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i. Introduction. One of the basic characteristics of an elastoplastic material is 
stress-strain or load--displacement type unidimensional quasistatic curves. These, for ex- 
ample, include standard o--c (tension--compression of long prismatic samples) and T--y (torsion 
of a thin-walled hollow round tube) curves. The curves of this type observed in tests have 
two portions; first, with an increase in strain the stress increases (subcritical portion) 
and then, beyond a certain critical condition at which the stress reaches a maximum, it de- 
creases (supercritical portion). The relationship of the characteristic load to the charac- 
teristic displacement changes the same way for an elastoplastic body of any form. 

From simple quasistatic considerations it is clear that any position on the supercriti- 
cal branch is unstable. Therefore the supercritical portion is a dynamic characteristic of 
the specimen--test machine system in general (in contrast to the subcritical portion, which 
is a property only of the material, the form of the specimen, and the form of external load). 

Nevertheless, it is natural to assume (as many authors have) that the quasistatic super- 
critical branch of the curve does exist as some characteristic of the material itself with 
corresponding equations of the elastoplastic condition (as in the subcritical area). Then 
there arises the specific elastoplastic problem with zones of the subcritical and super- 
critical plastic condition subject to determination. 

2. o-~ and T-~ Curves. Let us first consider unidimensional cases of simple tension 
of a rod and simple shear of a layer. In tension, for simplicity, let us assume that the 
deformation in the whole rod is small so that the reduction in area of the rod in the super- 
critical area (neck) is small, that is, only the initial supercriticalportionadjoining the 
critical portion is considered. With such an assumption the case of simple tension of a rod 
will be mathematically identical to the case of simple shear of a layer and therefore we 
will limit ourselves to the first case. 

The o--E curve of an elastoplastic material is described by the following rule: 

~= IO'(8) i wlth ~>0 (loading); (i) 

I E~ wl~h ~ < 0 (unloading), 

where 6 = Oo/at; ~ = @E/at; ~'(e) = do/de. 

For specificness let us consider supercritical deformation in the small vicinity of the 
critical condition, which we take as the point from which the stresses o, the strains e, and 
the displacements u are measured (Fig. i). Therefore, we consider the small disturbances 
close to the initial undisturbed condition in which the rod is subjected to the stresses ot 
of uniform strain e t (Fig. i). 

We should note that, as is easy to verify, all of the general results obtained below 
for the critical initial condition are valid for the supercritical initial conditions. 

Let us introduce the designations: t - time; x - the coordinate along the axis of the 
rod with the origin at the center of the rod; 2Z - the length of the rod; p and E - the 
density and Young's modulus, respectively; o(e) - the relationship of o to e in simple load- 
ing (Fig. i). 

The evolutionary equation of the theory of small disturbances in the given case is 

O a'U a'= 
Oz" =-aff- ' 
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Fig. i. The o--e curve close to the 
critical condition. 
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Fig. 2. The area of representation of 
the boundary problem on the xt plane. 

where 
Ou # 'u  

- -  a a with ~ > O, OxO[ ~ 0 (loading); 

au #u dSu 
O =  c a w i t h T x  <0and with - ~ - > 0 ,  -~<0 

(unloading); (2 )  

1 
c ~ = E/p, a ~ = -~ l i m o '  (e) with ~--+ + O. 

Therefore in the area of loading D+ on the plane xt the Laplace equations occurs and 
in the area of unloading D_ the wave equation occurs (Fig. 2). It is necessary to find the 
solution of Eq. (2) in the half-strip t >~ 0, Ixl ~ z satisfying the following boundary and 
initial conditions : 

with x = -+Z 

u = ::t: tk (#) --~" x ; (3) 

with t = 0 
~U 

U = ~o (X), "~-  = ~o ( X ) ,  ( 4 )  

where ~o(x) and Co (x) are certain functions (external excitations, which we will assume to 
be infinitely small) and k(t) is the coefficient of rigidity of fastening, which we will as- 
sume to be linearly elastic (with k + 0 the fastening will be absolutely rigid and with 
k + m ideally yielding), and in the general case the value of k may depend upon time. 

