УДК 541.49 + 547.1 + 546.07

А.И. Герасимчук, Е.А. Мазуренко, В.М. Панашенко, Л.И. Железнова

РАСКРЫТИЕ ХЕЛАТНОГО ЦИКЛА В **β-ДИКЕТОНАТНЫХ ЛИГАНДАХ** ПРИ ОБРАЗОВАНИИ ПОЛИЯДЕРНЫХ КОМПЛЕКСОВ МЕТАЛЛОВ И ОЛИГОМЕРОВ

Рассмотрено раскрытие хелатного цикла в β -дикетонатах металлов. Методом MM+ и ZINDO/1 проведены систематические расчеты оптимальной структуры и особенностей электронного строения олигомеров различных металлов. Раскрытие лиганда является предпосылкой для мостикового координирования и получения одно- и разнометальных полиядерных комплексов, способных образовывать полиядерные цепочки различной длины, замкнутые и пространственные конструкции. Показана термодинамическая допустимость образования таких комплексов. Синтезированы и исследованы биядерные анионные комплексы типа NaLnL₄, TiLa(AA)₆Cl и TiLa₂(AA)₁₀ (где Ln = Ce, Nd, Eu, Er; L = AA, TFA, GFA).

Рентгеноструктурные исследования В-дикетонатов металлов показали, что амбидентность βдикетонов как лигандов весьма характерна [1], она проявляется и в немостиковой. и в мостиковой функции. Мостиковая функция β-дикетонатного лиганда поливариантна и может осуществляться восемью способами. Принципиально разные способы образования лигандом связей с двумя атомами металла одновременно могут реализовываться как с сохранением структурной функции лиганда по отношению к обоим атомам металла, так и с различной функцией по отношению к ним. В первом случае лиганд считается монофункциональным, во втором — бифункциональным. Возможны три варианта монофункционального мостикового координирования с двумя атомами металла: через γ-углерод; через α-углерод; координированными одним атомом кислорода к одному атому металла, а другим — к другому. Лишь в третьем случае монофункционального мостикового координирования связь металл-лиганд может считаться донорно-акцепторной, то есть координационной.

Бифункциональность при мостиковом координировании β-дикетонов к двум атомам металлов проявляется в донорно-акцепторном связывании одного атома металла с атомами кислорода кетогрупп и валентном связывании второго атома с углеродом в γ-положении (для кетонной формы β-дикетона). Для енольной формы мостиковая функция может также реализовываться при смешанном валентно-координационом связывании одного металла и координировании (при помощи второй неподеленной пары) со вторым атомом металла.

Случаи связывания β-дикетонов с тремя атомами металлов, рассмотренные в работе [2], представляют дополнительные возможности координирования с атомами металлов, которые могут проявляться моно- и бифункциональными мостиковыми комплексами. Множество случаев такого мостикового координирования экспериментально выявлено, однако с точки зрения электронного строения и квантовой химии они практически не исследованы. Между тем биметальные биядерные комплексы представляют значительный теоретический и практический интерес. В настоящей работе исследуется квантово-химический аспект мостиковой функции β-дикетонатного лиганда.

Квантово-химический расчет проводился для димеров меди, марганца, тетрамеров меди, гексамера железа. Устойчивость таких олигомеров с квантово-химической точки зрения зависит от строения валентной оболочки цетрального атома металла. Распределение электронной плотности концевых и мостиковых лигандов различно. Степень олигомеризации, то есть энергетическая выгодность той или иной длины цепочки олигомера, зависит от природы центрального атома.

Раскрытие хелатного цикла β-дикетонатов металлов и их аналогов. Монодентатное координирование лигандов, имеющих две или более донорно-активные группы, было известно ранее [2, 3] и рассматривалось как альтернативный способ координирования при комплексообразовании. Нами впервые [4] поставлен вопрос о пере-

© А.И. Герасимчук, Е.А. Мазуренко, В.М. Панашенко, Л.И. Железнова, 2006

ходе от бидентатно-координированного лиганда к монодентатному в результате внутримолекулярных превращений.

Рис. 1. Зависимость полной энергии молекулы $Ti(AA)_3$ от угла α — торсионного вращения группы атомов вокруг углерод-углеродной связи лигандного скелета.

