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The cyclic strength of structural members is often determined to a large extent by the 
crack propagation process. The life of the structural members in the crack propagation 
stage is estimated on the basis of integration of various equations linking the rate of 
fatigue crack propagation with the stress intensity factor for maximum and minimum loads 
[1-3]. However, the use of these equations for the evaluation of the service life of real 
structures, primarily of welded members in these structures, is associated with considerable 
problems because the welding stresses greatly alter the nature of deformation at the crack 
tip. For example, in welded tee joints subjected to cyclic service loading with an asym- 
metry factor (stress ratio) equal to zero, the asymmetry factor of loading the material at 
the crack tip Kmin/Kma x changes from 0.8 to 0 in the course of crack propagation [4]. Con- 
sequently, the life of welded structures can be evaluated only on the basis of the equations 
which take into account the loading asymmetry which varies along the trajectory of crack 
propagation. In most cases, these equations are empirical and contain a large number of 
interconnected parameters which can be determined only by means of experiments with statisti- 
cal processing of the data. This greatly complicates the determination and application of 
these dependences. 

The proposed model of fatigue crack propagation is based on analysis of deformation of 
the material at the crack tip and takes into account the effect of the triaxial nature of 
the stress state, the strain criterion of low-cycle fracture, and the principle of linear 
damage summation. The model can be used to determine the effect of the loading asymmetry 
varying along the crack trajectory, on the rate of fatigue crack growth. 

Solution of the Cyclic Elastoplastic Problem of the Stress--Strain State at the Crack Tip 

The determination of the stress--strain at the crack tip in cyclic loading consists of 
two stages. In the first stage, attention is given to loading from the minimum to maximum 
load or (in terms of the stress intensity factor) from Kmi n to Kmax, whereas in the second 
stage, unloading or loading from Kma x to Kmi_ is examined. Direct loading, similar to 
simple loading, is realized in both stages, ~f the process is examined in the coordinate 
system connected with the instant of the start of unloading, i.e., deformation of the material 
in each half-cycle of loading starts with unloading. In this case, it is justified to use 
the strain theory of plasticity [5] for both stages. To determine the intensity of the 
stresses and strains within the framework of the strain theory of plasticity, we may use the 
dependence proposed in [6] 

= = [_<f) (1) 

where o i and e i are respectively the intensity of the stresses and strains at the crack tip 
in solving the elastoplastic problem; oi e and Ei e are the same in solving the elastic prob- 
lem; E is the modulus of normal elasticity; E s is the secant modulus. 

The ratio of the stresses acting in the direction perpendicular (o,) and parallel (o~) 
to the crack trajectory in the elastoplastic region is assumed to be constant and independent 
of the degree of deformation of the material, i.e., q = o=/o, = const [7]. The deformation 
diagram of the material which links the stresses and strains in elastoplastic loading is 
represented by the generalized diagram of cyclic deformation which is independent of the num- 
ber of the load half-cycle, i.e., cyclically stable materials are examined. In this case, 
hardening of the material in the stage of plastic deformation is approximated by a linear 

Leningrad. Translated from Problemy Prochnosti, No. 8, pp. 9-14, August, 1985. Original 
article submitted September 17, 1984. 

0039-2316/85/1708-1037509.50 �9 1986 Plenum Publishing Corporation 1037 



law; this is fully acceptable for the high strains reached at the crack tip. Taking into ac- 
count these assumptions, cyclic deformation of the material may be described by a kinematic 
model based on the mechanism of translation hardenin~ [8]. 

We shall examine the stress--strain state at the crack tip in loadin~ to specific value 
K in the zero half-cycle. We shall analyze deformation of the material at the point on the 
crack trajectory which satisfies the criterion of maximum tensile stresses [9]. The dis- 
tribution of the main stresses in the vicinity of the crack tip in elastic loading in the 
plane strain conditions is described using the relationships [I] 

o,=~cos'~- 1 + s i n  ; 

K . 0 ( I - - s i n ~  �9 
a ~ -  2_i,/~-~ .os  T 

K O 
us = 21~ ~ cos-~- , 

(2) 

where o,, oa, as are the components of the main stresses; K is the stress intensity factor; 
r, 0 are the polar coordinates of the examined point; U is Poisson's factor in the elastic 
loading range. 

In the present case, the stress intensity in plane strain along the crack line is deter- 
mined by the relationship 

= 1--2~ ~ K .  (2') 

The stress and strain intensity at the crack tip in elastoplastic deformation may be 
calculated using Eqs. (i). The diagram of deformation of the material in the loading stage 
in linear approximation of hardening is expressed by the relationships 

( ~ 1 a~ = E~ % - - T +  o~ ~r a l > a ~ ;  a t = E s ~  ~r al~<ar, (3) 

where E u is the tangential modulus of hardening; a T is the yield stress. 

