

https://doi.org/10.15407/dopovidi2022.02.075 УДК 548.312.3 **Ю.О. Тітов¹**, https://orcid.org/0000-0001-9900-3751 **М.С. Слободяник¹**, https://orcid.org/0000-0003-2684-9806 **Н.Ю. Струтинська¹**, https://orcid.org/0000-0001-9738-9689 **В.В. Чумак²**, https://orcid.org/0000-0001-5892-3703

¹ Київський національний університет ім. Тараса Шевченка ² Житомирський державний університет ім. Івана Франка E-mail: tit@univ.kiev.ua

Синтез і кристалічна структура шаруватих перовськітів SrLa_{1-x}Gd_xScO₄

Представлено членом-кореспондентом НАН України М.С. Слободяником

Визначені умови ізовалентного заміщення атомів лантану на атоми гадолінію в шаруватій перовськітоподібній структурі скандатів SrLa_{1-x}Gd_xScO₄ ($0 \le x \le 0,8$). Методом Рітвельда визначена ромбічна (просторова група Abma) кристалічна структура фаз складу SrLa_{1-x}Gd_xScO₄ зі ступенями заміщення атомів лантану 0,2, 0,4, 0,6 та 0,8. Основними структурними одиницями SrLa_{1-x}Gd_xScO₄ є двовимірні перовськітоподібні блоки завтовшки в один шар сполучених вершинами деформованих октаедрів ScO₆. Суміжні блоки розділені шаром поліедрів (Sr,La,Gd)O₉. Безпосередні зв'язки Sc-O-Sc між октаедрами сусідніх блоків відсутні. Блоки зв'язані між собою за допомогою -O-(Sr,La,Gd)-O- зв'язків. Аналіз кристалохімічних параметрів синтезованих фаз показав, що внаслідок ізовалентного заміщення атомів лантану на менші атоми гадолінію в шаруватій структурі SrLa_{1-x}Gd_xScO₄ відбувається поступове зменшення довжини міжблокових зв'язків (Sr,La,Gd)-O2 (з 0,2378(7) нм при x = 0 до 0,230(1) нм при x = 0,8). Зменшення відстані між перовськітоподібними блоками наближає будову двовимірної шаруватої перовськітоподібної структури SrLa_{1-x}Gd_xScO₄ до будови тривимірного перовськіто області твердих розчинів SrLa_{1-x}Gd_xScO₄ зиаруватою перовськітоподібною структурою ($0 \le x \le 0,8$) та відсутність сполуки SrGdScO₄. Проведено зіставлення особливостей будови шаруватої структурою ($0 \le x \le 0,8$) та відсутність сполуки SrGdScO₄. Проведено зіставлення особливостей будови шаруватої структурою ($0 \le x \le 0,8$) та відсутність сполуки SrGdScO₄. Проведено зіставлення особливостей будови шаруватої видувають сполуки SrLa_{1-x}Gd_xScO₄ та Sr₄.

Ключові слова: сполуки типу А_{n+1}B_nO_{3n+1}, шарувата перовськітоподібна структура, міжблокові відстані, деформація поліедрів.

Оксидним сполукам сімейства $A_{n+1}B_nO_{3n+1}$ із шаруватою перовськітоподібною структурою (ШПС) притаманний ряд практично важливих електрофізичних, каталітичних, іонообмінних та оптичних властивостей [1—9].

Одним із дієвих способів впливу на будову і властивості оксидних сполук є ізоморфні заміщення атомів у різних кристалографічних позиціях їх структури. Яким саме спо-

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2022. № 2: 75—82

Цитування: Тітов Ю.О., Слободяник М.С., Струтинська Н.Ю., Чумак В.В. Синтез і кристалічна структура шаруватих перовськітів SrLa_{1-x}Gd_xScO₄. *Допов. Нац. акад. наук Укр.* 2022. № 2. С. 75—82. https://doi.org/10.15407/dopovidi2022.02.075

Puc. **1.** Залежності параметра c(a) та об'єму (b) елементарних комірок фаз із ШПС складу SrLa_{1-x}Gd_xScO₄ від ступеня заміщення атомів лантану (значення x)

собом цей фактор обмежує інтервали існування ізоморфнозаміщених твердих розчинів, можна буде встановити лише після визначення особливостей будови їх кристалічної структури.