Для оценки возможности раскрытия хелатного цикла β-дикетонатных комплексов металлов было рассчитано изменение полной энергии молекулы комплекса трис-2,4-пентандионата титана Ті(АА)₃ при торсионном раскрытии цикла посредством вращения вокруг оси, проходящей через атомы углерода лигандного скелета в α и β положениях (рис. 1). Как видно из расчета, при небольших углах кручения потенциальная кривая вдоль координаты торсионного угла имеет глубокий минимум и энергетически более выгодным является симметричное расположение атомов кислорода относительно хелатируемого металла с образованием плоского хелатного кольца. Форма кривой указывает на то, что наряду с глобальным существует локальный минимум, который соответствует удаленному положению донорно-активной одной кетогруппы и координированному положению — второй. Способность свободной кетогруппы к координационным связям с атомом металла соседнего комплекса является предпосылкой образования мостиковых биядерных комплексов.

Квантово-химическим методом ZINDO/1 рассчитаны свободные радикал-лиганды ацетилацетона в цис- и транс-конфигурациях. Выбор радикал-лигандов, а не ацетилацетонат-иона обусловлен тем, что рассмотрение последнего уместно для первичного комплексообразования. Различия в электронном строении, валентной и донорно-акцепторной активностях данных изомерных форм видны из сравнения их расчетных энергетических характеристик и зарядов на скелетных атомах. В табл. 1 приведены значения величин полной энергии, энергии связи, теплоты образования, величины зарядов на скелетных атомах O, C_{β} , C_{α} , C_{γ} (левой и правой частей относительно γ -углерода).

Энергетически состояние а (рис. 2, а) являет-

Таблица 1

Расчетные	характеристики	электронного	строения
радикал-ли	гандов		

Параметры	Закрытое положе- ние <i>a</i> (рис. 2, <i>a</i>)	Открытое положе- ние б (рис. 2, б)	
Полная энергия, кДж/моль	-187351.14	-187164.37	
Энергия связи	-16760.63	-16576.31	
Теплота	-11153.23	-10968.87	
образования,			
ккал/моль:			
<i>q</i> (O)	-0.133	-0.307	
<i>q</i> (Cβ)	0.133	0.083	
$q(C_{\alpha})$	-0.162	-0.158	
$q(C_{\gamma})$	-0.136	-0.075	
$q(C_{\beta})$	0.133	0.497	
$q(\mathbf{C}_{\alpha})$	-0.162	-0.233	

Рис. 2. Изомерные формы радикал-лиганда ацетилацетона.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 2

ся более выгодным и расположено ниже на 184 кДж/моль, чем "открытое" транс–изомерное состояние. Распределение электронной плотности, которое иллюстрируется расчетными величинами зарядов на атомах, показывает, что переход к изомерному транс–состоянию сопровождается значительным увеличением заселенности донорных групп (атомов кислорода), а следовательно, активизацией их донорно-акцепторной активности. В комплексных соединениях такая внутримолекулярная изомеризация лиганда отвечает раскрытию хелатного цикла.

Раскрытие хелатного кольца в комплексе металла как стадия образования биядерного комплекса эквивалентно комплексообразованию соседнего атома металла с транс-радикал-лигандом, поэтому представляет интерес изучение трансформации валентно-активных орбиталей в комплексе при таком внутримолекулярном превращении, изменений его полной энергии и величин заселенности (зарядов) основных атомов. Проведены многочисленные расчеты координационных соединений различных металлов, наиболее иллюстративные для комплексов меди и марганца.

На рис. 3 представлено распределение электронной плотности на валентно активной молекулярной орбитали основного и "раскрытого" состояния ацетилацетоната меди. Из рисунка видно, что раскрытие хелатного цикла сопровождается трансформацией ВЗМО комплекса так, что не только делает доступной донорно-активные неподеленные пары открытой кетогруппы, но и выпускает (делает более пространственно ориенти-

Таблица 2

Расчетные характеристики электронного строения ацетилацетоната меди

Параметры	Основное со- стояние – а (рис. 3, а) Состо с раскры латным ц (рис		яние ятым хе- иклом – б . 3, б)
Полная энергия, кДж/моль	-513404.03	-513742.51	
Энергия связи	-33781.69	-341	20.13
Теплота образова-	-22228.75	-22567.21	
ния, ккал/моль:			
<i>q</i> (Cu)	-0.068	-0.242	
<i>q</i> (O)	-0.321	-0.373	-0.228*
$q(C_{\beta})$	0.370	0.388	0.302**
$q(\mathbf{C}_{\alpha}^{P})$	-0.213	-0.223	-0.188
$q(C_{\gamma})$	-0.187	-0.236	-0.010
$q(\mathbf{C}'_{\beta})$	0.386	0.401	0.254
$q(\mathbf{C}_{\alpha}^{P})$	-0.213	-0.222	-0.155
<i>q</i> (Õ)	-0.355	-0.380	-0.245

* Значение для раскрытого цикла; ** величина относится к координированной к атому меди кетогруппе.

