УДК 539.26:546.713.14.22.23.24

В. Б. Рыбаков, Л. А. Асланов, <u>Н. И. Тимощенко</u>, С. В. Волков. З. А. Фокина, В. И. Пехньо

РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ ТАЛОГЕНХАЛЬКОГЕНИДНЫХ КОМПЛЕКСОВ ЗОЛОТА (III)

Методом рентгеноструктурного анализа исследованы кристаллические структуры галогенхалькогенидных комплексов золота (III) брутто-формулы Au $\Im X_7$, где $\Im = S$, Se, Te, a X=Cl, Br. Показано, что атом золота во всех структурах окружен четырьмя атомами галогена по вершинам слегка искаженного квадрата, атом халькогена расположен в вершине правильной тригональной пирамиды с основанием из атомов галогена. Во всех структурах обнаружены невалентные контакты атомов халькогена с атомами галогена, входящими в координационное окружение атома золота. В изоструктурных комплексах с $\Im = S$, Se и X=Cl, Br отмечено три таких контакта, в комплексе с $\Im = Te$ и X=Cl — четыре.

Известны два типа галогенхалькогенидных комплексов золота (III): первый состава AuX₃(ЭX₄): AuCl₃(SCl₄) (I), AuCl₃(SeCl₄) (II), AuBr₃(SeBr₄) (III), AuCl₃(SeBr₄) (IV), AuCl₃(TeCl₄) (V), AuBr₃(SeCl₄) (VI) и второй — AuCl₃(ЭCl₂), где Э=S, Se. Строение этих соединений было изучено спектроскопическими методами ИК, КР, ДСО, ЯКР ³⁵Cl и ⁸¹Br [1-7]. Однако некоторые особенности спектров соединений первого типа не могли быть объяснены в моделях предложенных структур, содержащих фрагменты [AuX₄] и [ЭХ₃]. Так, активность колебательных частот в ИК- и КР-спектрах исключала центросимметричную квадратную структуру [AuX₄], и отнесения частот были сделаны для симметрии C_{2v} . В спектрах ЯКР расщепление квадруплетов в низкочастотной области превышало кристаллографическое, вызванное размещением атомов хлора группировки [AuX₄] в кристалле, и связано, по-видимому, с их химической неэквивалентностью. В связи с этим представляло интерес исследовать структуры комплексов этого типа.

В настоящей работе приведены результаты рентгеноструктурного анализа соединений I, III—V. Из общей массы отбирали изометричные кристаллы размером 0,15×0,20×0,20 мм и помещали их в тонкостенные стеклянные капилляры, которые впоследствии отпаивали. Все работы по отбору и упаковке кристаллов проводились в «сухой» камере, заполненной аргоном.

Параметры элементарных ячеек определяли и уточняли на автоматическом дифрактометре CAD-4 по 20 рефлексам с $\theta = 15 - 16^{\circ}$ на излучение Мо K_{α} с использованием графитового монохроматора. Сбор дифракционных данных проводили методом ω -сканирования. За время эксперимента падение интенсивности стандартных рефлексов не наблюдалось, поправка на дрейф не вводилась и поправка на поглощение не использовалась.

Структуры решены методом Паттерсона и уточнены полноматричным МНК в анизотропном приближении для тепловых параметров атомов. Расшифровку и уточнение структур проводили по комплексу программ SDP. Получены кристаллографические характеристики комплексов и окончательные значения факторов недостоверности.

Комплекс I кристаллизуется в моноклинной сингонии и имеет следующие параметры элементарной ячейки: a = 8,636(1) Å, b = 11,611(2)Å,

В. В. Рыбаков, Л. А. Асланов, <u>Н. И. Тимощенко</u>, С. В. Волков,

3. А. Фокина, В. И. Пехньо, 1992

∴ASSN 0041-6045. УКР. ХИМ. ЖУРН. 1992. Т. 58, № 5

c = 10,241 (2) Å, $\gamma = 107,89$ (2)⁰, Z = 4, $\mu = 170,935$ см⁻¹, пр. гр. P2₁/b, 1554 рефлекса и $(\sin \theta/\lambda)_{\text{макс}} = 0,594$ Å⁻¹, фактор недостоверности R = 0,039, $\rho = 3,243$ г/см³.