В одношаровій структурі скандатів SrLnScO₄ (Ln = La – Eu) [10, 11] до складу міжблокових поліедрів AO₉ входять атоми стронцію та рідкісноземельні елементи (P3E). На сьогодні встановлена протяжність області з ШПС та особливості будови одношарових фаз Sr_{1-x}Ca_xLaScO₄ [12], а аналогічні дані щодо заміщення в ШПС SrLaScO₄ атомів лантану на менші за розміром атоми P3E відсутні.

Мета даної роботи — встановлення меж ізовалентного заміщення атомів лантану на атоми гадолінію в одношаровому скандаті SrLaScO₄, визначення будови ШПС фаз SrLa_{1-r}Gd_rScO₄ та пошук кореляцій між ними.

Синтез скандатів SrLa_{1-x}Gd_xScO₄ проводився шляхом спільної кристалізації (випаровування при інтенсивному перемішуванні) суміші водних розчинів нітратів Sr, La, Gd та Sc зі співвідношенням Sr : La : Gd : Sc = 1 : 1 - x : x : 1 з подальшою термообробкою одержаного продукту на газовому пальнику для видалення основної маси оксидів нітрогену. Отриману таким способом шихту перетирали, пресували у вигляді дисків та піддавали термообробці при 1570 К до досягнення незмінного фазового складу. Як вихідні використані нітрати Sr, La, Gd та Sc марок "хч".

Рентгенівські дифракційні спектри полікристалічних зразків записано на дифрактометрі Shimadzu XRD-6000 у дискретному режимі (крок сканування 0,02°, експозиція в точці 5 с, інтервал кутів 2 θ = 20÷70°) на мідному фільтрованому (дуговий графітовий монохроматор перед лічильником) Си K_{α} випромінюванні. Кристалічна структура одержаних зразків визначена методом Рітвельда. Первинна обробка дифракційних спектрів і структурні розрахунки виконано з використанням апаратно-програмного комплексу як описано в [13].

Рентгенофазовий аналіз термооброблених зразків спільнозакристалізованих нітратів Sr, La, Gd та Sc показав, що дифрактограми SrLa $_{1-x}$ Gd $_x$ ScO $_4$ з 0 < $x \le 0.8$ аналогічні дифрактограмі незаміщеного скандату SrLaScO $_4$ із ШПС і проіндексовані в ромбічній сингонії у відповідності з просторовою групою (*Abma*) SrLaScO $_4$ [10]. Характер залежностей пара-

Рис. 2. Експериментальна (кружечки), розрахована (суцільна лінія) та різницева (нижня лінія) дифрактограми $SrLa_{0,6}Gd_{0,4}ScO_4$ (Си K_{α} -випромінювання)

Таблиця	1. Кристалов	графічні да	ані для SrLa	1-rGdrScO4	(пр. гр. Abma	(№ 6402))
---------	--------------	-------------	--------------	------------	---------------	-----------

x	Періоди кристалічної гратки, нм	Незалежні відбиття	Загальний ізотропний <i>В</i> -фактор, нм ²	Параметр текстури	Фактор недосто- вірності, <i>R_w</i>
0[10]	a = 0,57615(1) b = 0,57499(1) c = 1,24674(2)	_	_	_	0,042
0,2	a = 0,5753(1) b = 0,5751(2) c = 1,2434(2)	43	$0,41(1)\cdot 10^{-2}$	1,36(4) Вісь текстури 001	0,046
0,4	a = 0,5750(2) b = 0,5744(2) c = 1,2378(4)	43	$0,76(1) \cdot 10^{-2}$	1,41(4) Вісь текстури 001	0,054
0,6	a = 0,5750(3) b = 0,5717(3) c = 1,2330(8)	43	$1,1(1)\cdot 10^{-2}$	1,51(3) Вісь текстури 001	0,048
0,8	a = 0,5742(2) b = 0,5710(2) c = 1,2291(4)	43	$1,59(8) \cdot 10^{-2}$	1,68(5) Вісь текстури 001 1,25(3) Вісь текстури 010	0,044

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2022. № 2

метрів та об'ємів елементарних комірок фаз із ШПС складу $SrLa_{1-x}Gd_xScO_4$ від ступеня заміщення атомів лантану (рис. 1) відповідє закону Вегарда, що дає підставу розглядати їх як обмежений ряд твердих розчинів.