рованный в стерически неэкранированную область) лепесток орбитали, локализованной на атоме металла, повышая валентную активность атома металла в комплексе. Различия в электронном строении и энергии этих изомеров видны по данным, приведенным в табл. 2.

Энергетически более предпочтительное состояние комплекса с раскрытым циклом, которое следует также и из расчетов для комплексов других металлов, по-видимому, отражает состоя-

Рис. 3. Изменение ВЗМО при переходе из основного состояния (a) к состоянию с раскрытым хелатным циклом (б).

ние лиганда в комплексе в газовой фазе. Разница в величинах энтальпии образования этих форм сравнима с тепловым эффектом перехода комплексов в газовую фазу. Распределение зарядов в лигандах комплекса соответствует распределению зарядов в свободных радикал-лигандах.

Стерический (увеличение телесного угла открытой, неэкранированной области координационного узла) и орбитальный (свободные, не участвующие в координационной связи орбитали "открытой" кетогруппы) факторы определяют метастабильное состояние такой формы координационного соединения. Оно проявляется в том, что молекула комплекса стремится прореагировать с такой же молекулой в гомогенной систееме либо с активным центром в гетерогенной системе. Координирование с соседним центром приводит к образованию биядерного комплекса с ацетилацетонатными лигандами мостиковой ко-

Рис. 4. Сравнение орбитальной плотности ВЗМО мономера (*a*) и мостикового димера (*б*).

ординации. В качестве примера рассмотрим образование биядерных комплексов (мостиковых олигомеров) меди и марганца и биядерных разнометальных комплексов MnCu(AA)₄.

Так же, как и для меди, были рассчитаны энергетические характеристики и распределение электронной плотности мономеров (закрытой и открытой форм) и биядерных мостиковых комплексов.

На рис. 4 показано распределение электронной плотности ВЗМО мономера и мостикового димера марганца. Расчет показывает, что граничная орбиталь димера образуется путем комплементарного взаимодействия ВЗМО ацетилацетонатов марганца, активированных раскрытием хелатного цикла (см. рис. 3, δ и 4, δ). В табл. 3 приведены расчетные характеристики замкнутой и открытой форм ацетилацетоната марганца, мостиковых димеров меди и марганца, а также биядерного мостикового комплекса меди и марганца.

Из результатов расчетов нетрудно оценить ΔH_в — теплоту образования биядерного комплекса. Для комплексов марганца эта величина составляет 377.26, меди — -1185.5, биметального комплекса меди и марганца — -502.8 кДж/моль. Это свидетельствует о том, что термодинамически образование мостиковых структур выгодно, однако для осуществления этого процесса от стадии раскрытия цикла до полимеризации необходимо преодолеть энергетический барьер, высота которого определяется путем прохождения этой реакции. Зарядовое распределение в биядерном комплексе соизмеримо с перераспределением зарядов на атоме вдоль координаты раскрытия хелатного цикла. Поэтому даже в мостиковых олигомерах два атома кислорода мостикового β-дикетона неравноценны. И явно можно в каждом из них отличить "свой" кислород кетогруппы от "соседнего" по величине заряда на атоме.

Подобные тенденции наблюдаются для всех рассчитанных β -дикетонатных комплексов металлов. В олигомере состояние лигандов однородных β -дикетонатов металлов не одинаково и зависит от их положения в олигомерной цепочке. Различают концевые лиганды, не выполняющие мостиковую функцию, и внутренние, мостиковые, лиганды. Отличается также и характер связей в координационных центрах в зависимости от того, где находится атом металла — ближе к концевому лиганду или координационный центр образован исключительно мостиковыми лиган-

Таблица З

Расчетные характеристики ацетилацетонатов марганца и биядерных комплексов марганца и меди

