- 4. Слободяник Н. С., Нагорный П. Г., Скопенко В. В. Взаимодействие в системе LiPO₃ LiF GeO₂.— Докл. АН УССР. Сер. Б, 1980, № 1, с. 18—19.
- Практическое руководство по неорганическому анализу/В. Ф. Гиллебранд, Г. Э. Лендсль, Г. А. Брайт и др.— М.: Химия, 1966.—867 с.
 Хайс И. М., Мацек П. Хроматография на бумаге.— М.: Изд-во иностр. лит., 1962.— Гиллебранд.
- 363 c.

Киевский государственный университет им. Т. Г. Шевченко

Поступила 06.12.82

УДК 535.34

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ ОКСИТРИИЗОТИОЦИАНАТА ФОСФОРА

В. Д. Хаврюченко, А. В. Синкевич, А. И. Брусиловец

При изучении колебательных спектров аддуктов окситриизотиоцианата фосфора с галогенидами некоторых металлов было установлено [1, 2], что эмпирическое отнесение частот колебаний OP(NCS)₃, проведенное в работе [3], не всегда корректно. Поэтому нами осуществлен расчет колебательных спектров этого вещества в гармоническом приближении [4] по программе [5].

ИК-спектры OP (NCS) 3 регистрировали на приборах UR-10 и «Perkin—Elmer-325» в кюветах КВг и КRS-5 при 3000—200 см⁻¹, а спект-ры КР — на приборе ДФС-24 с возбуждением от Не—Ne- и Не—Сdлазеров (λ =632,8 и 441,6 нм) при 1400-100 см⁻¹ (рис. 1). Для полу-

чения максимальной информации эти спектры были разложены на гауссовские составляющие по программе [6]. Обозначения колебательных координат в молекуле окситриизотиоцианата фосфора приведены в табл. 1, а принятая при расчете нумерация связей — на рис. 2. Для каждого линейного участка задавались два перпендикулярных ему направляющих вектора с целью описания его деформационных колебаний [7].

Геометрические параметры для ОР (NCS) з выбраны из фрагментов сходных молекул [8, 9]: $r_{\rm PO}$ =1,4599, $r_{\rm PN}$ =1,73, $r_{\rm NC}$ =1,20, $r_{\rm CS}$ = =1,61 Å; \angle PNC=153°, углы при атоме фосфора приняты тетраэдрическими. В качестве единицы длины выбрана длина связи С-Н (1,09 Å), массы — спектроскопическая единицы масса атома водорода (1,088 ед.). Силовые постоянные родственных молекул (OPCl₂(NCO),

OPCl₃, KNCS) [10—12], использовавшиеся в качестве исходных, в процессе расчета уточнялись.

При решении обратной колсбательной задачи силовые постоянные, отвечающие эквивалентным колебательным координатам, усреднялись, а силовые постоянные взаимодействия колебательных координат, не имеющих общих атомов, принимались равными нулю. В результате уточнения силового поля достигнуто удовлетворительное совпадение между вычисленными и найденными в колебательных спектрах частотами. Исключение составляют частоты, относящиеся к валентным колебаниям связей С—N и колебанию с частотой 1065 см⁻¹, которое имеет сложную форму (табл. 2).

Таблица 1	
Колебательные	координаты

Таблица 2

Колебательные координаты				Расчет спектра ОР(NCS) ₃ в приближении валентно-		
Номер колебатель- ной координаты	Напр векто вающ тельное	авляю ра, опі ие кол е движ	щие 1сы- еба- ение	Тип колебания	силового поля	^ү теор
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\end{array} $	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 1\\ 1\\ 2\\ 3\\ 2\\ 3\\ 4\\ 7\\ 6\\ 6\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$	2 3 4 3 4 5 6 7 10 10 9 9 8 8	15 16 13 14 11	y (PO) y (PN) y (PN) y (PN) y (CN) y (CN) y (CN) y (CS) y (CN) y (CS) y (CS)	$\begin{array}{c} 2110\\ 2050\\ 1940\\ 1305\\ 1065\\ 985\\ 930\\ 755\\ 670\\ 630\\ 584\\ 510\\ 468\\ 460\\ 425\\ 361\\ 325\\ 275\\ 242\\ 220\\ \end{array}$	2061 2044 2003 1305 1022 982 944 751 670 635 583 513 476 462 416 365 331 268 255 218
20	U	0	14	0 (1100)		