Комплекс III: a = 8,925 (3) Å, b = 12,723 (4) Å, c = 10,657 (4) Å, $\gamma = 108,37$ (3)⁰, Z = 4, $\mu = 399,991$ см⁻¹, пр. гр. P2₁/b, 1488 рефлексов и (sin $\theta/\lambda)_{\text{макс}} = 0,591$ Å⁻¹, R = 0,084, $\rho = 4,831$ г/см³.

Комплекс IV: a = 8,753 (9) Å, b = 12,431 (9) Å, c = 10,409 (5) Å, $\gamma = 108,15^{\circ}$, Z = 4, $\mu = 323,988$ см⁻¹, пр. гр. P2₁/b, 700 рефлексов и (sin $\theta/\lambda)_{\text{макс}} = 0,594$ Å⁻¹, R = 0,085, $\rho = 4,332$ г/см³. Комплекс V: a = 7,714 (1) Å, b = 7,560 (1) Å, c = 8,965 (2) Å, $\alpha = 100,100$

Комплекс V: a = 7,714 (1) Å, b = 7,560 (1) Å, c = 8,965 (2) Å, $\alpha = 91,19$ (2)°, $\beta = 101,76$ (2)°, $\gamma = 89,38$ (1)°, Z = 2, $\mu = 189,305$ см⁻¹, пр. гр. Р1, 1502 рефлекса и (sin $\theta/\lambda)_{\text{макс}} = 0,660$ Å⁻¹, R = 0,021, $\rho = 3,717$ г/см³

Позиционные и тепловые параметры атомов систематизированы в табл. 1, 2, геометрические характеристики комплексов — в табл. 3, 4, межатомные расстояния — в табл. 5 и 6 (валентные углы). Для полноты информации в таблицах приведены данные о соответствующих параметрах комплекса состава AuCl₃ (SeCl₄), исследованного в работе [8]. Нумерация атомов в молекуле показана на рис. 1, 2.

Соединения I—IV изоструктурны. Атом золота в них окружен четырьмя атомами галогена по вершинам слегка искаженного квадрата. Атом халькогена находится в вершине тригональной пирамиды с ос-

Таблица 1									
Позиционные и	эквивалентные	параметры	атомов	в	структурах	комплексов	I.	III.	IV

Атом	x	y .	Z	В ^{экв} , А ²
Au	0,21710(5)	0,5357(4)	0,59621 (5)	2,278 (8)
	0,2182(2)	0,5472(1)	0,5874 (2)	1,74 (3)
	0,2182(4)	0,5464(3)	0,5867 (3)	2,33 (5)
Э*	0,2440(4)	0,4915(3)	0,1961 (3)	2,43(6)
	0,2421(4)	0,4945(3)	0,2073 (4)	1,82(7)
	0,2420(9)	0,4942(6)	0,2074 (7)	2,7(1)
X(1)	0,3857 (5)	0,6459 (4)	0,4389(4)	4,10(9)
	0,3804 (5)	0,6553 (3)	0,4213(5)	2,97(9)
	0,38 29 (9)	0,6538 (9)	0,4243(9)	2,7(3)
X (2)	0,1394 (5)	0,3691 (3)	0,4620(4)	3,52(8)
	0,1582 (6)	0,3777 (3)	0,4632(5)	3,1(1)
	0,1645 (10)	0,3776 (10)	0,4646(10)	2,7(3)
X (3)	0,0578(4)	0,4252 (3)	0,7587 (4)	3,66 (7)
	0,0655(5)	0,4401 (3)	0,7578(5)	2,78 (9)
	0,0613(10)	0,4381 (10)	0,7568 (10)	2,9 (3)
X (4)	0,2936 (4)	0,6991 (4)	0,7303 (4)	4,14 (9)
	0,2780 (5)	0,7124 (3)	0,7138 (5)	3,3 (1)
	0,2742 (10)	0,7134 (10)	0,7139 (9)	2,3 (3)
X (5)	0,1016 (4)	0,3540(4)	0,0960(4)	4,15(8)
	0,0999 (5)	0,3516(3)	0,0927(5)	3,3(1)
	0,1019 (13)	0,3428(12)	0,0902(11)	7,3(3)
X (6)	0,3045 (5)	0,6231 (4)	0,0654(5)	5,00(9)
	0,1954 (6)	0,6308 (4)	0,0570(5)	3,9(1)
	0,2942 (13)	0,6311 (12)	0,0570(11)	7,4(3)
X(7)	0,4451(4)	0,4431 (4)	0,2047 (4)	4,53(8)
	0,4800(5)	0,4587 (4)	0,2044 (6)	4,6(1)
	0,4732(14)	0,4552 (13)	0,2018 (12)	9,1(4)