Параметр	ы Mn AA ₂	Ν	Mn AA ₂ -pac- крытый		Mn_2AA_4	
<i>Ег</i> , кДж/молн	-98719.21		-98797.	11	-19752	28.47
E_{h}	-7913.79		-7991.6	i9	-1591′	7.623
H_{f}^{ν}	-5169.53		-5247.4	.3	-10429	9.095
$q(\mathbf{M})$	0.443		-0.094	4	0.43	80
<i>q</i> (O)	-0.405	-0.	405 -	-0.231	-0.460	-0.419
$q(C_{\beta})$	0.374	0.	386	0.275	0.374	0.396
$q(C_{\alpha}^{P})$	-0.218	-0.	221 -	-0.178	-0.223	-0.297
$q(\mathbf{C}_{\gamma})$	-0.293	-0.	225	0.005	-0.313	-0.285
$q(C_{\beta})$	0.374	0.	383	0.211	0.377	0.379
$q(C_{\alpha}')$	-0.220	-0.	221 -	-0.204	-0.221	-0.228
<i>q</i> (O)	-0.404	-0.	396 -	-0.245	-0.416	-0.424
Пара- метры	Cu ₂ AA ₄			Cu	Mn AA ₄	
$E_F,$	-245642.5	3		-22	1370.25	
Е.	-16705.85			-16	096.48	
$\frac{L_b}{H_c}$	-11191.32			-10	594.95	
$q(\mathbf{M})$	-0.212		Mn	-0.076	Cu -	-0.125
q(0)	-0.426 -0).449	-0.405	-0.35	9 -0.369	-0.035
$q(C_{\beta})$	0.406 ().385	0.388	0.38	0 0.380	0.376
$q(\mathbf{C}_{\alpha}^{P})$	-0.220 -0	0.284	-0.222	-0.21	1 -0.223	-0.212
$q(\tilde{C_{\gamma}})$	-0.320 -0).225	-0.339	-0.19	9 -0.222	-0.106
$q(C'_{\beta})$	0.494 ().528	0.388	0.37	8 0.335	0.410
$q(C_{\alpha}^{r})$	-0.193 -0	0.281	-0.223	-0.214	4 –0.301	-0.222
q (O)	-0.351 -0	0.281	-0.401	-0.06	7 –0.329	-0.318

дами. Предварительная оценка таких различий проводилась методом молекулярной механики.

Методом молекулярной механики ММ+ проведены расчеты 23 различных олигомеров, отличающихся атомами металла и способом их координирования. В частности, рассчитана оптимальная геометрическая структура тетрамеров Со, димеров Сг, Си и Fe, тримеров Mn, Ni и Zn и гексамеров Fe. В качестве лиганда во всех случаях использовали 2,4-пентандион.

Показано, что образование олигомеров при мостиковой координации с помощью раскрытого хелатного цикла не имеет пространственных затруднений и напряжений. Установлены устойчивые различия в длинах связей мостиковых и концевых лигандов. Анализ оптимизированных величин длин связей в олигомерных формах различных металлов, полученных мостиковым координированием исходных мономерных форм, тип координации которых определяют координационное число и число лигандов, показал, что для мостиковых лигандов длины связей С–С лигандного скелета выше, чем для концевых. Порядок величин этого различия составляет 0.01 Å.

Квантово-химическое исследование и расчеты методом молекулярной механики β-дикетонатных комплексов различных металлов и кобальта показали, во-первых, возможность внутримолекулярного превращения, при котором лиганд переходит к монодентатному координированию, координационный узел открывается стерически и лепесток, деформированной в результате такого превращения орбитали, расширяется в область телесного угла раскрытия. Это является предпосылкой для образования мостиковой связи посредством "раскрытого" лиганда и образования одно- и разнометальных полиядерных комплексов, способных образовывать цепочки различной длины (в зависимости от количества атомов металла), замкнутые (без терминальных, немостиковых лигандов) и пространственные конструкции. Расчет показывает термодинамическую допустимость образования таких комплексов.

Синтез биядерных анионных комплексов типа NaLnL₄, где Ln = Ce, Nd, Eu, Er; L = AA, TFA, GFA. Для синтеза NaLn(AA)₄ брали 2.5 ммоль ацетилацетоната редкоземельного элемента, растворя-

ли в кипящей смеси 50 мл 99 %-го этанола и 10 мл бензола (х.ч.). К этому раствору при постоянном помешивании приливали свежеприготовленный раствор Na(AA) (2.5 ммоль в 10 мл 99 %-го этанола). Образующийся осадок комплекса отфильтровывали, промывали абсолютным этанолом и сушили на воздухе.