On the line L separating the areas D+ and D_ and subject to determination during solu- 
tion of the problem, the following conditions must be fulfilled 

U+ = U_ (the condition of continuity) (5) 

du (the equation of equilibrium 
_ ~ Ox ] +  ( 6 )  

where the subscripts "+" and "-" refer to the areas D+ and D_, respectively. 
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As may be seen, the derivative du/ax has a jump at the line L. The area of loading D+ 
and its boundary L obviously describe the evolution of the specimen neck. 

Let us write simple symmetric solutions of the formulated boundary problem (2)-(6) in 
the two limiting cases: 

the quasistatic solution (with a2u/dt a = 0, k = const) 

U = ~8+X with 0 < X < X .  (D+); (7)  
/ e+x. + ~_ (x - -  x.) wire x. < x < l (D_), 

where 

where 

c, a, (~ + I) . u( - -x)=u(x) ;  e + = - -  a-Te_; x .  = l c, _t_ a 2 , 

( , ) t h e  d y n a m i c  s o l u t i o n  w i t h  O < t < T l / c  , o 2 o = 4 o =  0 

[ 8+x with 0 < x < ~t (D+); 

. =  , , , , th < x < c t  (o_ ) ;  

[ o With O < c t < x ,  

(8) 

C 2 ca  I 
8+=----~_; ~= 

a2 C I ~ a z , 

U ( X , O = U ( - - X ,  O. 

H e r e  c+ and  e -  a r e  t h e  u n i f o r m  d e f o r m a t i o n  o f  t h e  r o d  i n  t h e  a r e a  o f  l o a d i n g  and u n l o a d i n g ,  
r e s p e c t i v e l y  (e+  > 0 ,  e_ < 0 ) .  S o l u t i o n s  (7)  and (8)  c o n t a i n  a s i n g l e  f r e e  p a r a m e t e r ,  a s  
w h i c h  E- may be  t a k e n .  

We s h o u l d  n o t e  t h a t  a c c o r d i n g  t o  t h e  q u a s i s t a t i c  s o l u t i o n  (7)  t h e  r e c o r d  o f  t h e  d i s -  
placement and the stress in the fastenings of the rod with x = • gives the following de- 
formation eex p and stress Oexp: 

I u[x__z=__k~__; 
~exp ~ 

(9) 
O~p = Ee,--.  

Consequently, the experimentally observed ~--e curve in the initial supercritical portion 

will have the form 
! 

@exp = - -  T Eeexp, (10)  

that is, it is completely independent of the physical properties of the material in the 

supercritical area. 

Now let us assume that the rigidity of fastening k depends upon the time t. In this 
case there is the following alternative: the solution of the boundary problem (2)-(6) does 
not exist or, if it does exist, it does not satisfy the physical principle of casuality. 

The Proof. Let us assume that a solution of the boundary problem (2)-(6) does exist. 
In this case the solution at the arbitrary point (x, t)ED+, according to the general property 
of solutions of a Laplace equation, depends upon the boundary values of u along the whole 
line L, that is, upon the boundary conditions along the whole boundary of the half-strip 
t = 0 and [xl = ~. Consequently, the solution of u(x, t) at some arbitrary moment of time 
t = to depends upon the rigidity of fastening k(t) in the subsequent moments of time t > to, 
which contradicts the principle of causality. Let us recall that according to the principle 
of causality any event occurring at the moment of time t = to may depend only upon the 
events occurring in the preceding moments of time t ~_to. 

The proven alternative is obviously also valid in that case when in the area of unload- 
ing the material is an arbitrary nonlinearly elastic one satisfying the condition E(e) > 0 
and in the zone of loading in the supercritical area the function ~(e) is also arbitrary and 
satisfies only the condition o*(e) < 0 (Eq. (i)). Actually, in this case in the area D+, 
there will occur a quasilinear equation of elliptical type (and in the area D_ of hyperbolic 
type). In this case the proof is completely maintained. 
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Fig. 3. The relationship of the width 
of the neck to the eigenvalue of the 
boundary problem in the supercritical 
area. 

Failure of the principle of causality in situations considered the simplest but actually 
the most typical provides a basis for expecting the same in similar but more complex two- and 
three-dimensional elastoplastic problems. In particular, this problem has cardinal value for 
various theories of local failure (such as for the theory of cracks) using the concept of 
the supercritical strength of a material. Contradiction of this concept to the principle of 
causality makes it possible to conclude that in the supercritical area it is impossible to 
use the hypothesis of continuity and that in the material there appear discontinuities, 
cracks and dislocations, which must be taken into consideration explicitly. 