* *Э*=*S*, *Se*.

позщионны	с и эквивалентные	тепловые параметр	ы атомов в структ	ype kominiekca v
Атом	x	y y	z	В ^{экв} , Å [:]
Au	0,71319(5)	0,42501(5)	0,43868(5)	2,448(6)
Те	0,26730(8)	0,17895(9)	0,22736(8)	2,79(1)
X1	0,5858(4)	0,3956(4)	0,1867(3)	4,18(6)
X2	0,7531(4)	0,7181 (3)	0,4096(4)	4,30(6)
X3	0,8384(4)	0,4548(4)	0,6914(4)	4,19(6)
X4	0,6632(4)	0,1319(3)	0,4643(3)	3,74(6)
X5	0,0053(4)	0,0766(4)	0,2429(4)	4,82(7)
X6	0,3609(4)	-0,0790(4)	0,1294(4)	4,55(7)
X7	0,1691 (5)	0,2992(4)	-0,0079(4)	5,07 (8)

Таблица 2 Позиционные и эквивалентные тепловые параметры атомов в структуре комплекса V

Таблица Э

Межатомные расстояния d (Å) в структурах комплексов I—IV*

Связь	d	Связь	d
Au-X1 ^a	2,283 (4) 2,289 (7) 2,422 (5) 2,34 (1)	Au—X4 ^a	2,272 (5) 2,266 (8) 2,410 (5) 2,38 (1)
Au—X2 ^a	2,296 (4) 2,301 (7) 2,442 (4) 2,37 (1)	∋—X1ª	2,920 (1) 2,920 (8) 3,054 (6) 3,02 (1)
Э—Х7 ^а	1,985(5) 2,129(10) 2,308(6) 2,22(2)	Э—Х5 ^а	1,977(5) 2,110(8) 2,308(6) 2,27(1)
Э—Х3 ⁶	3,080 (5) 2,960 (10) 3,132 (6) 3,05 (2)	Э—Х6 ^а	1,977 (5) 2,125 (9) 2,298 (6) 2,25 (1)
Au—X3ª	2,284 (4) 2,294 (8) 2,417 (5) 2,38 (1)	Э—X2 ^a	3,076 (5) 2,944 (8) 3,083 (6) 3,02 (1)

* Атомы галогена с буквенным индексом получены из исходных (см. табл. 1, 2) с помощью следующих операций симметрии: а) x, y, z; б) —x, 1 — y, 1 — z; в) 1 - x, 1 — y, 1 — z. Для каждой пары атомов межатомные расстояния расположены по строкам в порядке нумерации структур I—IV.