 $NaLn(TFA)_4$ и $NaLn(GFA)_4$ синтезировали в среде малополярных растворителей в отсутствие воды, что позволяет сдвинуть равновесие (1) влево и получить индивидуальные тетракис-хелаты с достаточным выходом:

 $NaLn(GFA)_4 \leftrightarrow Ln(GFA)_3 + Na(GFA)$. (1)

Реакция представляет собой гетерогенный процесс и осуществляется по схеме:

$$4Na(GFA) + LnX_3 \leftrightarrow 3NaXH \downarrow + + NaLn(GFA)_4, \qquad (2)$$

где $X = Cl^{-}, NO_{3}^{-}.$

При этом NaGFA получали кипячением раствора HGFA в среде малополярных растворителей с NaOH. В качестве растворителя использовали гексан, бензол, хлороформ. После полного растворения NaOH в полученную смесь вводили соль РЗЭ и продолжали кипятить до полного ее растворения. Через 1—2 ч после растворения соли лантаноида наблюдалось выпадение NaX в осадок. После отделения осадка NaX фильтрат упаривали до начала появления кристаллического осадка и оставляли на двое суток для окончательного его созревания. Полученное соединение очи-

щали вакуумной сублимацией. Выход продукта составлял 60—75 %, в зависимости от характера соли РЗЭ. Полученные комплексные соединения были исследованы методами ИК-спектроскопии и термогравиметрии. Данные приведены в табл. 4 и 5.

Исследование термических свойств тетракисхелатов NaLnL₄ показало, что характер их термической диссоциации аналогичен характеру разложения соответствующих трисхелатов. Механизм разложения тетракисацетил- и трифторацетилацетонатов можно представить следующим образом:

 $NaLn(AA)_4 \rightarrow Ln(Ac)_2(AA) \rightarrow Ln_2O_2CO_3;$ $NaLn(TFA)_4 \rightarrow LnOH(Ac)_2 \rightarrow Ln_2O_2CO_3.$

Тетракисфторацетилацетонаты хорошо сублимируются на воздухе без разложения при 180-220 °C и разлагаются при температуре выше 250 °C. Синтезированные биядерные анионные комплексы сублимируются без разложения при температурах 150-250 °C и могут быть использованы в качестве летучих прекурсоров.

Синтез биядерных комплексов, основанный на ионном обмене в неполярных апротонных растворителях. Все синтезы на основе ионного обмена имеют общую черту — равновесие реакции смещается вправо, вследствие образования соединения с низкой растворимостью или большой устойчивостью в растворе. Молекулы растворителя являются слабыми донорами электронной пары. Для синтеза соединений со связью металл-металл можно использовать галогенсодержащие комплексы, которые вступают в реак-

Отнесение полос в ИК-спектрах комплексов NaNd(AA)4, NaNd(TFA)4, NaNd(GFA)4

	Частота, см ⁻¹		
NaNd(AA) ₄	NaNd(TFA) ₄	NaNd(GFA) ₄	Отнесение
455	475	470	Σν М-О, скелетные
520	490	535	колебания хелатного
			кольца
665	730	670	Σν C-CH ₃ , ν M-O
1380	1250	1250	v _s C–C
	1370		$\delta_{s} CH_{3}, \delta CF_{3}$
1520	1510	1500	$v_{as}C-O$
1550	1560	1565	v_{as} C–C
1570	1575	1610	v _s C–O
			5

Таблица 5

Термическая устойчивость координационных соединений NaLn(GFA)₄

Субли- мация	Полиморфные превращения	Разложение		
°C				
180	225	Выше 250		
190	250	~ 300		
210	250	~ 300		
190	240	~ 300		
	Субли- мация 180 190 210 190	Субли- мацияПолиморфные превращения°C180225190250210250190240		

цию обмена с анионным комплексом.

Для синтеза TiLa(AA)₆Cl и TiLa₂(AA)₁₀ в качестве исходных соединений нами были взяты анионный комплекс натрия с тетракисацетилацетонатом лантана и дихлорбисацетилацетонат титана. Реакцию проводили в среде тетрагидрофурана (соотношение исходных реагентов 1:1).

$$Ti(AA)_2Cl_2 + NaLa(AA)_4 \rightarrow TiLa(AA)_6Cl + + NaCl\downarrow.$$
(3)

При избытке NaLa(AA)₄ получали TiLa₂(AA)₁₀. Выпавший осадок NaCl отфильтровывали, фильтрат упаривали до появления осадка и оставляли на двое суток. Осадок сушили в вакуумном сушильном шкафу.

