM and Gauss’ radial density models.  
 

 

r [km]

dr
dg

PREM model 

Gauss’ model 

 
Fig. 10. Distribution of the function 610×

dr
dg

 

[1/s2] according to PREM and Gauss’ radial 
models. 

Note that all these three functions are 
continuous only in the case of the Gauss’ 
continuous density distribution.   

The function 
dr
dg

 given for the PREM model 

has evident discontinuities at the depths of density 
jumps (Fig. 10), which are corresponded to 
discontinuities in seismic velocities. The function 

 has no discontinuities in view of Eq. (91). 
Distribution of the gravity , having as stated 
by Saigey’s theorem [10] some maximum inside 
the Earth, in the case of the PREM piecewise 
profile shows greatest value at the core/mantle 
boundary, local maximum in the upper mantle and 
minimum in the lower mantle. Note that this 
minimum of the PREM gravity coincides exactly 
with the position of global maximum according to 
Gauss’ gravity distribution. The internal potential 

 represents for both models continuous 
function (Fig. 9) with maximum at the origin and 
minimum on the Earth’s surface. Maximal 
deviation between these two internal potentials (in 
relation to ) generated by piecewise and 
continuous densities consists value smaller than 1 
%, which is shown in Fig. 9 in percents.  

)(rg
)(rg

)(rVi

)(rVi

 
Conclusions 

The global density ),,( λϑρδ  inside the Earth 
having a shape of the ellipsoid of revolution was 
selected as combined model of the 3D continuous 
density , given by the restricted solution 
of the three-dimensional Cartesian moments 
problem, and the reference radial piecewise density 

),,(~
λϑρδ

R)(ρδ  with basic density jumps as sampled for the 
PREM density. This model conserves the Earth’s 
mass, the flattening f, all principal moments (A, B, 
C) of inertia, and density jumps from 
discontinuities in seismic velocities. The 
corresponding 1D Roche’s radial density is also 
treated within the ellipsoid using the conditions to 
preserve the Earth’s mass, the mean moment of 
inertia, the flattening f, and density jumps. With 

R)(ρδ  chosen as exact constituent, the accuracy 

),,(~
λϑρδ

σ  of the 3D continuous global density was 

derived at different depths from error propagation 
based on the consistent set of the Earth’s 
mechanical parameters. Comparison of the lateral 
density anomalies with the accuracy  at 

the same depths leads generally to values of the 
same order in uncertainties and density 
heterogeneities.  

),,(~
λϑρδ

σ

That is why only radial density models were 
adopted for the determination of the Earth’s 
gravitational potential energy. All E-estimates were 

 21



Геодинаміка 1(7)/2008 
 

 

based on the following relationship 
 [Eq. (49)] derived from the 

transformation of the conventional expression for E 
through the first Green’s identity. The first 
component of Eq. (49)  expresses some 
minimum amount of the work W and the second 
component  represents a certain deviation 
from  treated via Dirichlet’s integral on the 

internal potential  [Eq. (43), Eq. (49) and Eq. 
(54)]. Relationships for both components of 

 were derived in the 
following cases: 1) the continuous radial density 
laws of Legendre-Laplace, Roche, Bullard, and 
Gauss; 2) the same radial models with one jump of 
density at the core/mantle boundary; 3) the 
piecewise Roche’s profile; 4) the piecewise PREM 
model. The estimation of E according to different 
continuous density radial laws leads to the 
following result [Eq. (60)]: there are two limits for 
all computed E. First one agrees with the 
homogeneous distribution. Second one corresponds 
to the Gauss’ radial density model.  