Зразок валового складу SrLa_{0,1}Gd_{0,9}ScO₄ крім фази з ШПС містить домішку фази зі структурою типу CaFe₂O₄. Багатофазний зразок валового складу SrGdScO₄ містить фазу зі структурою типу CaFe₂O₄, фазу зі структурою типу перовськіту та домішкові кількості неідентифікованих фаз.

Первинна оцінка координатних параметрів атомів для початкових моделей структур SrLa_{1-x}Gd_xScO₄ проведена за відомими структурними даними для SrLaScO₄ із одношаровою ШПС [10] (пр. гр. *Abma* (№ 6402)). Зіставлення експериментальних і розрахованих для таких моделей структури значень інтенсивності показало їх задовільну збіжність. Результати уточнення початкових моделей структур SrLa_{1-x}Gd_xScO₄ наведено в табл. 1, 2 і на рис. 2, 3. Уточнений у результаті розрахунків структури склад фаз у межах похибки визначення відповідає експериментально заданому.

Структура фаз SrLa_{1-x}Gd_xScO₄ з 0 < $x \le 0,8$ є типовою для одношарових сполук сімейства A_{n+1}B_nO_{3n+1} і подібна до ШПС вихідної сполуки SrLaScO₄. Її основними структурними одиницями є двовимірні (безмежні в напрямках осей X і Y) перовськітоподібні блоки

Атом	Г	Іозиція	X		Y	Z		
(Sr,Ln)	(Sr,Ln) 8f		X _(Sr,Ln)			0	Z _(Sr,Ln)	
Sc	4a		0			0	0	
O(1)	8e		0,25			0,25	$Z_{0(1)}$	
O(2)	O(2) 8f		X ₀₍₂₎			0	Z ₀₍₂₎	
Ступінь	Αποιι	Заповнення	Координатні параметри					
заміщення х	ATOM		X _(Sr,Ln)	Z _(Sr,Ln)	Z ₀₍₁₎	X ₀₍₂₎	Z _{O(2)}	
0 [10]	Sr La	0,5 0,5	0,0137(3)	0,35653(6)	0,0154(9)	0,435(2)	0,3307(6)	
0,2	Sr La Gd	0,5 0,4 0,1	0,0154(2)	0,3552(3)	0,016(2)	0,438(3)	0,330(2)	
0,4	Sr La Gd	0,5 0,3 0,2	0,0120(2)	0,3560(3)	0,016(2)	0,434(3)	0,329(3)	
0,6	Sr La Gd	0,5 0,2 0,3	0,0134(3)	0,3533(2)	0,015(2)	0,444(3)	0,331(2)	
0,8	Sr La Gd	0,5 0,1 0,4	0,0162(2)	0,3512(2)	0,018(3)	0,446(3)	0,333(3)	

Таблиця $2. Координати атомів у структурах <math>SrLa_{1-x}Gd_xScO_4$

Рис. 3. Кристалічна структура SrLa_{0,8}Gd_{0,2}ScO₄ у вигляді октаедрів ScO₆ та атомів Sr, La, Gd (кружечки) (*a*); будова міжблокової границі в ШПС SrLa_{0,4}Gd_{0,6}ScO₄ у вигляді октаедрів ScO₆ та атомів Sr, La, Gd (сірий кружечок) (*б*)

завтовшки в один шар октаедрів ScO₆, які в напрямку діагоналі площини XY зміщені один відносно одного на половину ребра перовськітового куба (див. рис. 3, *a*). Сусідні перовськітоподібні блоки розділені міжблоковим шаром з деформованих поліедрів (Sr,La,Gd)O₉ таким чином, що безпосередній зв'язок між октаедрами ScO₆ прилеглих перовськітоподібних блоків відсутній, а з'єднання блоків між собою досягається за допомогою міжблокових зв'язків -O-(Sr,La,Gd)-O- (див. рис. 3, *б*).

У найближче оксигенове оточення атомів (Sr,La,Gd) (довжина відстаней (Sr,La,Gd)–O $\leq 0,334$ нм) входять вісім атомів оксигену (чотири O1, чотири O2) того ж блока, що й атоми (Sr,La,Gd), а дев'ятий атом оксигену (O2) є також атомом октаедра ScO₆ суміжного перовськітоподібного блока (див. рис. 3, δ). Довжина цього міжблокового зв'язку (Sr,La,Gd)–O2 є мінімальною в поліедрі (Sr,La,Gd)O₉ (0,235(2)–0,230(1) нм) (табл. 3).