Полученные соединения исследованы ИК-спектроскопически и термогравиметрически; проведен их элементный анализ. На рис. 5 показана дериватограмма комплекса TiLa₂(AA)₁₀.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2006. Т. 72, № 2

Рис. 5. Дериватограмма комплекса TiLa₂(AA)₁₀.

Кривую потери массы можно условно разделить на три области. В первой области при 60-220 °С проходит, по-видимому, сублимация комплекса, сопровождающаяся небольшим эндоэффектом и потерей массы до 45 %. В области температур 240—250 °С практически не наблюдается потери массы, однако фиксируется значительный экзоэффект. Можно предположить, что при этих температурах комплекс перестраивается с образованием трисацетилацетоната лантана и хлорида трисацетилацетоната титана. При дальнейшем повышении температуры вначале происходит разложение дикетонатного комплекса РЗЭ при 340 °С, сопровождающееся экзоэффектом, а при 450 °С разлагается дикетонатный комплекс титана. Эти процессы протекают с потерей массы, соответственно 19 и 11 %. Из анализа данной дериватограммы можно заключить, что синтезированный комплекс может быть использован в качестве сублимирующего прекурсора до температур порядка 200 °С.

Нами были сняты ИК-спектры В-дикетонатных комплексов лантана (III) и титана (IV), затем биметальных комплексов этих металлов (табл. 6). ИК-спектроскопическое исследование подтверждает образование новых биметальных комплексов. Кроме того, на основании анализа спектров можно сделать некоторые предположения о строении комплексов, о способе координации ацетилацетона к центральным ионам металлов. Положение, интенсивность и форма полос в ИК-спектрах изучаемых комплексов имеют схожий характер. Однако наблюдаются новые полосы, а также изменения положений отдельных полос, обусловленные изменениями в строении координационного узла комплексов. В ИК-спектре TiLa₂(AA)₁₀ такие изменения присутствуют. Полосы валентного колебания связи М-О смещаются в коротковолновую область на 5—15 см⁻¹ и их интенсивность возрастает. Смещение претерпевают также полосы, отнесенные к колебаниям связи С–С и С–О. В области 1600—1700 см⁻¹ ИК-спектра биметального комплекса появляются интенсивные полосы, отнесенные нами к валентным колебаниям двойной связи С=О. Можно предположить, что в данном комплексе β-дикетонатный лиганд координируется к металлу различными способами — он выступает как мостиковый, бидентатно и монодентатно координируемый. Поэтому в ИК-спектре TiLa₂(AA)₁₀ (область 1250—1700 см⁻¹) наблюдается большее количество полос, отнесенных к колебанию связей С–С и С–О. Вопрос о наличии связи М–М довольно сложный и требует дальнейших исследований.

Раскрытие хелатного цикла в β-дикетонатных комплексах приводит к образованию промежуточного комплекса, в котором один из лигандов переходит к монодентатному координированию. Такое состояние обладает большой активностью за счет увеличения телесного угла неэкранированной области координационного узла и увеличения лепестка валентно-активной орбитали в этой области. Это состояние является метастабильным и активированный таким образом комплекс взаимодействует с таким же активиро-

Т	а	б	Π	и	п	а	6
1	a	U	11	¥1	ц	a	0

Отнесение полос в ИК-спектрах NaLa(AA)4, Ti(AA)2Cl2, TiLa2(AA)10

1	070202000		
NaLa(AA) ₄	Ti(AA) ₂ Cl ₂	TiLa ₂ (AA) ₁₀	Отнесение
415 442 545 665 729 931 1022 1185 1280 1410 1455	430 540 660 935 1034 1192 1280 1380 1470	445 450 550 560 668 735 1025 1070 1098 1250 1315 1400 1465 1480	Σν M-O, ске- летные колеба- ния хелатного кольца Σν C-CH ₃ , ν M-O ρ CH ₃ ν _s C-C + δ _s CH ₃ ν _{as} C-O
1530 1585	1540 1580	1535 1580 1660 1710	ν _{as} C–C ν _s C–O ν C=O

ванным комплексом, комплексом другого металла или активным центром другой природы. В результате образуются полиядерные комплексы с мостиковой функцией β-дикетонатного лиганда. Расчет показывает, что цепочки полиядерных комплексов могут иметь произвольную длину, замыкаться, содержать атомы металлов разных групп.

