ГИДРОТЕРМАЛЬНОЕ МОДИФИЦИРОВАНИЕ АЛЮМООЛОВЯННЫХ АДСОРБЕНТОВ РАЗНОГО СОСТАВА

Т. Ф. Маковская, В. М. Чертов

Настоящая работа является продолжением исследований закономерностей гидротермального модифицирования бинарных соосажденных адсорбентов и посвящена системе Al_2O_3 — SnO_2 [1].

Алюмооловянные адсорбенты разного состава $(Al_2O_3-SnO_2)\cdot nH_2O$ были получены следующим образом: к раствору, состоящему из соответствующих объемов 1 M раствора азотнокислого алюминия и 0,5 M

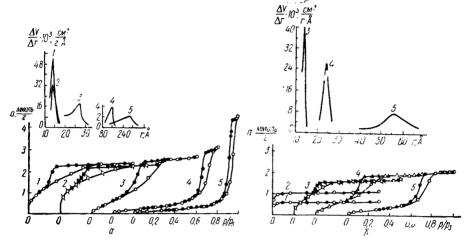
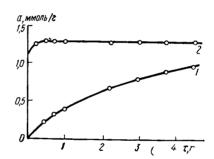


Рис. 1. Изотермы адсорбции паров бензола и кривые распределения объема пор по радиусам на образцах 0,9 $Al_2O_3 \cdot 0,1$ SnO_2 (a) и 0,1 $Al_2O_3 \cdot 0,9$ SnO_2 (б), исходных (1) и гидротермально модифицированных 6 ч при температуре: 2—100, 3—200, 4—300, 5—400°.

раствора четыреххлористого олова, медленно, при перемешивании, приливали 3M раствор аммиака. pH суспензии в конце осаждения для образцов с 5, 10, 25 и 50 мол. % SnO_2 составляло 9, а для образцов с 75, 90, 95 и 100 мол. % SnO_2 — 3,5 (такие образцы, осажденные при pH 9, при отмывке от ионов NO_3 — и Cl— сильно пептизировались). Гидротермальной обработке подвергали отмытые, сформованные в виде цилиндриков и высущенные при комнатной температуре осадки — ксерогели. Обработку проводили в автоклаве в насыщенном водяном паре при 100— 400° и длительности обработки 6 ч. Методики гидротермальной обработки и исследование текстуры (пористой структуры) образцов описаны ранее [2, 3].

Результаты гидротермального модифицирования представлены в таблице. Как видно из приведенных данных, для образцов Al₂O₃—SnO₂ методом гидротермального модифицирования удается в широких пределах регулировать их текстуру: более чем на порядок изменяются величины удельной поверхности и диаметра пор, примерно в 1,5—2 раза — объем пор. Основной для всех составов закономерностью гидротермального модифицирования является уменьшение величины S, рост величин V_{Σ} и V_s . Для большинства образцов гидротермальная обработка при 100° приводит к некоторому росту их поверхности, особенно заметно это активирование для образцов состава Al₂O₃·SnO₂. Для образцов всех составов модифицирование вызывает рост их истинной плотности дегидроксилирование, что связано c взаимодействием компонентов системы или с их кристаллизацией.

Рассматривая полученные данные с точки зрения взаимного влияния компонентов системы на ее текстуру и на закономерности ее гидротермального модифицирования, можно отметить, что для системы