Amore	<i>d</i> , нм						
Атоми	SrLaScO ₄ [10]	<i>x</i> = 0,2	<i>x</i> = 0,4	<i>x</i> = 0,6	<i>x</i> = 0,8		
(Sr,Ln) – 102*	0,2378(7)	0,235(2)	0,233(1)	0,231(2)	0,230(1)		
(Sr,Ln) – 1O2	0,2445(9)	0,245(2)	0,245(2)	0,249(3)	0,248(2)		
(Sr,Ln) – 2O1	0,2630(7)	0,264(3)	0,262(2)	0,264(1)	0,264(2)		
(Sr,Ln) – 2O1	0,2801(8)	0,281(2)	0,280(2)	0,280(2)	0,284(2)		
(Sr,Ln) – 2O2	0,2909(1)	0,291(2)	0,291(3)	0,288(3)	0,287(2)		
(Sr,Ln) – 1O2	0,3353(9)	0,334(3)	0,334(3)	0,329(2)	0,328(2)		
(Sr,Ln) – O _{cep}	0,276	0,276	0,275	0,275	0,275		
Δ (SrLn)O ₉	$99\cdot 10^{-4}$	$99\cdot 10^{-4}$	$103\cdot 10^{-4}$	$91 \cdot 10^{-4}$	$92 \cdot 10^{-4}$		
Sc - 401	0,2044(1)	0,204(1)	0,204(2)	0,204(1)	0,204(2)		
Sc - 2O2	0,2145(7)	0,214(2)	0,215(2)	0,211(2)	0,208(1)		
$Sc - O_{cep}$	0,208	0,207	0,208	0,206	0,205		
$\Delta \operatorname{ScO}_6$	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$6 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$1 \cdot 10^{-4}$		

Taблиця 3. Міжатомна відстань (d), ступінь деформації (D) поліедрів (Sr,La)O₉, (Sr,La,Gd)O₉ та ScO₆ в кристалічних структурах SrLaScO₄ i SrLa_{1-x}Gd_xScO₄

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2022. № 2

Puc. 4. Залежність довжини міжблокового зв'язку Sr,Ln—O2 в ШПС SrLa_{1-x}Gd_xScO₄ від ступеня заміщення атомів лантану (значення x)

Аналіз особливостей будови ШПС SrLaScO₄ [10] і фаз SrLa_{1-x}Gd_xScO₄ з 0 < $x \le 0,8$ показав, що входження в A-позицію ШПС SrLaScO₄ менших, ніж атом лантану, атомів гадолінію призводить до послідовного зменшення довжини міжблокового зв'язку (Sr,La,Gd)–O2 з 0,2378(7) нм (x = 0) до 0,230(1) нм (x = 0,8) (див. табл. 3).

Зближення відокремлених один від одного перовськітоподібних шарів октаедрів ScO_6 зі збільшенням вмісту атомів гадолінію наближає двовимірну будову ШПС фаз $SrLa_{1-x}Gd_xScO_4$ до тривимірної оксигенооктаедричної структури. Дійсно, у разі перевищення межі ізовалентного заміщення атомів лантану однією із основних фаз багатофазного зразка є фаза зі структурою типу перовськіту, в якій всі октаедри зв'язані спільними вершинами.

Слід відзначити, що мінімальне значення середнього кристалічного іонного радіуса атомів А-позиції з координаційним числом IX для фаз $SrLa_{1-x}Gd_xScO_4$ становить 0,136 нм (фаза ($Sr,La_{0,2}Gd_{0,8})ScO_4$) і виявилось рівним такому для крайнього члена ряду скандатів $SrLnScO_4$ — $SrEuScO_4$. Це дає можливість для попередньої оцінки протяжності області твердих розчинів з ШПС у решті систем типу $SrLn_{1-x}Ln_x^IScO_4$ ($Ln = La - Sm, Ln^I = Tb - Lu$).