To observe the principle of causality it is necessary that the evolutionary equations 
of mathematical physics not have an area of ellipticity. Therefore the zone of supercriti- 
cal deformations in a correct elastoplastic model must be simulated by discontinuities, 
cracks, and dislocations introduced explicitly. 

3. The Influence of Low Viscosity. Let the material in the supercritical condition 
also possess in parallel a disappearingly small ~ + 0 so that the material equations of the 
condition may be written in the form 

I a' (8) ~ + ~" with ~ > 0 (1oadlng) 

/ [E~ + ~" with e < 0 (unloading) (11) 

The evolutionary equation of small disturbances in the vicinity of the critical condi- 
tion in this case will be the following (designations the same as in Eqs. (2)) : 

O'u 2 0'u O'u ( ) 
0 o__W+ m o _ ~ f = _ ~ r  r n ~ = & _ + O  . ( 1 2 )  

P 

This equation is of parabolic type everywhere on the plane xt (the characteristics are 
the straight lines x = const and t = const). The correct boundary problem for it will be: 

with t=0 u=~ 0(x); wlthx=q-I u=~Ik Ou " (13) 
@x ' 

( )  ,ax] ~ / o , . \  Ou ~  O'u ~ --a'( Ou'~++ m ~ o-7-~-)+" (14) at L:u+=u_;  c' -6Zx _ + m ' ~ ) _ =  

The s o l u t i o n  o f  boundary  p rob lem ( 1 2 ) - ( 1 4 )  w i t h  a r b i t r a r i l y  s m a l l  v a l u e s  o f  m ~ s a t i s f i e s  
t h e  p r i n c i p l e  o f  c a u s a l i t y .  

T h e r e f o r e ,  i n  c o n t r a s t  to  t he  e l a s t o p l a s t i c  model  (2) which i s  i n c o r r e c t  i n  t h e  s u p e r -  
critical area, our model (ii) is correct. Consequently, correct formulation of the material 
equations of condition in the supercritical area must include taking viscosity into consider- 
ation. 

Let us investigate the solution of the boundary problem (12)-(14) with t -~ =. Since 
this problem with t -~ = assumes a group of transformations l'=l+Ct, u'-+C2u (C~ and Ca are the 
parameters of the group), its solution has the form [i] 

u = U(x)e ~t with / -+ co, (15) 

where  X i s  the  e i g e n v a l u e  o f  the  p rob lem and U(x) i s  a c e r t a i n  f u n c t i o n ,  

From t h i s  on t h e  b a s i s  o f  Eqs.  ( 1 2 ) - ( 1 4 )  we have  

U"=A~Uwtth O < x < l ;  U = O w l t h  x = O ;  U=--k lU '  w l t h x = l ;  (16) 

U +  = U _  with x = ~; (a ~ - -  XmD U +  = - -  (c ~ + XmD UL,  
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where A ~ ---- O + ira' 

The solution of boundary problem (16) will be 

with 0 < x < ~: 

with ~ < x < Z: 

sin (xA,) e ~ , [  klA,-[- ' e2fl DA, i; (17) 

/~IA~ + 1 ] U = A e ~A' + ~ t ,%--  1 e (21-x)A' , ( 1 8 )  

X 2 X' 
where A~=a~--~rn, , A~=c~_%m~ ,and A is an undetermined constant. 

The number X = X(~) is determined by the following characteristic equation of the prob- 
lem: 

X / = ' -  Xm' ~Z. th = 0, c, + Xm' tg y a '  - -  ~ . m '  ~//~ ~ y~;  ] (19) 

exp .l/c.~__ ~ Xra 2 = k~,l - -  - V c ~  ~,m ~ 

where 

We should note that the eigenvalue X may not be complex, that is, Im I = 0. In the 
opposite case, according to (15), with t + ~ the deformation at any fixed point will change 
sign, that is, the condition of loading or unloading is impossible to observe at any single 

point of the body. 

The solution with I = 0 corresponds to the presence of a quasistatic zone of loading 
with t + ~. It is not difficult to see that the quasistatic solution does not depend upon 
the viscosity of the material and coincides with solution (7). 