)( min WWE Δ+−=

minW

WΔ
minW

iV

)( min WWE Δ+−=

All determinations of the potential energy E 
were made for the spherical Earth since the 
computation of the ellipsoidal reduction ellEΔ  
gives two orders smaller quantity than the estimated 
accuracy Eσ = ±0.0025×1039 ergs of E. Taking into 
account this accuracy estimation we get a perfect 
agreement between = (-2.5073±0.0025)× 

×10
GaussE

39 ergs, = -2.4910×10E 39 ergs derived from the 
piecewise Roche’s density, the gravitational 
potential energy = -2.4884×10E 39 ergs based on 
the PREM density model, and the values E given by 
the simplest piecewise Legendre-Laplace, Roche, 
Bullard, and Gauss models all corresponded to the 
spherically symmetric Earth differentiated into core 
and mantle only. Thus, accuracy of the 3D Earth’s 
global density distribution and accuracy of the 
gravitational potential energy restrict the possible 
solution domain in such a way that a sufficient 
solution was derived from the piecewise radial 
density model taken only for the spherical Earth. 
Distributions of the internal potential, the gravity g, 

and 
dr
dg

 were found for piecewise and continuous 

radial densities inside the spherical Earth’s. 
Finally we should note that the secular variation 

2020 CA && ≅ = 1.1628×10-11 yr-1 in the degree 2 
zonal coefficient produces the change 

×−= 3
52 20AdC
&

  in the polar moment 
C of inertia [31], [24]. By this Eqs. (4-7) give 
changes in the following parameters  

)( 0tt −×

⎪
⎪
⎭

⎪⎪
⎬

⎫

χ
χ−δ

−=

χ
χ−δ

=

,
12

)1(175

,
4

)1(35

2

2

2

2

m

m

dCdD

dCdK
       (93a) 

⎪
⎪
⎭

⎪⎪
⎬

⎫

χ
χ−δ

−=

χ
−χδ

==

,
4

)3(35

,
4

)12(35

2

2

3

2

2

21

m

m

dCdK

dCdKdK
       (93b) 

of the density distribution inside the ellipsoidal 
Earth [Eqs. (1-3)]. But spherically symmetric 
distribution is not sufficient: usual Roche’s law 
given by Eq. (13) is not responsible for this 
variation because = 0 and f χ = 1 in Eqs. (93a). 
Therefore, within the chosen model approach the 
ellipsoidal 1D [Eq. (13), Eq. (24)] and 3D [Eq. 
(15)] models provide the time-dependence in the 
global density distribution and can be used for the 
estimation of corresponding changes in the Earth’s 
interior.  
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ОЦІНКА ПОТЕНЦІАЛЬНОЇ ГРАВІТАЦІЙНОЇ ЕНЕРГІЇ ЗЕМЛІ  
НА ОСНОВІ РЕФЕРЕНЦНИХ МОДЕЛЕЙ РОЗПОДІЛІВ ГУСТИНИ 

О.М. Марченко, О.С. Заяць  

У статті розглядаються питання, присвячені оцінці гравітаційної потенціальної енергії E Землі на 
основі заданих глобальних розподілів густини. Глобальна модель густини обчислювалась як комбінація 
тривимірного неперервного розподілу та референцного радіального розподілу з основними стрибками 
густини, як і у моделі PREM. Даний глобальний розподіл однозначно відтворює зовнішнє гравітаційне 
поле Землі до другого порядку і степеня включно, є узгодженим зі значеннями геометричного та 
динамічного стиску планети, а також з основними радіальними стрибками густини. Чисельні 
дослідження показали, що значення латеральних аномалій густини та їх точність є величинами одного і 
того ж порядку, внаслідок чого для оцінки гравітаційної потенціальної енергії E використовувались лише 
радіальні моделі розподілу густини. Всі оцінки енергії виконувались з використанням формули 

, отриманої з загальноприйнятого співвідношення для E через тотожність Гріна. )( min WWE Δ+−=
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Перший доданок цієї формули  виражає мінімальну роботу W, а другий minW WΔ  – відхилення від , 
яке трактується через інтеграл Діріхле для внутрішнього потенціалу. В роботі запропоновано 
співвідношення для обчислення внутрішнього потенціалу та E, а також вирази для оцінки точності 
неперервних та радіально-кускових розподілів густини. Обчислено границі, в межах яких може 
приймати значення E. Верхня межа E

minW

H відповідає однорідній Землі. Нижня межа EGauss відповідає 
радіальному розподілу густини за законом Гаусса. Всі оцінювальні значення гравітаційної потенціальної 
енергії були отримані для сферичної Землі, оскільки еліпсоїдальна поправка дає значення на два порядки 
менше, ніж точність визначення самої енергії Eσ = ±0,0025×1039 ergs. Таким чином було отримано добре 