) F		()-(,-),-			
Содержание Al ₂ O ₃ , мол. %	t, °C	S, m ² /r	V_{Σ} , см 3 /г	$V_{\rm S}$, см ^в /г	d, Å	γ, <u>r</u>	$n, \frac{H_2O}{\Sigma MeO}$
100	20	371	0,26	0,27	29	2,51	2,14
(A1(OH) ₃)	100	274	0,25	0,26	38	2,53	2,15
	150	306		0,36	47		
	200	199	0,38	0,39	78	2,90	0,85
	250	164	_	0,34	95	<u>-</u>	
	300	90	0,39	0,38	169		
	400	36	0,44	0,45	500	2,94	0,87
95	20	366	0,27	0,28	31	2,89	1,63
	100	375	0,27	0,28	30	3,04	1,41
	150	300	-	0,31	41	3,12	_
	200	204	0,34	0,34	67	3 ,2 3	1,08
	300	47	0,26	0,25	213	3,24	0,95
	400	29	0,46	0,46	635	3,25	0,94
90	20	413	0,28	0,29	2 8	3,00	1,51
	100	400	0,28	0,28	29	3,08	1,34
	150	300	-	0,31	41	3,34	
	200	160	0,31	0,29	72	3,35	1,05
	300	58	0,30	0,29	200	3,39	0,92
	400	31	0,42	0,46	594	3,39	0,80
7 5	20	365	0,28	0,29	32	3,10	1,24
	100	385	0,30	0,30	31	3,34	1,17
	150	2 73		0,30	44	3,68	_
	200	218	0,33	0,33	61	3,70	0,87
	300	83	0,32	0,32	154	3,76	0,76
	400	43	0,39	0,41	382	3,74	0,72
50	20	376	0,34	0,34	36	3,51	1,04
	100	442	0,29	0,30	27	4,2 3	0,99
	150	346		0,33	38	4,32	0,70
	200	188	0,27	0,2 8	60	4,42	0,64
	300	90		0,25	111	4,65	0,51
	400	52	0,46	0,46	354	4,62	0,41
25	20	217	0,09	0,10	18	5,07	0,66
	100	246	0, 12	0,14	23	5,21	0,62
	150	246		0,16	26	5,2 8	_
	200	167	0,16	0,17	41	6,05	0,48
	300	95	0,17	0,18	76	6,30	0,21
	400	56	0,18	0,17	121	6,49	0,09
10	20	198	0,09	0,10	20	5,28	0,62
	100	238	0,11	0,13	22	5,39	0,62
	150	226		0,15	27	6,13	_
	200	160	0,16	0,18	45	6,22	0,40
	300	102	0,18	0,19	74	6,43	0,20
	400	57	0,19	0,19	133	6,57	0,08
5	20	189	0,08	0,09	19	5,26	0,58
	100	226	0,11	0,12	21	5,42	0,56
	150	215		0,14	26	6,17	
	200	153	0,17	0,17	44	6,24	0,38
	300	110	0,18	0,18	65	6,45	0,22
	400	57	0,18	0,19	133	6,58	0,08

Содержание Al ₂ O ₃ , мол. %	t, °C	S, m²/r	V_{Σ} , см 3 /г	V_S , cm ³ /r	d, Å	$\gamma, \frac{\Gamma}{CM^3}$	$n, \frac{H_2O}{\Sigma \text{ MeO}}$
0 (100 мол. % SnO ₂)	20	190	0,08	0,09	19	5,35	0,59
	100	211	0,11	0,12	23	5,71	0,57
	150	208		0,13	25	6,08	
	200	148	0,15	0,14	38	6,52	0,34
	300	113	0,18	0,17	60	6,67	0,25
	400	58	0, 15	0,15	103	7,02	0,13

Примечание. S — удельная поверхность; V_Σ и V_s — суммарный и предельный сорбционный объемы пор; d — средний диаметр пор; γ — истинная плотность: n — количество молекул структурной воды (гидроксилы Me—OH), приходящееся на моль окисной фазы, $H_2O/\Sigma MeO$ ($\Sigma MeO=XAl_2O_3+YSnO_2$, где X и Y — мольные доли окислов). Величину S определяли методом БЭТ из изотерм адсорбции паров метанола, молекулярная площадка метанола ω $_{CH3OH}=25$ Å 2 [1].

 Al_2O_3 — SnO_2 в общем пористая структура и результаты гидротермального модифицирования определяются преобладающим компонентом [4]. Так, например, величина S образцов с большим содержанием Al_2O_3 примерно такая же, как и для индивидуальной $Al(OH)_3$, а для образцов с большим содержанием SnO_2 существенно меньше и примерно соответствует таковой для индивидуальной SnO_2 . То же, в общем, можно сказать и о величине V_{Σ} — она существенно больше для систем с большим содержанием Al_2O_3 , чем для систем с преобладанием SnO_2 ,

Рис. 2. Кинетика адсорбции паров метилового спирта на алюмооловянных адсорбентах с 90 мол. % SnO₂: *1* — исходный образец; *2* — гидротермально модифицированный при 100°.

как это характерно и для индивидуальных компонентов $Al(OH)_3$ и SnO_2 . Такая связь состава и свойств системы сохраняется и при гидротермальном модифицировании: в частности, пределы регулирования текстуры системы с большим содержанием Al_2O_3 шире, чем для систем с преобладанием SnO_2 , что наблюдается и для отдельных компонентов.