нованием X5^aX6^aX7^a (X=Cl, Br). Обнаружены невалентные контакты атомов халькогена с атомами галогена, входящими в координационное окружение атомов золота (см. рис. 1). Эти контакты дополняют окружение атомов халькогена до октаэдра. В структуре IV три атома хлора и один атом брома статистически распределены вокруг атома золота. В структуре V атом золота, как и в структурах I—IV, окружен атомами хлора (X1^a — X4^a) по вершинам слегка искаженного квадрата, а атом теллура (Э) расположен в вершине правильной пирамиды с основанием X5^aX6^aX7^a, но в отличие от структур I—IV у атома теллура обнаружены четыре невалентных контакта с атомами галоге-

на, входящими в координационную сферу атома золота, причем два из них (Э — Х1^а и Х3^в) имеют значения того же порядка, что и в структурах I—IV, а два других (Э — Х2^в и Х4^а) отличаются на 0,37 Å в «сторону увеличения. Дополнительные контакты образуют четырехуголь-

Рис. 1. Нумерация атомов в структуре комплексов I—IV.

Таблица 4

Межатомные расстояния d (Å) в структуре комплекса V

Связь	d	Связь	đ	Связь	ď
Au—X1 ^a Au—X2 ^a Te—X7 ^a Te—X3 ^b	2,279 (3) 2,268 (3) 2,294 (3) 2,995 (3)	$\begin{array}{c} Au = X3^{a} \\ Au = X4^{a} \\ Te = X1^{a} \\ Te = X4^{a} \end{array}$	2,282 (4) 2,277 (3) 3,054 (3) 3,366 (3)	Te—X5 ^a Te—X6 ^a Te—X2 ^B	2,280(3) 2,292(3) 3,365(3)

Таблица 5

Валентные углы ω (град.) в структурах комплексов I, III, IV*

Угол	ω	Угол	ω	Угол	×ω
XI ^a —Au—X2 ^a	91,2(1) 91,8(2) 92,0(4)	X1 ^a —Э—X3 ⁶	85,4 (1) 86,3 (2) 86,8 (4)	X3 ⁶ —Э—X7 ^a	168,7 (2) 172,8 (2) 173,6 (5)
X1 ^a —Au—X3 ^a	177,7(1) 177,8(2) 177,5(5)	Х2 ^а —Э—Х3 ^б	81,7 (1) 85,6 (2) 86,7 (4)	Х5 ^а —Э—Х ^{6^а}	103,0 (2) 101,3 (2) 100,5 (5)
Xl ^a AuX4 ^a	89,2(1) 89,1(2) 88,9(4)	X2 ^a —Э—X5 ^a	93,8 (2) 94,4 (2) 95,7 (4)	Х1 ^а —Э—Х5 ^а	157,4 (2) 163,5 (2) 164,0 (5)
X2 ^a —Au—X3 ^a	89,7 (1) 88,9 (2) 88,7 (4)	X2 ^a X6 ^a .	158,0 (2) 160,3 (2) 160,3 (5)	X1 ^a —Э—X6 ^a	97,6(2) 94,1(2) 94,5(4)
X2 ^a - Au—X4 ^a	179,6 (1) 178,8 (2) 178,6 (5)	X2 ^a —Э—X7 ^a	89,3 (2) 90,9 (2) 89,9 (5)	X1 ^a	84,5 (2) 86,5 (3) 87,0 (5)
X3 ^a —Au—X4 ^a	89,9(1) 90,1(2) 90,4(5)	Х3 ⁶ —Э—Х5 ^а ́	87,4 (2) 89,5 (2) 90,0 (5)	Х5 ^а —Э—Х7 ^а	100,1 (2) 98,9 (2) 95,8 (6)
∑X1ª—Э—X2ª	64,2(1) 69,4(1) 68,6(3)	X3 ⁶ —Э— X6 ^a	84,8 (2) 82,7 (2) 82,1 (5)	X6 ^a —Э—X7 ^a	101,6 (2) 97,1 (2) 99,5 (6)

* См. примечание к табл. 3.

иное основание семивершинного полиэдра атома теллура, причем с их помощью в структуре образуются комплексы состава [AuCl₄(TeCl₃)]₂. Структуры соединений I—IV показывают, что замена хлора на бром, а серы на селен не влияет на тип кристаллической структуры, но

Рис. 2. Нумерация атомов в структуре комплекса V.

