УДҚ 546.621(681)682:543.53

ИЗУЧЕНИЕ ЭНЕРГИИ СВЯЗИ ОСТОВНЫХ ЭЛЕКТРОНОВ В β-ДИКЕТОНАТНЫХ КОМПЛЕКСАХ МЕТАЛЛОВ III-А ГРУППЫ МЕТОДОМ ЭСХА

С. В. Волков, А. В. Воробьев, А. И. Герасимчук, Е. А. Мазуренко, Р. Н. Щелоков

Одним из экспериментальных методов, позволяющих измерять параметры, которые непосредственно зависят от электронного строения молекул, является метод электронной спектроскопии для химического анализа (ЭСХА) [1]. Им могут быть измерены потенциалы ионизации остовных электронов атомов, входящих в соединение, величины которых находятся в прямой зависимости от значений энергии связи этих электронов. Последние, в свою очередь, существенным образом зависят от электронной плотности на валентных орбиталях данного атома в соединении. Исследования измерений энергий связей остовных электронов в ряду соединений одного элемента, так называемых химических сдвигов ЭСХА, позволяют получать информацию об электронном строении соединений [2].

ЭСХА β -дикетонатов различных металлов, в частности III-А группы, изучены в работах [3, 4]. Однако в них основное внимание уделено исследованию алюминия и пентандиона-2,4 (АА) в качестве лиганда для выявления корреляции химсдвигов с соответствующими оксидами, галогенидами и др. Следует отметить, что величины энсргий связи 2*p*-электронов алюминия в комплексе Al(AA)₃, полученные авторами упомянутых работ, значительно расходятся: 73,1 [3] и 79,33 эВ [4]. Все это указывает на необходимость систематического изучения ЭСХА β -дикетонатных комплексов III-А группы в ряду металлов и лигандов (АА—ТФА—ГФА).

В настоящей статье приведены результаты измерений энергий связи остовных электронов центральных атомов металлов в следующих комплексах: A1(AA)₃, A1(T Φ A)₃, A1(Г Φ A)₃, Ga(AA)₃, Ga(T Φ A)₃, Ga(T Φ A)₃, Ga(T Φ A)₃, In(AA)₃, In(T Φ A)₃ (где AA — пентандион-2,4; T Φ A— 1,1,1-трифторпентандион-2,4 и Г Φ A — 1,1,1,5,5,5-гексафторпентандион-2,4).

Спектры снимали на рентгеноэлектронном спектрометре Беркелевского типа фирмы «Perkin—Elmer M-80». Исследуемые вещества помещали на вторичный анод, на который фокусировали рентгеновское излучение. В области вторичного анода создавали вакуум порядка 10^{-6} торр. К-линии атома кислорода не были получены из-за присутствия даже в этих условиях заметных количеств сорбированных молекул кислорода из атмосферы.

Калибровочным являлся переход с уровня атома углерода C_{1s} , связанного с атомом водорода в кольце. Положение максимумов других переходов в β -дикетонатных комплексах алюминия, галлия, индия определяли относительно этой полосы — 284,6 эВ. Постоянство энергий этой полосы соответствует результатам квантово-химических расчетов β -дикетонатных комплексов металлов [5], согласно которым заместитель в а-положении в значительно большей степени влияет на распределение электронной плотности по цепи М—О—С1—С3, чем по C_1 — C_2 — C_1' (рис. 1). Положение максимума полосы перехода с уровня C_{1s} зависит от того, с какими атомами связан рассматриваемый атом углерода. Например, в комплексе A1(TФA)₃ для группы С—О

этому переходу соответствует энергия 287,5, для CH₃—291,0, CF₃—292,5 эВ. Эти результаты находятся в хорошем согласии с соответствующими данными измерений других комплексов [4].

Таким образом, калибровочный переход C_{1s} из атома углерода в группе CH расположен отдельно от других переходов C_{1s}, что позволяет однозначно идентифицировать его.

Изменение положения полосы F_{1s} для β -дикетонатных комплексов исследованных металлов находится в пределах точности измерений, которая составляет 0,2 эВ (A1(TФA)₃ — 688,0, Ga(TФA)₃ — 687,8, ln(TФA)₃ — 687,8 эВ). Тем не менее, уменьшение энергии этой

Рис. 1. Схема расположения атомов в лиганде β-дикетонатного комплекса.

Рис. 2. Зависимость энергий связи остовных орбиталей мсталлов β -дикетонатных комплексов от суммы индуктивных констант заместителей в β -дикетонатном лиганде: $I \rightarrow Al(2p); 2 - Ga(3p); 3 - In(3d_5/2).$

иолосы в ряду возрастающей электроотрицательности центрального атома металла понятно в рамках упомянутой модели влияния заместителя на распределение электронной плотности β-дикетонатных комплексов металлов.

Результаты измерения энергий связи остовных электронов приведены в таблице и, как видно, близки к полученным в работе [3], где в качестве стандартного выбирался пик углерода С₁₈, вводимого вместе с исследуемым образцом. В работе [4] в качестве стандартных выбраны пики Ne₁₈ и Ar, так как измерения проводились в газовой фазе. Отличие результатов, полученных нами и авторами [3], от приведенных в работе [4], по-видимому, можно объяснить отсутствием вклада кристаллического поля в химический сдвиг в случае газовой фазы.