The coordinate ~ of the zone of loading with t ~ ~ is not determined directly from the 
solution of the boundary problem (12)-(14). To find ~, we use the global principle of the 
maximum of the rate of dissipation of energy proposed in [2]. According to this principle, 
the rate of dissipation of energy of the whole system in general is a maximum in relation to 
any of the free parameters of the system. From this principle, in particular, results the 
local principle of Mises and the associated rule of plasticity [i]. In our problem the rate 
of dissipation of energy of the whole rod with m a + 0 is equal to 

= 2at i~x = 2~tU (~). 
b (20) 

0 

From this it follows that with t + ~ that value of ~ which corresponds to the maximum in 
I(~) is obtained. We should note that a similar requirement from intuitive physical con- 
siderations is advanced, for example, in the Taylor theory of hydrodynamic instability of 

contact phenomena [3]. 

With very small values of m 2 the characteristic Eq. 

where 

(19) acquires the following form: 

),mS a "q-  ! tg = , F, (21) 
n ~ l  o~ 

11~ 1 kl 
F = T  1-[- ~ + "q+l  2a ~ c~  + (TI+I) 2 k"~'21~-- c~ C2 : ~ 

Let us write additional hypotheses normally well fulfilled in tests: 

a 1 ; kXl << 1 ~-<< -~- 

At the same time the characteristic Eq. (21) is transformed to simple form: 

~ =  a ~ c t h ~  
"7- : ~,t ~ " 

(22) 

(23) 
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The ~ = ~(%) curve constructed with the use of Eq. (23) is shown in Fig. 3. Only the 
positive values of ~ have a physical sense and therefore to the global principle of the 
maximum obviously corresponds only a single point on this curve: 

= 0; ~ = ~msx = a2/m 2. (24) 

Therefore, according to Eq. (24) for materials and test stands satisfying conditions 
(22), the zone of loading in the supercritical area (neck) does not propagate along the 
specimen, but localization of tNe plastic deformations in the initial cross section of origin 
of the neck occurs. This fact, well-known from experience, is valid for the majority of 
solid materials but strangely until now has not found a satisfactory theoretical explanation. 

Therefore on the basis of a correct elastoviscoplastic model it has been possible to 
prove that the whole zone of supercritical deformations is simulated by crack or dislocation 
type discontinuities of the material. This confirms the heuristic conclusion of the preced- 
ing paragraph. 

It should be noted that this fundamental result is based on the global principle of 
the maximum [2], which has a very general thermodynamic nature similar to the Prigogine 
principle in irreversible thermodynamics. In the formal mathematical solution all values of 
~>_- 0 to which correspond the numbers ~ in the range-=< % < a2/m ~ are possible. There even 
exist stable solutions with a finite zone of loading (neck) corresponding to negative values 
of % (Fig. 3). 

In the situation composed there is no doubt of the extreme importance of meticulous 
experimental investigations of the o--E and T--y curves in the near-critical area with pre- 
cision measurement of the zones of loading and unloading. Such investigations make it pos- 
sible to establish the boundaries of applicability of these general principles. 

In conclusion we will incidentally give an answer to one interesting question: is the 
formation of a neck, that is, the existence of zones of loading and unloading, possible in 
the subcritical area? Let us turn to Fig. 1 and Eqs. (Ii). The analytical theory presented 
is easily extended to the subcritical case. For this it is necessary in all equations to 
assume the value of a 2 as negative (that is, a is imaginary). In particular, in the charac- 
teristic Eq. (23) the sign of a 2 must change to the opposite. The curve of the ~ = ~(%) re- 
lationship constructed with the use of the equation obtained is shown in Fig. 4. Nonnegative 
values of ~, that is, the range of ~ in which--~< ~ < -o'(c)/(pm2), have a physical sense. 
Since all of these values of ~ are negative, the solution constructed is asymptotically 
stable. Therefore formation of a neck in the subcr~tical area is possible and in contrast 
to the supercritical case the neck will be stable.* As before, to the global principle of 
the maximum corresponds only the boundary point ~ = 0, that is, the width of the zone of 
loading with t + ~ is equal to zero within the limits of the theory of small deformations. 
To the value of ~ = 0 corresponds the solution with a break in displacements at x = 0. 

4. Curves with an Upper Yield Point. Until now curves with a single peak of the type 
shown"in Fig. 5a have been considered. More complex cases are studied similarly. Here we 
will be limited to the simple shear of a layer under the action of a tangential stress ~, 
and the layer is assumed to also be subjected to compression by a pressure p (Fig. 5b). 