Таблица б "Валентные углы ω (град.) в структуре комплекса V*

Угол	ω	Угол	ω	Угол	ω
X1 ^a —Au—X2 ^a X1 ^a —Au—X3 ^a X1 ^a —Au—X4 ^a X2 ^a —Au—X3 ^a X2 ^a —Au—X4 ^a	90,4 (2) 179,5 (1) 88,4 (2) 89,7 (2) 178,1 (2) не к табл. 3.	X3 ^a —Au—X4 ^a X1 ^a —Te—X2 ^b X1 ^a —Te—X3 ^b X1 ^a —Te—X4 ^a X2 ^b —Te—X3 ^b	91,5 (2) 101,37 (8) 78,06 (9) 59,09 (7) 60,21 (8)	$X2^{B}$ —Te—X4 ^a X3 ^a —Te—X4 ^a X5 ^a —Te—X6 ^a X5 ^a —Te—X7 ^a X6 ^a —Te—X7 ^a	68,16 (8) 101,75 (7) 95,5 (1) 93,7 (1) 93,7 (1)

введение в состав соединения теллургалоидного фрагмента приводит к изменению структурного типа и строения комплексов. Подобная зависимость структуры комплексов галогенидов благородных металлов с галогенидами халькогенов от природы атома халькогена наблюдалась нами ранее у комплексов осмия [9] и платины.

РЕЗЮМЕ. Методом рентгеноструктурного аналізу досліджені кристалічні структури комплексів золота (III) брутто-формули $Au\Im X_7$ (\Im — S, Se, Te; X— Cl, Br). Показано, що атом золота у всіх структурах оточений чотирма атомами хлору по вершинам дещо деформованого квадрату. Атом халькогену розміщений у вершині правильної тригональної піраміди з основою із атомів галогену. У всіх структурах виявлені невалентні контакти атомів халькогену з атомами галогенів, які входять в координаційне оточення атома золота. В ізоструктурних комплексах золота з \Im =S, Se i X=Cl, Br відмічені три таких контакти, в комплексах з \Im =Te i X=Cl—чотири.

- 1. Фокина З. А., Тимощенко Н. И., Лапко' В. Ф., Волков С. В. // Укр. хим. журн.— 1982.— 48, № 10.— С. 1014—1016.
- .2. Фокина З. А., Кузнецов С. И., Тимощенко Н. И., Брюхова Е. В. // Координац. химия.— 1977.— 3, № 8.— С. 1235—1236. -3. Фокина З. А., Кузнецов С. И., Брюхова Е. В., Тимощенко Н. И. // Там же.— 1980.—
- 3. Фокина З. А., Кузнецов С. И., Брюхова Е. В., Тимощенко Н. И. // Там же.— 1980.— № 9.— С. 1463—1465.
- 4. Фокина 3. А., Брюхова Е. В., Лапко В. Ф., Кузнецов С. И. // Изв. АН УССР. Сер. хим. 1986. № 6. С. 1544—1545.
- Фокина З. А., Кузнецов С. И., Тимощенко Н. И., Брюхова Е. В. // Изв. АН СССР. Сер. хим. — 1986. — № 6. — С. 1410—1423.
 Фокина З. А., Лапко В. Ф., Волков С. В. и др. // Укр. хим. журн. — 1985. — 51, № 6. —
- 6. Фокина З. А., Лапко В. Ф., Волков С. В. и др. // Укр. хим. журн.— 1985.— 51, № 6.— С. 573—579.
- 7. Finch A., Gates P. N., Page T. H. // J. Chem. Soc. Dalton.- 1983.- N 7.- P. 1837.
- Iones P. G., Scheback R., Schwarznau E. // Acta Cryst.— 1987.—43, N 4.— Р. 607.
 Рыбаков В. Б., Пехню В. И., Асланов Л. А., Волков С. В. // Координац. химия.— 1989.— 15, № 5.— С. 700—703.

: Моск. ун-т Ин-т общ. и неорган. химии АН Украины, Киев Поступила 07.12.90

₩SSN 0041-6045. УКР. ХИМ. ЖУРН. 1992. Т. 58. № 5