Это является основой проектирования конструкционных элементов в современных молекулярных технологиях получения новых материалов. Полиядерные комплексы с различными атомами металлов могут быть конструктивными элементами для наномасштабного осаждения или имплементации при построении объектов молекулярной электроники и т.д.

Полиядерные кольца из однометальных олигомеров, в которых магнитные моменты ядер металлов ориентированы определенным образом (при синтезе в электрическом или магнитном полях) сами могут быть конструкционными блоками в нанотехнологиях. Так, кольцевой олигомер, в котором магнитный момент металлов ориентирован по кольцу, может при достаточных размерах выполнять функции ионного затвора, разделяющего положительно и отрицательно заряженные ионы. Это может помочь в создании новых эффективных химических источников тока.

Линейные и пространственные конструкции, полученные в результате использования мостиковой функции раскрытых хелатных циклов, могут быть рассчитаны, спроектированы и реализованы для будущих нано-технологических нужд.

РЕЗЮМЕ. Розглянуто розкриття хелатного циклу в β-дикетонатах металів. Методом MM+ і ZINDO/1

Институт общей и неорганической химии им. В.В. Вернадского НАН Украины, Киев

проведені систематичні розрахунки оптимальної структури й особливостей електронної будови олігомеров різних металів. Розкриття ліганду є передумовою для мостикового координування й одержання одно- і різнометальних поліядерних комплексів, здатних утворювати поліядерні ланцюжки різної довжини, замкнуті та просторові конструкції. Показано термодинамічну допустимість утворення таких комплексів. Синтезовано і досліджено біядерні аніонні комплекси типу NaLn₄, TiLa(AA)₆Cl і TiLa₂(AA)₁₀ (де Ln = Ce, Nd, Eu, Er; L = AA, TFA, GFA).

SUMMARY. A chelate cycle opening in β -diketonates of metals were studied. The systematic calculation of optimum frame and features of an electronic structures of different metal oligomers by the molecular mechanics MM+ and quantum-chemical method ZINDO/1 carried out. Ligand cycle opening is the reason for bridge coordination and formation single and different-metal of polynuclear complexes which are capable to derivate of a chain of different length, self contained and space frames. The thermodynamic admissibility of formation of such complexes is demonstrated. The anionic binuclear complexes such as NaLnL₄ TiLa(AA)₆Cl and TiLa₂(AA)₁₀(where Ln = Ce, Nd, Eu, Er; L = AA, TFA, GFA), are synthesized and studied.

- 1. Школьникова Л.М., Порай-Кошиц М.А. // Итоги науки и техники. Кристаллохимия. -1982. -16. -С. 117—225.
- 2. Nonhebel D.C. // J. Chem. Soc. -1963. -№ 1. -P. 738—742.
- 3. West R. // J. Amer. Chem. Soc. -1958. -80, № 13. -P. 3246—3249.
- Герасимчук А.И., Мазуренко Е.А., Волков С.В., Железнова Л.И. // Координац. химия. -1987. -13, № 10. -С. 1313—1317.
- 5. Сиренко Н.С., Львов И.Б., Вовна В.И. // Там же. -2000. -26, № 10. -С. 773—778.
- 6. Сиренко Н.С., Львов И.Б., Вовна В.И. // Журн. структурн. химии. -2002. -43, № 5. -С. 786—793.

Поступила 31.03.2004

УДК 546.66'883

Ю.О. Тітов, Н.М. Бєлявіна, М.С. Слободяник, М.В. Тимошенко ОСОБЛИВОСТІ МЕХАНІЗМУ УТВОРЕННЯ ТА КРИСТАЛІЧНА СТРУКТУРА М^І-МОДИФІКАЦІЙ LnTaO₄

Встановлені основні риси механізму синтезу ортотанталатів LnTaO₄ (Ln = Eu—Lu) із структурою типу M¹-фергюсоніту з аморфних систем сумісно осаджених гідроксидів. Показано, що їх утворення відбувається шляхом незворотної трансформації первинної кристалічної фази Ln_{0.5}Ta_{0.5}O₂ зі структурою типу

© Ю.О. Тітов, Н.М. Бєлявіна, М.С. Слободяник, М.В. Тимошенко, 2006