Для всех исследованных комплексов металлов наблюдается увеличение энергии связывания остовных электронов в ряду лигандов

Лиганд	A1 (2 <i>p</i>)	Ga (3 p)	In (3 d _{5/2})
AA	74,4 73,2* 79,33**	105,9 106,2*	445,2 445,6*
ТФА	74,7 80,36**	106,0	445,6
ГФА	75,7 81,44**	106,6	

Энергии связи остовных электронов металлов в β -дикетонатных комплексах металлов III-A группы (эВ)

по мере замены CH₃-групп на CF₃: $E_{M(\Lambda A)_3} < E_{M(T\Phi A)_3} < E_{M(U\Phi A)}$. Такое увеличение эпергии свидстельствует о возрастании заряда на центральном атоме металла. Этот вывод можно сделать из известного соотношения между химическим сдвигом в рентгеноэлектронных спектрах и изменением заряда на атоме Δq в ряду соединений [2]:

$$\Delta E = k \Delta q + \Delta V, \tag{1}$$

где k — коэффициент пропорциональности; ΔV — изменение кристаллического потенциала.

Возрастание заряда на центральном атоме при замене СН₃-групп на CF₃ происходит из-за оттягивания электронной плотности на электроноположительный заместитель CF₃ по сравнению с CH₃. При этом электронная плотность на атоме металла уменьшается в ряду лигандов АА, ТФА, ГФА (заряд Δq возрастает). Уменьшение электронной плотности в указанном ряду полностью подтверждает квантовохимический расчет влияния заместителей [5, 6] на электронное строение β-дикетонатных комплексов металлов. Сравнение химических сдвигов β-дикетонатных комплексов различных металлов — алюминия, галлия, индия с одним и тем же лигандом показывает, что по своей величине химический сдвиг ЭСХА комплексов в ряду центральных атомов Al, Ga, Іп уменьшается. Это связано с увеличением радиуса оболочки, из которой эмитируются электроны. Коэффициент пропорциональности в уравнении (1) в первом приближении обратно пропорционален величине этого радиуса.

Как показали квантовохимические расчеты β-дикетонатных комплексов металлов [7], смещение электронной плотности на центральном атоме металла комплекса с различными лигандами пропорционально константам Гаммета заместителей в лигандах, что, согласно уравнению (1), должно привести к пропорциональности между константами Гаммета и химическими сдвигами в ЭСХА. На рис. 2 показана зависимость между энергией связывания остовных электронов в металлах центрального атома и константами Гаммета α-заместителей. Как видно из рисунка, химические сдвиги в ЭСХА и константы Гаммета заместителей действительно коррелируют, и это является экспериментальным подтверждением, что донорно-акцепторные свойства заместителей в лигандах β-дикетонатных комплексов можно характеризовать с помощью констант Гаммета.

Таким образом, химические сдвиги ЭСХА в-дикетонатных комплексов металлов III-А группы подтверждают предложенную нами р**а**нее модель влияния заместителей в них на распределение электронной илотности.

- 1. Немошкаленко В. В., Алешин В. Г. Теорстические основы рентгеновской эмиссион-ной спектроскоппи.— К.: Наук. думка, 1974.—315 с.
- 2. ESCA: Atomic, molecular and solid state structure by means of electronic spectrosco-py/K. Siegbahn, C. Nordling, A. Fahlman et al.— Uppsala: Almgvist och Wiksell, 1968.— p. 305.
- 3. McGuire G. E., Schweitzer G. K., Carlson F. A. Study of core electron binding energies in some group III-a, V-b, VI-b compounds.— Inorg. Chem., 1973, 12, N 10,
- p. 2450 --2453.
 4. Core binding energies of some metal β-diketonates and β-diketones in the vapor phase / T. F. Schaaf, S. C. Avanzino, W. L. Jolly, R. E. Sievers.--J. Coord. Chem., 1976, 15, N 3, p. 157—161.
- 5. Расчет электронного строения ацетилацетонатных комплексов бериллия и алюми-ния методом CNDO/2/А. И. Герасимчук, С. В. Волков, Е. А. Мазуренко, В. Г. Маслов.— Координац. химия, 1979, 5, № 3, с. 360—366.
- Б. т. маслов.— (сорданац. химия, 1979, 5, № 5, с. 300—300.
 Расчет электронного строения β-дикетонатных комплексов никеля, меди и цинка методом СNDO/2/А. И. Герасимчук, С. В. Волков, Е. А. Мазуренко, В. Г. Маслов.— Теорет. и эксперим. химия, 1978, 15, № 2, с. 220—226.
 Герасимчук А. И., Мазуренко Е. А., Волков С. В. Зависимость характеристик реакций термического распада от строения лигандов в β-дикетонатных комплексах металлов III-А подгруппы.— В кн.: Тезисы докладов XIV Всссоюзного Чугаевского соронения 1981. совещания. Иваново, 1981, с. 294.

Институт общей и неорганической химин АН УССР, Киев

Поступила 02.02.83