Зіставлення результатів дослідження особливостей заміщення в ШПС SrLaScO₄ атомів La на менші атоми Gd з такими для системи Sr_{1-x}Ca_xLaScO₄ [12] показало значно меншу область фаз з ШПС у Sr_{1-x}Ca_xLaScO₄ ($0 \le x \le 0,3$) порівняно з SrLa_{1-x}Gd_xScO₄ ($0 \le x \le 0,8$). Оскільки атоми Sr, La та Gd займають одну й ту саму позицію в поліедрах AO₉ на межі перовськітоподібного блока, вірогідною причиною такої відмінності може бути дещо більша різниця у величинах кристалічного радіуса іонів Sr²⁺ і Ca²⁺ (0,013 нм), ніж між іонами La³⁺ та Gd³⁺ (0,0109 нм) [14]. Слід відзначити, що значення мінімальної відстані між блоками в ШПС Sr_{1-x}Ca_xLaScO₄ (0,226(1) нм) дещо менше, ніж у ШПС SrLa_{1-x}Gd_xScO₄ (0,230(1) нм). Послідовність змін відстані між перовськітоподібними блоками від ступеня заміщення атомів A-позиції в ШПС SrLa_{1-x}Gd_xScO₄ додатково відбувається деяке (з 98·10⁻⁴ до 127·10⁻⁴) збільшення ступеня деформації поліедрів (Sr,Ca)O₉ [12]. Вірогідною причиною цього є вищенаведена різниця в розмірах атомів Sr i Ca та La i Gd.

Таким чином, нами встановлені межі області фаз з ШПС у системі SrLa_{1-x}Gd_xScO₄ і визначена будова ШПС фаз з x = 0,2, 0,4, 0,6 та 0,8. Аналіз особливостей будови ШПС скандатів SrLa_{1-x}Gd_xScO₄ ($0 \le x \le 0,8$) дав можливість виявити основні закономірності впливу розмірів атомів РЗЕ на будову одношарової ШПС фаз SrLa_{1-x}Gd_xScO₄ та визначити фактори, які обмежують область фаз з ШПС. Одержані результати становлять інтерес для регулювання структурнозалежних властивостей матеріалів на основі скандатів РЗЕ SrLnScO₄.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. Александров К.С., Безносиков Б.В. Перовскиты. Настоящее и будущее. Новосибирск: Изд-во СО РАН, 2004. 231 с.
- 2. Schaak R.E., Mallouk T.E. Perovskites by design: a toolbox of solid-state reactions. *Chem. Mater.* 2002. **14**, № 4. P. 1455–1471. https://doi.org/10.1021/cm010689m
- 3. Nirala G., Yadav D., Upadhaya S. Ruddlesden-Popper phase A₂BO₄ oxides: Recent studes on structure, electrical, dielectric and optical properties. *J. Adv. Ceram.* 2020. **9**, № 2. P. 129–148. https://doi.org/10.1007/s40145-020-0365-x
- 4. Ding P., Li W., Zhao H., Wu C., Zhao L., Dong B., Wang S. Review on Ruddlesden–Popper perovskites as cathode for solid oxide fuel cells. *J. Phys. Mater.* 2021. **4**, № 2. 022002. https://doi.org/10.1088/2515-7639/abe392
- 5. Xiao H., Liu P., Wang W., Ran R., Zhou W., Shao Z. Ruddlesden-Popper perovskite oxides for photocatalysis-based water splitting and wastewater treatment. *Energy Fuels.* 2020. **34**, № 8. P. 9208-9221. https://doi.org/10.1021/acs.energyfuels.0c02301
- 6. Kim I.-S., Nakamura T., Itoh M. Humidity sensing effects of the layered oxides SrO·(LaScO₃)_n (n = 1,2,∞).
 J. Ceram. Soc. Jap. 1993. 101, Iss. 1175. P. 800–803. https://doi.org/10.2109/jcersj.101.800
- Titov Yu., Nedilko S.G., Chornii V., Scherbatskii V., Belyavina N., Markiv V., Polubinskii V. Crystal structure and luminescence of layered perovskites Sr₃LnInSnO₈. Solid State Phenomena. 2015. 230. P. 67–72. https://doi.org/10.4028/www.scientific.net/SSP.230.67
- 8. Kato S., Ogasawara M., Sugai M., Nakata S. Synthesis and oxide ion conductivity of new layered perovskite La_{1-x}Sr_{1+x}InO_{4-d}. *Solid state ionics*. 2002. **149**, № 1–2. P. 53–57. https://doi.org/10.1016/S0167-2738(02)00138-8
- Svensson G., Samain L., Biendicho J.J., Mahmoud A., Hermann R.P., Istomin S. Ya., Grins J. Crystal structure and coordination of B-cations in the Ruddlesden–Popper phases Sr_{3-x}Pr_x(Fe_{1.25}Ni_{0.75})O_{7-δ} (0 ≤ x ≤ 0.4). *Inorganics*. 2018. 6, № 3. P. 89. https://doi.org/10.3390/inorganics6030089
- Patel R., Simon C., Weller M.T. LnSrScO₄ (Ln = La, Ce, Pr, Nd and Sm) systems and structure correlations for A₂BO₄ (K₂NiF₄) structure types. J. Solid State Chem. 2007. 180. P. 349–359. https://doi.org/10.1016/j.jssc.2006.10.023
- 11. Тітов Ю.О., Білявина Н.М., Марків В.Я., Слободяник М.С., Краєвська Я.А., Ящук В.П. Синтез та кристалічна структура SrEuScO₄. Допов. Нац. акад. наук Укр. 2009. № 4. С. 158–163.
- 12. Тітов Ю.О., Білявина Н.М., Слободяник М.С., Чумак В.В. Зміни будови шаруватої структури скандату SrLaScO₄ при ізовалентному заміщенні атомів стронцію. *Допов. Нац. акад. наук Укр.* 2019. № 7 С. 59–65. https://doi.org/10.15407/dopovidi2019.07.059
- 13. Dashevskyi M., Boshko O., Nakonechna O., Belyavina N. Phase transformations in equiatomic Y-Cu powder mixture at mechanical milling. *Металлофиз. новейшие технол.* 2017. **39**, № 4. Р. 541-552. https://doi.org/10.15407/mfint.39.04.0541
- 14. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Cryst.* 1976. A32, № 5. P.751–767. https://doi.org/10.1107/S0567739476001551