Анализ полученного силового поля показал наличие сильного взаимодействия между связями P—N (величина недиагональной постоянной 1,083·10⁶ см⁻²). Это можно объяснить значительной делокализацией электронов и наличием сопряженной системы связей во всей молекуле. В таком случае приближение валентно-силового поля не может дать удовлетворительных результатов, поскольку колебательные координаты, не имеющие общих атомов, заметно взаимодействуют между собой и недиагональнные силовые постоянные, отвечающие их взаимодействию, не равны нулю. Применение обобщенного валентно-силового поля позволило за две итерации получить хорошее совпадение рассчитанных и экспериментальных частот (расхождение не более 1 %). Отнесение колебательных частот молекулы OP(NCS)₃ и распределение потенциальной энергии нормального колебания по колебательным координатам показали, что характеристичными с достаточной достоверностью можно считать лишь частоты 2110, 2050, 1940,

Таблица	3			
Расчет в при	ближении	обобщенного	валентно-силового	поля

Hac	тоты		_			
Экспери- мент	Расчет	Отнесение	Вклад колебательных координат в нормаль- ное колебание по потенциальной энергии (%)•			
2110	2109	v (CN)	5(50), 6(25), 8(9)			
2050	2049	v (CN)	6(51), 5'26), 9(10)			
1940	1938	v (CN)	7(79), 10(14)			
1305	1305	v (PO)	1(93)			
1065	1065	v (CS) + v (PN)	8(45), 9(18), 2(13), 10(10)			
985	985	v (CS)+ v (PN)	9(36), 8(27), 3(15), 2(10)			
9 30	929	v (CS)+ v (PN)	10(48), 4(25), 9(13), 3'7)			
755	754	δ (PNC) + δ (NCS) + v (PN)	21(37), 19(23), 4(13), 13(11)			
670	670	δ (PNC) + δ (NCS) + ν (PN)	3'20, $22'16$, $18(15)$, $12'12$)			
630	629	δ (PNC)+ δ (NCS)+ ν (PN)	2(23), 17(17), 25(13), 11(11)			
584	585	δ (NCS)	20(91), 16(4), 15(4)			
510	510	δ (NCS)+ v (PN)	22(30), 4(13), 3(12), 21(10)			
468	468	δ (NCS)+v (PN)	25(25), 4(16), 21(8), 3(7)			
460	460	$v (PN) + v (CS) + \delta (OPN)$	2(15), 8(10), 1'(9), 25(8)			
425	424	δ (NCS)+ δ (NPN)	25'22), 22(19), 21(13), 16(11)			
361	361	δ (NCS)+ δ (NPN)	14'38, 16 26), 25'6), 13'6), 17(6)			
325	325	δ (NCS)+ δ (NPN)	15(39), 25(12), 12(7), 11(6)			
275	275	δ (OPN)+ ν (PN)	11(33), $13(32)$, $4(11)$, $2(10)$			
242	241	δ (OPN)+ ν (PN)+ δ (NPN)	12'40, $3'13$, $15(11)$, $11'9$			
220	220	δ (NPN)+ δ (PNC)	18(40), 16(12), 22(10), 23(10)			
185	184	δ (PNC) + δ (NCS)	17(48), 25(15), 24(10)			
 Приведен 	— ны колеба	гельные координаты. Дающие	максимальный вклад в потенциальную			

а, да энергию.

1305, 584 см-1 (табл. 3). Таким образом, отнесение полос поглощения молекулы OP(NCS)₃ [3], основанное на концепции групповых колсбаний, не может дать удовлетворительных результатов.

Полученное силовое поле молекулы OP(NCS)₃ предполагается использовать для расчета колебательных спектров координационных соединений окситриизотиоцианата фосфора с галогенидами металлов.

