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The paper establishes an analog of well-known Novikof[’s theorem on the perceptron learning algorithm’s finite con-
vergence in linearly separated classes. We obtain a similar result concerning the nearest neighbor classification al-
gorithm in the case of compact classes in a general metric space for the case of non-intersecting classes. The learning
process consists of gradual modification of the algorithm in misclassification cases. The process is studied in the
deterministic setting. Classes are understood as compacts in complete metric space, and class separation is defined as
the non-intersection of compacts. The number of learning steps is bounded by the number of elements in some g-net
Jor the considered classes.
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F. Rosenblatt [1] developed one of the first learning machines (perceptron) for pattern recog-
nition and proposed an error correction method for its learning. When analyzing the percep-
tron’s work, V.M. Glushkov [2] emphasized the importance of obtaining rigorous mathematical
results regarding the learning process. One of such results is the well-known Novikoff theorem
[3] on the finite convergence of the learning process of a perceptron for linearly separable classes.
A generalization of this theorem to the nonlinear case was given in [4, Ch. V, § 5, Theorem II].
There is a similar result for the Kozinets algorithm for separating the convex hulls of two sets [5].
A detailed presentation of these and related results is available in books [6, 7].

In this paper, we present similar learning finite convergence results concerning the nearest
neighbor (NN) classification algorithm [8, 9] in the case of compact non-intersecting classes in
general metric space. Our exploration is deterministic and is based on functional analysis
arguments. We focus on the iterative learning of the NN algorithm. Unlike [10], we consider
classes as compact sets in complete metric space. The probabilistic asymptotic analysis of the
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NN classification rule can be found in [8, 9]. In the latter and related works, the learning prob-
lem, i.e., the gradual formation of the class of representatives, was not studied.

Consider the following iterative algorithm for a machine classification learning on the nea-
rest neighbor principle. Suppose there is a flow of objects from some finite set of classes. From this
flow, the representative groups of objects for each class are gradually formed. The initial rep-
resentative groups are formed arbitrarily. For each new object with a known affiliation to a
particular class, its proximity to each existing representative group is assessed. When the object
is the closest to another representative group, i.e., a classification error occurs, it replenishes
its representative group. When the object is the closest to its representative group, the groups
do not change, the object is ignored, and the next object in the stream is considered. Under certain
conditions, over a finite number of replenishment steps, the learning process ends, i.e., the rep-
resentative groups cease to change. After that, each new object is correctly classified, i.e., it is
the closest to its representative group.

This classification method can be interpreted as an iterative version of the nearest neighbor
method. It is a non-parametric method because it does not use parametric functions to separate
classes. Next, we consider strict statements about the convergence of this method of machine
classification learning.

Consider the case where the classes do not intersect.

Assumption 1.

The objects are points in complete metric space C with distance dist ().

The classes, C, cC, n=1,2,..,N <o, are compacts in this metric space.

Different classes do not intersect, C; NC =9, i#].

Algorithm 1 (iterative classification learning for non-intersecting classes).

Step 0 (Initialization). The initial representations of classes, compact sets C 2 cC, C 2 %,
n=1,..,N,are created. It is set ¢ =0.

Step 1 (Presentation of an object). At iteration ¢ an arbitrary object ¢’ € C », from some class
n, is selected.

Step 2 (Calculation of distances). The distances, dist (ct,Cﬁl)z IIliCItldiSt (c',c), n=1,..,N,

ce

are calculated, and the set of indices v, = argmindist (¢*, C.) is found.
nel, ., N}
Step 3 (Replenishment of the representative classes in the case of classification error, the

so-called productive step).

Cfl, n=1.,N, n, =v, (no changes);
CiH=1Cl nell,.,N)\n, n #v,
Cluc,n=n,, n, #v, (productive step).

Step 4 (Transition to the next iteration). It is set ¢:=t¢ +1, and the transition to Step 1
is done.

Theorem 1. In assumption 1, the learning process ends after a finite number of steps with
the replenishment of some representative class, i.e., the sequence of sets {C fl, n=1.,N}, t=1..,
is stabilized after a finite number of productive steps of algorithm 1. If the classes are separated
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by a distance & >0, then the number of productive steps of the classification learning algorithm
is bounded by the total number of elements in the €' -nets for these classes, &' <g/2.

Remark 1. The algorithm does not use the actual value of the separation distance between
classes. The first statement of the theorem only assumes that the separation distance is po-
sitive. In the second statement of the theorem, the unknown value of the separation distance is
used to bound the total number of the productive (replenishment) steps of the algorithm.

Remark 2. The number of different elements in a class can be finite or infinite. The total num-
ber of iterations of the algorithm until the stabilization is almost surely bounded, if, at each
iteration, each class appears in the flow with fixed positive probability.

Consequence 1. If the learning process is stopped, i.e., the class of representatives is not further
changed, then each new object is correctly classified according to the nearest neighbor principle.

Indeed, if the class of representatives is not changed, each new presented object will be the
closest to its class of representatives.

Proof. Let us define the following distance between classes C;, and let C;: dist(C;,C;)=
=inf{dist (c;,c;):¢; €C;,c; €C;}. By assumption, there is £>0 such that dist(C;,C;)>¢ for
any i # j. Let the representation of a class, say 7, be replenished at moments {,,k =1,2,...},
with elements ¢’* €C,,. At these moments, it is either min dist (c}t,C'% ) =dist (i}, c'h) <

n'ell, ... N}

i b Cl = in di b Cl
<dist (c,},C,}) holds for some n,or, ncv, = e}rgmll{/l}dzst @k, Ch), n-v,.
n'e{l, ..,

In the first case, due to e-separation of classes, dist (c}t,ctt)>¢, then dist (c}t,C*)>e
forall k=12, .., 1i.e., each new element cff is separated from all previous representatives C;’f
of the class C, by a distance not less than «.