Надійшло до редакції 15.11.2021

REFERENCES

- 1. Alexandrov, K. C. & Beznosikov, B. V. (2004). Perovskites. Present and future. Novosibirsk: Izd-vo SO RAN (in Russian).
- 2. Schaak, R. E. & Mallouk, T. E. (2002). Perovskites by design: a toolbox of solid-state reactions. Chem. Mater., 14, No. 4, pp. 1455-1471. https://doi.org/10.1021/cm010689m
- Nirala, G., Yadav, D. & Upadhaya, S. (2020). Ruddlesden-Popper phase A₂BO₄ oxides: Recent studes on structure, electrical, dielectric and optical properties. J. Advanced Ceramics, 9, No 2, pp. 129-148. https://doi.org/10.1007/s40145-020-0365-x
- 4. Ding, P., Li, W., Zhao, H., Wu, C., Zhao, L., Dong, B. & Wang, S. (2021). Review on Ruddlesden–Popper perovskites as cathode for solid oxide fuel cells. J. Phys. Mater., 4, No. 2, 022002. https://doi.org/10.1088/2515-7639/abe392
- Xiao, H., Liu, P., Wang, W., Ran, R., Zhou, W. & Shao, Z. (2020). Ruddlesden–Popper perovskite oxides for photocatalysis-based water splitting and wastewater treatment. Energy Fuels, 34, No. 8, pp. 9208-9221. https://doi.org/10.1021/acs.energyfuels.0c02301