- 1. Скопенко В. В., Брусиловец А. И., Синкевич А. В. Взаимодействие окситриизотиоцианата фосфора с тетрагалогенидами некоторых металлов.— Укр. хим. журп., 1980, 46, № 6, с. 601—603.
- 2. Скопенко В. В., Брусиловец А. И., Синкевич А. В. Взаимодействие окситриизотиоцианата фосфора с тетрахлоридами титана, циркония и гафния.— Докл. АН УССР, 1982, № 3, с. 46—48. 3. Oba K., Watari F., Aida K. Vibrational spectra of PO(NCS)₃ and P(NCS)₃.—
- Spectrochim. Acta, 1967, 23А, р. 1515—1519. 4. Коптев Г. С., Пентин Ю. А. Расчст колсбаний молекул.— М.: Изд-во МГУ, 1977.—
- 208 c.
- 5. Хаврюченко В. Д. Матричный метод оценки силовых постоянных молскул.— Вестн. Кисв. ун-та. Хим., 1982, 23, с. 23—26.
 6. Boldeskul J. E., Kutsherov A. B. The differential moments in spectroscopy.—
- Spectrochim. Letters, 1981, 14, N 8/9, p. 597-601.
- Грибов Л. А., Дементьев В. А., Смирнов В. И. Программы для расчета колеба-тельных спектров молекул.— М., 1974.—199 с.— Рукопись деп. в ВИНИТИ, № 1055-74 Деп.
- 8. Егоров Ю. П., Киселенко А. А., Шокол В. А. ИК-спектры и строение изоцианатов
- фосфора. Жури. структур. химии, 1973, 14, № 2, с. 240—245. 9. Голуб А. М., Келер Х., Скопенко В. В. Химия псевдогалогенидов. К.: Вища школа, 1981. 359 с.
- 10. Особенности химического строения изоцианатов фосфора / Ю. П. Егоров, Г. И. Деркач, А. А. Киселенко, А. С. Тарасевич.— Теорет. и эксперим. химия, 1969, 5, № 5, c. 607-613.

- Егоров Ю. П., Киселенко А. А., Пеньковский В. В. Электронная структура изо-цианатов фосфора.— Там же, 1972, 8, № 5, с. 612—616.
 Маянц Л. С., Попов Е. М., Кабачник М. И. Расчет характеристических колебаний
- сосдинений фосфора.— Оптика и спектроскопия, 1959, 6, № 5, с. 589—593.

Киевский государственный университет им. Т. Г. Шевченко

Поступила 06.12.82

УДК 543.544+541.183

ХРОМАТОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ СИЛИКАГЕЛЕЙ. ОБЛАДАЮЩИХ МОЛЕКУЛЯРНО-СИТОВЫМИ СВОИСТВАМИ

Л. С. Лысюк, Л. А. Бондарь, В. Л. Стружко

В практике газо-адсорбционной хроматографии широко используются силикагели различной геометрической структуры с диаметром пор от 60 (крупнопористые) до 2 нм (мелкопористые) [1]. Большинство исследований посвящено макропористым силикагелям [2-4], их получению, а также различным способам химического и геометрического модифицирования [5—9]. Принято считать, что микропористые адсорбенты пригодны лишь для разделения газов и низкокипящих углеводородов [3]. Поэтому, чтобы расширить область применения силикагелей — хроматографических сорбентов целесообразно исследовать микропористые силикагели, обладающие молекулярно-ситовыми свойствами. Цель данной работы — изучить влияние эффективного радиуса пор на сорбционные свойства микропористого силикагеля в условиях газо-адсорбционной хроматографии.

Исследованный нами силикагель обладал развитой поверхностью (~600 м²/г) и средним диаметром пор 0,6 нм. Были изучены образцы, содержащие 3,6 и 8 % диоксида циркония, контрольный образец микропористого силикагеля (полученный в одинаковых условиях с исследованными образцами) и для сравнения промышленный макропористый силикагель КСК, очищенный от примесей железа и алюминия (табл. 1). Структурные характеристики образцов определяли из изо-терм адсорбции паров метилового спирта (рис. 1), измеренных на весовой установке [10]. Величины удельной поверхности рассчитывали по методу БЭТ [11]. Эффективный диаметр пор находили методом молекулярных щупов.

Таблица l Характеристики изучаемых силикагелей

Номер образца	Условия получения	Удельная по- верхность, м²/г	Сорбционный объем пор по ме- танолу, м ³ /г	
1	Контрольный (осаждение при рН 2)	624	0,23	
2	Добавление 3.6 % ZrO ₂	597	0,23	
3	Добавление 8 % ZrO ₂	718	0,26	
4	Промышленный КСК	290	0,66	

Хроматографические исследования проводили на хроматографе «Хром-31» с детектором по теплопроводности. Газ-носитель — гелий, скорость его составляла 30 мл/мин. Были использованы стеклянные колонки внутренним диаметром 0,3 см. Длину колонки выбирали опытным путем (25 см), с ее увеличением сильно возрастало время удерживания и ширина хроматографических пиков. Следует отметить, что при одинаковой длине колонки, то есть при одинаковых объемах сор-