Consider the second case where ncv,, n#v,, ie., there exists n"#n,and n"ev,.

Since the distance between different classes is not less than g, we have min }dist (cff ,C Z’E )=

'

n'ell, .. N

=dist (cff , c;"” ) > €. In addition, the following relation holds:

dist (', Clt )= nrer{rfinN}dist (c'k,Clty=dist (¢, c'h) >¢.

Due to the compactness of sets C,, for &' <g/2, there is a finite &' -net M, (¢") with the num-
ber of elements m, (&') that approximates the set C, and its subsets C*t — C, with accuracy &’
. In other words, for each element a e C,, there is an element b e M, (¢') such that dist (a,b) <<’
Let M'* (¢') be a part of this network with the number of elements m't (¢') that approximates
the set C ff with accuracy €', i.e., for each element ae Cflk , there is an element b e M ff (¢') such
that dist (a,b)<¢'.

Since dist (c;k ,C ff )> ¢, the element cff is not approximated by the net M Zk (¢'). Therefore,
the number of elements m’#+ (¢') in the net M“+1 (¢') is greater than the number m* (') of ele-
ments in the net M'* (¢'), m!t+t (") >mt (¢') . But since the total number of elements m (g') of
the net is bounded, i.e., m% (') <m! (¢')<m, (¢'), the number of replenishments K, of the
class of representatives C'* is limited by the value m,, (¢').

Then the total number of productive steps of the learning algorithm is finite and does not
exceed the value m, (¢")+...+my (€') . The theorem is proved.
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The case of convex classes.

Assumption 2.

The objects are points in the /-dimensional Euclidean space R’ with distance dist (x,y)=
=||x—y|| for x,y eR’.

The classes C,, cC , n=1,2,..., are compact sets (bounded closed sets) in this space R’.

The number of classes N is finite, n <N < .

The classes C, =cC, n=1,2,.. are convexly separated, i.e., the convex hulls chC, of the
classes do not intersect, chC; mcth =, i#].

Algorithm 2 (iterative classification learning one for convex classes).

Step 0 (Initialization). Initial representations of the classes C 2 cC,, Cg 2, n=1..,N,
are created. Itisset £ =0.

Step 1 (Presentation of an object). An arbitrary object ¢’ € C . from some class n' is selected.

Step 2 (Calculation of distances). The distances of the element ¢' to the convex hulls chC!

of the sets C!, are calculated, and the set of indices v, = argmindist (¢*, C},) is found.
neil, .. N)

Step 3 (Replenishment of the class of representatives, a productive step).

Cf,,nzi,...,N, n, =v, (no changes);
CtH=iCt nell,.,N\n, n #v,
Chuc ,n=n,, n, #v, (productive step).

Step 4 (Transition to the next iteration). It is set ¢ :=¢ +1, and the transition to Step 1 is
fulfilled.

Theorem 2. In assumption 2, the learning process ends in a finite number of productive steps, i.e.,
the sequence of sets {C',n=1,..,N},t =1,..., is stabilized in a finite number of productive steps of
algorithm 2.

Proof. The proof is completely analogous to the proof of Theorem 1, if we replace the sets
C, and C! with their convex hulls chC, and chC! .

Thus, the finite convergence of the method of teaching classification according to the nea-
rest neighbor principle under the condition of non-intersection of compact classes in a metric
space is proved.

The work was supported by the grant of the National Research Foundation of Ukraine
No. 2020.02,/0121 “Analytical methods and machine learning in control theory and decision-making
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I[MTPO CKIHYEHHY 3BIKHICTD ITPOILECY HABUYAHHA
NN KJIACU®DIKAIIIT HA TIOMUWJIKAX

Bceranosiieno anasor Bizomoi Teopemu HoBikoBa mpo ckinueHHy 3015KHICTh aJITOPUTMY HaBYAHHS TIEPCEITPO-
Ha y BUIAJKY JIHIHO PO3/iJIEHNX KJIAciB. MU OTPUMYEMO aHAJIOTIUYHUIT PE3YJIbTAT I0JI0 AJITOPUTMY Kiacudi-
KaIlii 3a TPUHITUIIOM HAHOIMKIOTO CyCiia y BUMAKY KOMITAKTHUX KJIACIB ¥ 3aralbHOMY METPIUIHOMY TIPOCTOPI
IUTSL KJIACiB, 110 He repeTuHaroTbest. [Iporiec HaBYaHHS TOJISTaE y MOCTYTOBIN MoudiKalii aaroputMy y BU-
aJIkax MOMUJIKOBOI Kiracudikarii. [Iporec BuBUaeThes B 1eTepMinoBaHiii moctanosili. Kinacu po3ymiioTbes
SK KOMIIAKTH B IIOBHOMY METPUYHOMY ITpocTOpi. Po3/lisieHHs KJaciB BU3HAYAETHCS SIK HEIIEPEeTHH KOMIIAKTiB.
KisibKicTh KPOKIB HaBYaHHsI OOMEsKEHA YKCIIOM eJIEMEHTIB B JIeSAKIH g-CITIL AJIst PO3IJISIHY TUX KJIACB.

Kmouosi crosa: xiacudixaviine nasuamnis, xKinyeea 30cHicmo, Memoo HAOIUNCU020 CYcioa, HAGUAHHs HA NO-
MUTKAX.
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