В целом, однако, параметры текстуры алюмооловянной системы не являются величинами аддитивными, а сами системы простыми механическими смесями, где нет взаимодействия компонентов. Это можно легко проследить по данным таблицы на примере величин S и V_{Σ} для образцов разных составов как исходных, так и гидротермально модифицированных.

Для образцов с 10 и 90 мол. % SnO₂ были получены изотермы адсорбции паров бензола (рис. 1), из которых видно, как по мере повышения температуры гидротермальной обработки t исходные микропористые образцы превращаются в мезопористые.

Для образцов с 75, 90 и 95 мол. % SnO_2 , обладающих микропористой структурой ($d\approx20\,\text{Å}$), наблюдалось резкое торможение адсорбции паров метанола. Если же такой образец подвергнуть гидротермальной обработке при 100° , то, хотя при этом диаметр пор практически не растет (см. таблицу), скорость адсорбции метанола на нем резко увеличивается по сравнению с исходным необработанным образцом (рис. 2).

закономерности гидротермального модифицирования алюмооловянных адсорбентов и представляют собой сводку хорошо воспроизводимого препаративного метода получения таких адсорбентов разного состава изменяющимися в широких пределах параметрами пористой структуры.

1. Маковская Т. Ф., Чертов В. М. Гидротермальное модифицирование бинарных окисных адсорбентов.— Докл. АН УССР. Сер. Б, 1979, № 9, с. 736—740.
2. Чертов В. М., Зеленцов В. И. Гидротермальное модифицирование текстуры ксерогеля АІ(ОН)₃.— Укр. хим. журн., 1972, 38, № 5, с. 413—418.
3. Чертов В. М., Окопная Н. Т. Исследование гидротермального модифицирования двуокисей германия, олова и свинца.— Коллоид. журн., 1977, 39, № 1, с. 121—126.
4. Компора В. С. Пибишков И. Б. Физико-химические основы регулирования полис-

4. Комаров В. С., Дубницкая И. Б. Физико-химические основы регулирования пористой структуры адсорбентов и катализаторов.— Минск: Наука и техника, 1981.— 336 c.

Институт физической химии им. Л. В. Писаржевского АН УССР, Киев Поступила 14.03.83

УЛК 541.49:542.65

ВЛИЯНИЕ ОКСИЭТИЛИДЕНДИФОСФОНОВОЙ КИСЛОТЫ НА КРИСТАЛЛИЗАЦИЮ КАРБОНАТА МАГНИЯ

Е. В. Хамский, В. В. Панфилов, Н. А. Шакитская

Возрастающее использование комплексонов в различных отраслях техники приводит к увеличению числа связанных с ними исследований. Комплексоны оказывают влияние на различные процессы [1-3], в том числе на кристаллизацию солей из растворов [2, 3].

В данной работе рассматривается влияние оксиэтилидендифосфоновой кислоты (ОЭДФ) на кристаллизацию карбоната магния. Исследования проводили по ранее разработанной методике [4] при различных концентрациях кристаллизуемой соли и комплексона и разной темнературе. Пересыщение по отношению к карбонату магния создавали взаимодействием сульфата магния с карбонатом натрия. Растворы этих солей сливали в кристаллизаторе в эквимолекулярных отношениях. Одновременно в раствор вводили некоторое количество комплексона. Кристаллизацию проводили в изотермических условиях при постоянном перемешивании. Температуру в термостате поддерживали с точностью $\pm 0,1^{\circ}$.

В ходе кристаллизации отбирали пробы жидкой фазы и определяли содержание магния [5]. На основании полученных данных строили кривые зависимости концентрации карбоната магния от времени. Одновременно изучали размеры и форму получаемых кристаллов при помомикроскопа.

Результаты экспериментов позволяют судить о влиянии на кристаллизацию карбоната магния исходной концентрации раствора этой соли, температуры и содержания комплексона. Из рис. 1 видно, что исходная концентрация существенно влияет на ход кристаллизации. Во всех рассматриваемых случаях с увеличением C_0 в исходном растворе ускоряется процесс образования осадка. Увеличение C_0 может приводить и к изменению самого механизма кристаллизации. Так, при температуре 35° и $C_0 = 900$ мг/кг H_2O (рис. 1, б) кривая $C - \tau$ принимает необычный вид. Судя по ней, в этих условиях сначала происходит быстрая кристаллизация, а затем наступает период, характеризующийся относительным постоянством концентрации, который снова сменяется быстрым образованием осадка. Подобная картина чаще наблюдается при более высоких температурах и сравнительно больших C_0 .