Expressing the secant modulus E s by means of the parameters of the deformation diagram 

included in Eqs. (3), in the form E,=~i/( a~--ar at) Eu +-~-- , and substituting Eq. (2') into Eq. 

(I), we obtain 

\ r/V 
a~ = 2 (4) 

The intensity of the elastoplastic strains at the crack tip is determined by the follow- 
ing equation, taking into account Eqs. (3) 

a t - o ,  a ,  ( 5 )  
8i = Eu + g " 

The components of the stresses a,, aa, o, at the crack tip depend on the severity of 
the stress state and Poisson's factor. Assuming to a first approximation that Poisson's 
factor in the elastoplastic range is equal to 0.5, and using the equation for determining 
o i by means of the stress components observing the plane strain conditions, we obtain 

ax = a / D ,  (6) 

where D is a coefficient which takes into account the increase of the first main stress as 
a result of the effect of the triaxial stress state; for the above-mentioned conditions, 
this coefficient is calculated from the equation 

D = ~ (1 -- q). (7) 

The degree of increase of the first main stress caused by the effect of the triaxial 
stress state may be determined by comparing the stress state in elastic and elastoplastic 
deformation. For a sufficiently localized zone of plastic deformation at the crack tip) the 
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distribution of the stresses outside this zone in elastic and elastoplastlc deformation will 
be approximately identical. Consequently, to satisfy the conditions of equilibrium in the 
elastoplastlc region, the following relationship must be satisfied 

rp rp 

�9 ~----~a,-, (8) 
0 0 

where rp is the size of the elastoplastic zone, 

( I -  2~)_____ ~ { K_K_~' (8') r p ~  

I n t e g r a t i n g  t h e  r i g h t -  and l e f t - h a n d  p a r t s  o f  Eq. (8) and u s i n g  Eq. ( 4 ) ,  we o b t a i n  t h e  
f o l l o w i n g  e q u a t i o n  f o r  c a l c u l a t i n g  t h e  v a l u e  o f  c o e f f i c i e n t  D by memm o f  t h e  p a r a m e t e r s  o f  
t h e  d e f o r m a t i o n  d i a g r a m  

1 2M],  

where M is the parameter calculated from the equation 

Knowing the coefficient which takes into account the increase of the first main stress 
caused by the effect of the trlaxlal stress state, using Eq. (7) we can easily determine the 
relationship between the main stresses o, and oa in the elastoplastic region in plane strain 

q = 1 - -  2 D (11) 
-V~ " 

To determine more accurately the stress--strain state at the crack tip, the proposed cal- 
culation method must take into account the dependence of Poisson's factor on the degree of 
deformation of the material. In this case, calculations of the stress-straln state at the 
crack tip in loading should be carried out in accordance with the following sequence. 

i. Determination of the stress and strain intensity at the crack tip in the elasto- 
plastic region from Eqs. (4), (5). 

2. Calculation of the running value of Poisson ratio Vr from the equation proposed in 
[7] 

o i 
~r = o.5--(o.5--~) ~ (12) 

3. Determination of coefficient D and of the relationship between the main stresses 
~, and oa using Eqs. (9)-(11). 

4. Calculation of the main stresses at the crack tip 

o, = o, [#+ y(, § (q - +r (, § q>,2 § (, _ (, + q, 

O z = qo, ;  

ej = (I + q)'vr,~. 
5. Calculation of the total strains at the crack tip in plane strain 

! 

~I = ~- [oi- ~ (o, + o3)]; i 
I 

1 [O'(,---V (ff S+OI)], j" 
/ e s =  O. 

6. Calculation of elastic strains 

(13)  

(14) 
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Fig. i. Diagram of deformation of the 
material in the elastoplastic zone at the 
crack tip (a) and determination of the ef- 
fective yield stress in unloading (b) and 
the range of plastic strain intensity (c). 

! 

l 
~g = T [~ '  - -  ~ (a,  + ~ ) l ;  

I 
e~ - -  - 2  [ ~  - -  ~ (a~ +" ~,)1. 

(15) 

7. Calculation of plastic strains 

s~ = s 2 - -  s~; ( 1 6 )  

~= ~3-~ 

It may be seen that Eqs. (13)-(16) characterize completely the stress--strain state at 
the crack tip at the instant in which the given value of stress intensity factor K is 
reached in loading. 