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2022. № 2

- 6. Kim, I.-S., Nakamura, T. & Itoh, M. (1993). Humidity sensing effects of the layered oxides SrO·(LaScO₃)_n (n = 1,2,∞). J. Ceram. Soc. Jap., 101, No. 7. pp. 800-803. https://doi.org/10.2109/jcersj.101.800
- Titov, Yu., Nedilko, S. G., Chornii, V., Scherbatskii, V., Belyavina, N., Markiv, V. & Polubinskii, V. (2015). Crystal structure and luminescence of layered perovskites Sr₃LnInSnO₈. Solid State Phenomena, 230, pp. 67-72. https://doi.org/10.4028/www.scientific.net/SSP.230.67
- 8. Kato, S., Ogasawara, M., Sugai, M. & Nakata, S. (2002). Synthesis and oxide ion conductivity of new layered perovskite La_{1-x}Sr_{1+x}InO_{4-d}. Solid state ionics, 149, No. 1-2, pp. 53-57. https://doi.org/10.1016/S0167-2738(02)00138-8
- 9. Svensson, G., Samain, L., Biendicho, J. J., Mahmoud, A., Hermann, R. P., Istomin, S. Ya. & Grins, J. (2018). Crystal structure and coordination of B-cations in the Ruddlesden–Popper phases $Sr_{3-x}Pr_x(Fe_{1.25}Ni_{0.75})O_{7-\delta}$ ($0 \le x \le 0.4$). Inorganics, 6, No. 3, pp. 89. https://doi.org/10.3390/inorganics6030089
- Patel, R., Simon, C. & Weller, M. T. (2007). LnSrScO₄ (Ln = La, Ce, Pr, Nd and Sm) systems and structure correlations for A₂BO₄ (K₂NiF₄) structure types. J. Solid State Chem., 180, pp. 349-359. https://doi.org/10.1016/j.jssc.2006.10.023
- 11. Titov, Y. O., Belyavina, N. M., Markiv, V. Ya., Slobodyanik, M. S., Krayevska, Ya. A. & Yaschuk, V. P. (2009). Synthesis and crystal structure of SrEuScO₄. Dopov. Nac. akad. nauk Ukr., No. 4, pp. 158-163 (in Ukrainian).
- 12. Titov, Y. O., Belyavina, N. M., Slobodyanik, M. S. & Chumak, V. V. (2019). Changes of the slab structure constitution of scandate SrLaScO₄ at the isovalent substitution of strontium atoms. Dopov. Nac. akad. nauk Ukr., No. 7, pp. 59-65 (in Ukrainian). https://doi.org/10.15407/dopovidi2019.07.059
- Dashevskyi, M., Boshko, O., Nakonechna, O. & Belyavina, N. (2017). Phase transformations in equiatomic Y-Cu powder mixture at mechanical milling. Metallofiz. Noveishie Tekhnol., 39, No. 4, pp. 541-552. https:// doi.org/10.15407/mfint.39.04.0541
- 14. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., A32, No. 5, pp. 751-767. https://doi.org/10.1107/S0567739476001551

Received 15.11.2021

*Y.A. Titov*¹, https://orcid.org/0000-0001-9900-3751 *M.S. Slobodyanik*¹, https://orcid.org/0000-0003-2684-9806 *N.Yu. Strutynska*¹, https://orcid.org/0000-0001-9738-9689 *V.V. Chumak*², https://orcid.org/0000-0001-5892-3703 ¹ Taras Shevchenko National University of Kyiv

² Zhytomyr Ivan Franko State University

E-mail: tit@univ.kiev.ua

SYNTHESIS AND CRYSTAL STRUCTURE OF SLAB PEROVSKITES SrLa_{1-r}Cd_rScO₄

The isovalent substitution conditions of lanthanum by gadolinium atoms in slab perovskite-like structure of $SrLa_{1-x}Gd_xScO_4$ ($0 \le x \le 0.8$) scandates have defined. Orthorhombic (space group *Abma*) crystal structure of $SrLa_{1-x}Gd_xScO_x$ phases with the degree of lanthanum atoms substitution of 0.2, 0.4, 0.6, and 0.8 have determined using the Rietveld method. The main structural units of $SrLa_{1-x}Gd_xScO_4$ are two-dimensional perovskite-like blocks with a thickness of one slab of distorted ScO₆ octahedra joined by vertices. Neighboring blocks are separated by the slab of $(Sr,La,Gd)O_{q}$ polyhedra. There are no direct Sc-O-Sc bonds between the octahedra of adjacent blocks. Blocks are connected through -O-(Sr,La,Gd)-O- bonds. Analysis of the crystallochemical parameters of the synthesized phases has shown that, in the case of the isovalent substitution of lanthanum atoms by smaller gadolinium atoms in a slab structure of $SrLa_{1-x}Gd_xScO_4$, a gradual reduction of the length of (Sr,La,Gd)-O2 interblock bonds (from 0.2378(7) nm at x = 0 up to 0.230(1) nm at x = 0.8) takes place. Reducing the distance between perovskite-like blocks brings the constitution of the two-dimensional slab perovskite-like structure $SrLa_{1-x}Gd_xScO_4$ closer to the structure of three-dimensional perovskite, which ultimately leads to its destruction at x > 0.8 and gives the basis for the conclusion that this is the factor caused a limitation of area of $SrLa_{1-x}Gd_xScO_4$ ($0 \le x \le 0.8$) solid solutions with slab perovskite-like structure and the absence of $SrGdScO_4$ compound. The structural features of the slab structure of isovalently substituted samples of the $SrLa_{1-r}Gd_{r}ScO_{4}$ and $Sr_{1-r}Ca_rLaScO_4$ systems are compared.

Keywords: compounds of $A_{n+1}B_nO_{3n+1}$ type, slab perovskite-like structure, interblock distances, polyhedron deformation.