In this case, low-carbon steel has a T--y curve with an upper yield strength of the type 
shown in Fig. 5c. Actually, such a curve is characteristic of all crystals containing mobile 
interstitial atoms in their structure. The latter are attracted by the nucleus of a dis- 
location and retard it [4]. (In carbon steels, carbon atoms are interstitial atoms.) 

The general theory of irreversible deformations and fracture of solids with point and 
linear defects from positions of invariant F-integrals was presented in [4]. In the continual 
variation it leads to a closed system of differential equations of the "theory of elasticity 
with three-dimensional forces and with linear features plus the theory of diffusion--drift of 
point defects", Curves of the type shown in Fig. 5a, c, d may, in principle, be calculated 
from these equations. Within the limits of the phenomenological approach used here the re- 
suits of the preceding sections 2 and 3 in the given case make it possible to draw the follow- 
ing conclusion: the plastic area first propagates in the form of a dislocation or a slip 

*In practice a neck is formed even in the subcritical area, which is the result of the pres- 
ence in the system of finite disturbances, the ro!e of which is played by structural imper- 
fections of the grain boundary and microcracks and also by residual microstresses of a 
technological nature. 
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Fig. 4. The relationship of the width 
of the neck to the eigenvalue of the 
boundary problem in the subcritical area. 
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Fig. 5. Simple shear of a layer under the action of 
a tangential stress: a) the T-~ curve considered in 
sections 1-3; b) plan of simple shear; c) the ~--y 
curve for low-carbon steel type materials; d) the 
T-'y curve for geological materials. 

line along the plane of cleavage L (it is assumed that it is parallel to the surface of 
the layer), that is, in the form of a surface of break in the displacement in the surround- 
ing elastic material. This theoretical conclusion agrees very well with experimental data. 
Let us recall that phenomenologically the upper yield strength is described by the theory of 
delay of yield of Clark, Cottrell, and Yu. N. Rabotnov. 

In contrast to metals for the majority of geological materials the T--y curve depends 
significantly upon the amount of compression p. Its typical form is shown in Fig. 5d. (The 
value of y is understood phenomenologically as the ratio of the mutual displacement of the 
linkages to the layer thickness (Fig. 5b).) 

According to the experimental investigations of Byerlee [5] for a large number of vari- 
ous rocks at fracture the following simple relationship occurs: 

= IO.S5(p--po) with O < p - - p o < 2 0 0  MPa; 

Tu [50 MPa ~ 0.6(p--Po) wfthp--po>200 MPa, (25) 

where po is the interstitial pressure of the liquid impregnating the rock. 

From the preceding sections 2 and 3 it follows that~ 

a) plastic supercritical deformations propagate under dynamic conditions along some sur- 
face in the form of a slip crack (dislocation rupture); 

b) the falling branch of the T--y curve (including the value y, -- Yu) is a functional 
dependent upon the geometry of the specimen, the rigidity of fastening, etc.; 

c) the value of T s is the specific force of friction between the edges of a slip crack. 

These theoretical conclusions agree well with experience and with modern concepts on 
earthquakes [i, 6, 7]. Let us recall that according to these concepts an earthquake occurs 
as the result of propagation of a dynamic slip crack along some site with an area of d 2 and 
the seismic energy 
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( ~ u  " -  ~8) 2 dZ (26) E~ -- 20 

is liberated where G is the shear modulus. 

The basic reasons for earthquakes are local stress concentration as the result of creep 
of the filler in fractures [8, 9], movement of the substance of the mantle causing a change 
in the tectonic stresses in the solid crust of the Earth, filtration of water or steam into 
the zone of the origin, etc. The presence of a seismogeneous zone in the crust of the earth 
at a depth of approximately 3 to 15 km is explained first by an increase in the difference 
ru -- Ts for rocks with an increase in depth [i0]. 

5. Conclusion. The basic conclusion of the work may be formulated in the followi~g 
manner. Supercritical deformations of solids within the limits of the theory of infinitely 
small deformations are always concentrated in infinitely narrow zones simulated by surfaces 
of discontinuity of the displacements. 

The author thanks G. I. BYkovtsev and L. Ya. Galushko for discussion of the work and 
helpful remarks. 
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