In the stress--strain state at the crack tip at the start of unloading we examined the 
process of loading from Kma x to Kmin in the Pi-ei coordinate system connected with the start 
of loading (Fig. i). To analyze the stress--strain state, it is necessary to determine the 
vector of the stress increment at which plastic deformation in inverse loading is renewed, 
i.e., the conditions for the start of yielding are fulfilled. In this case, the most im- 
portant condition is that it is necessary to take into account the fact that the ratio of 
the stress components at the start of unloading differs from the ratio of the stress in- 
crement components which lead to restoration of plastic deformation. As a result of taking 
into account this fact, it becomes evident that the effective yield stress in unloading PT ef 
differs from the identical parameter in uniaxial loading S T (S T = 2OT). 

Since the required stress increment vector {Ap}, which leads to restoration of plastic 
deformation in inverse loading, is determined, in accordance with the unloading theorem [8], 
in the condition of elastic deformation, the vector can be expressed by means of the incre- 
ment of the components of the main stresses at the crack tip taking into account Eq. (2) 
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I' AK "l 

{Ap} = lap=/=i ,K 
- ' ~  = Ap , (17) 

~APsJ t~  2~Ap 
- - 2 F ' ~  

where Ap,, Ap=, Aps are the components of the increment of the main stresses at the crack 
tip in loading in the Pi--ei coordinates in the stage of unloading from the stress state cor- 
responding to Kma x. 

In the present case, the components of the stress deviator at the start of plastic de- 
formation in unloading are determined taking into account Bauschinger's effect described by 
the model of translation hardening [8] 

P; =s.+ i 
P; = s ,  + (l - ( 18 )  

I 

.2.Ap J 
P; = S, -- (l -- z~)--~- , 

I 

where P**, P=*, Ps* are the components of the stress deviator corresponding to the start of 
yielding in unloading; Sl, S=, Ss are the components of the stress deviator corresponding to 
the start of unloading, i.e., to the conditions of maximum loading in the zero half-cycle. 

The values of S,, S=, and Ss are determined by means of the components of the main 
stresses o1, o=, os and the components of the deviator of microstresses {p} from the equa- 
tions 

$1=oi--o--Pi; ] 

S~ --= o~ - - o -  P~; I (19) 
S S = o S - -  0 - -  Ps, 

where o1, o=, Gs are the s t r e s s  components determined us ing Eq. (13) ;  o i s  the component o f  
o,+G,+o, 

the spherical stress tensor, 0= 3 ; P,, P=, Ps are the components of the deviator of 

the mlcrostresses which depend on the plastic strains in loading in the zero half-cycle 

Pz = C~; 

p, = C8~; (2o) 

P8 = C~. 

The components of the plastic strains in thls case are determined from Eqs. (16) and 
constant C depends only on hardening of the material [8] 

2 E= 
0=-- 3 ( I - -EJI-=)  " 

The condition for the start of plastic deformation in unloading may be written in the 
form [8] 

P'~P; + P~P; + P;P; + ~ = O. (21) 

Substituting into Eq. (21) Eqs. (18)-(20), and solving the former in relation to the 
vector of the stress increment Ap, we obtain 

3S, (22) A p = 0 a n d A p = ~ .  

The first root (Ap = 0) corresponds to the start of unloading and is not interesting, 
whereas the second root corresponds to the start of plastic deformation in inverse loading. 
Examining deformation in inverse loading in the coordinate system, linked with the start of 
unloading, the effective yield stress for the given triaxlal stress state may be determined 
as the intensity of the stress increments 

P~f = ~ 1 / ( A p 1  - -  Ap , )  = + (Ap= - -  Ap3) = + (Ap,  - -  ap l )  ~ = ( i  - -  2~) I Ap I = 3S, .  ( 2 3 )  
V z  

1041 



Thus, the effective yield stress in unloading is equal to PT ef = 3Ss, where $3 is deter- 
mined from Eqs. (13), (19), and (20) in relation to the ratio of the components of the main 
stresses at the moment of maximum loading in the zero half-cycle. 

Since the effective yield stress in unloading depends on the triaxial stress state at 
the crack tip, in the general case in inverse deformation, the tangential modulus of harden- 
ing may differ from the identical parameter of the zero half-cycle. 

To determine the hardening modulus in unloading and subsequent elastoplastic deforma- 
tion, we shall examine deformation of the material in the Pi-ei p coordinate system linked 
with the start of loading (Fig. ib). We shall calculate the plastic modulus of hardening 
(EuP)u n characterizing the stress increment in the elastoplastic region, in relation to the 
plastic strain increment. For this purpose, it is necessary to know the stress state for 
at least two points of the deformation path in unloading. One of these points may be 
represented by the point of the start of plastic yielding which is characterized by the 
value of the effective yield stress in unloading PT ef, and the second point may be the 
point at which strain in inverse loading e4P~p is equal to the plastic strain in direct load- 
ing, i.e., in the case eiP = 0 in the ai--E i coordinates (Fig. ib). 