узгодження між трьома оцінювальними значеннями енергії = −2,5073×10GaussE 39 ergs (енергія моделі 

Гаусса), =E  −2,4910×1039 ergs (енергія кусково-неперервної моделі Роша) та = −2,4884×10PREME 39 ergs  
(енергія моделі PREM). Подібна узгодженість спостерігалась і для оцінювальних значень енергії 
найпростіших моделей густини, які складались з двох шарів – кора і мантія. В статті наведено розподіли 
внутрішнього потенціалу та його першої та другої похідних для неперервних та кусково-неперевних 
моделей густини. З використанням тривимірних моделей густини аналізується вплив вікової варіації 
зонального коефіцієнта 20C  на глобальні зміни густини. 

Ключові слова: гравітаційна потенціальна енергія, внутрішній потенціал, розподіл густини, 
оцінка точності.  

 
ОЦЕНКА ПОТЕНЦИАЛЬНОЙ ГРАВИТАЦИОННОЙ ЭНЕРГИИ ЗЕМЛИ  

НА ОСНОВЕ РЕФРЕНЦНЫХ МОДЕЛЕЙ РАСПРЕДЕЛЕНИЙ ПЛОТНОСТИ 

А.Н. Марченко, А.С. Заяц  

В статье рассматриваются вопросы, посвященные оценке гравитационной энергии E Земли на 
основе заданных глобальных распределений плотности. Глобальная модель плотности представляла 
собой комбинацию трехмерного непрерывного распределения и референтного радиального 
распределения с главными скачками плотности, как у модели PREM. Данное глобальное распределение 
согласовано з внешним гравитационным полем Земли до второго порядка и степени, со значениями 
геометрического и динамического сжатий планеты, а также с главными радиальными скачками 
плотности. Численные исследования показывают, что значения латеральных аномалий плотности одного 
и того же порядка, что и их точность, вследствие чего для оценок использовались только радиальные 
модели распределения плотности. Для всех оценок энергии использовалась формула )( min WWE Δ+−= , 
полученная из общепринятого соотношения для E через тождество Грина. Первое слагаемое формулы 
представляет собою минимальную работу , а второе minW WΔ  – отклонение от , которое 
интерпретируется как интеграл Дирихле для внутреннего потенциала. В статье предложены 
соотношения для расчета внутреннего потенциала и E, а также выражения для оценки точности 
непрерывных и радиально-кусочных распределений плотности. Определены границы, в пределах 
которых может принимать значения E. Верхняя граница E

minW

H соответствует однородной Земле. Нижняя 
граница EGauss соответствует радиальному распределению плотности Гаусса. Все оценочные значения 
гравитационной потенциальной энергии были получены для сферической Земли, поскольку 
эллипсоидальная поправка на два порядка меньше, чем точность определения энергии Eσ = 
±0,0025×1039 ergs. Таким образом получено согласование между тремя оценочными значениями энергии: 

= -2,5073×10GaussE 39 ergs (энергия модели Гаусса), =E  −2,4910×1039 ergs (энергия кусочно-

непрерывной модели Роша) и = −2,4884×10PREME 39 ergs (энергия модели PREM). Подобное согласование 
наблюдалось и для оценочных значений энергии наипростейших моделей плотности, которые состояли 
из двох слоёв – коры и мантии. В статье приведены распределения внутреннего потенциала и его первой 
и второй производных для непрерывных и кусочно-непрерывных моделей плотности. С использованием 
трехмерных моделей плотности анализируется влияния вековой вариации зонального коэффициента 20C  
на глобальные изменения плотности. 

Ключевые слова: гравитационная потенциальная енергия, внутренний потенциал, распределение 
плотности, оценка точности.  
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