Let it be that at a certain point at the crack tip, the material with the effective 
yield stress PT ef is deformed during unloading. The stress state at this point corresponds 
to the yielding conditions along the entire deformation path because plastic yielding takes 
place. At eiP = r the condition eiP = 0 is fulfilled and, consequently, also elP = e2 p = 
e,P = 0. The microstress vector {0} will also be equal to zero. Consequently, the condi- 
tion a i = a T should be fulfilled at this point (in the oi--eiP coordinates~ because it is 
assumed that the yield stresses of the material in the initial condition in tension and com- 
pression are identical. At the same time, the stress state may be determined using Eqs. 
(2) and (2') because the plastic strain vector is equal to {eP} = 0. In this case, we may 
write 

o~ = (I -- 2~l~1l. (24) 

Consequently, taking into account Eq. (24), and also the compressive nature of the 
stresses in the direction perpendicular to the crack trajectory, the stress state at the 
crack tip in the stage of inverse loading in the oi--~i p coordinates at the examined deforma- 
tion point at r = 0 may be characterized by the following vector 

O T 

= I -- 2~. 

t l - -  2~ 

In the Pi--eiP coordinate system the stress state at the examined deformation point is 
characterized by the vector {pO} which is determined from 

pg o, 

(25) 

(26) 

where {o} is the stress vector characterizing the stress state of the material at the crack 
tip at the instant of the start of loading and is determined using Eqs. (13). 

The intensity of the stresses pefTo in the Pi-ePi coordinate system at the deformation 
point eP i = eP i may be calculated from the equation 

ef + ( o b2 o 0 (27) 
= - -  ( P ~ - - P l ) "  

Thus, in the case of inverse loading, the variation of plastic strain by the value ePi = 
cP i is accompanied by the change of the stress intensity by the value (PefTo -- PefT). Con- 
sequently, the plastic modulus of hardening (EPu)uncan be calculated, in accordance with its 
definition, from the relationship 

p e f p e f  
(E~) u = To T (28) 
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Correspondingly, the modulus of hardening in inverse loading in the Pi--ei coordinate 
system, characterizing the deformation diagram with linear hardening in the form of Eqs. 
(3), is determined using the equation [8] 

(Eu)un --  - -  ( 2 9 )  
[1 + (E~u n ~El 

Consequently, the effective yield stress in unloading Pef T determined using Eqs. (13), 
(19), (20), and (23) and the hardening modulus (Eu)un determined using Eqs. (25)-(29) make 
it possible, taking into account the previously derived dependences, to characterize fully 
the stress--strain state at the crack tip in cyclic loading in the unloading stage or in in- 
verse loading from Kma x to Kmi n. 

Since it was assumed to a first approximation that the material is cyclically stable, 
it may be assumed that a closed deformation loop forms in its cyclic deformation. In this 
case, within the framework of the strain theory of plasticity, the range of the plastic 
strain intensity at the crack tip which determines the degree of damage of the material in 
the region of elastoplastic deformation is equal to the plastic strain intensity determined 
in accordance with the relationships derived for the unloading stage (Fig. ic). The range 
of the plastic strain intensity at the crack tip may be calculated from the following equa- 
tion 

Ae~= pO pef pef pO (30) 
(Eu)u. +- E ' 

where AeiP is the plastic strain intensity range at the crack tip; pi 0 is the stress in- 
tensity calcualted from Eq. (4) with the values of aT, E u, and K replaced by PT ef, (Eu)un , 
and AK = Kma x -- Kmin, respectively. 

In the general case, expressing the dependence of the plastic strain intensity range on 
the main parameters, we may write the followi~g functi~na! dependence 

ef 
A ~  = ~ (Kmax, AK,  (Eu)un , P T ,  r), (31)  

where the relationship between AeiP with Kma x follows from the corresponding functional re- 
lationship of the latter quantity with (Eu)un and PT ef. Consequently, in calculating the 
stress--strain state at the crack tip, it is possible to take into account the changes in the 
loading conditions and, correspondingly, asymmetry both in respect of the parameter Kma x and 
AK. 

Thus, the proposed solution of the cyclic elastoplastic problem of the stress--strain 
state at the crack tip can be used to determine all the necessary parameters taking into 
account the effect of the triaxial stress state in calculating the fatigue crack propagation 
rate on the basis of the proposed strain criteria of fracture. 
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