- 11. *куриленко О. Д.* О теплоемкости связанной воды.— Там же, 1957, **19**, № 5, с. 584—585.
- 12. *Цапиок Е. А., Бадеха В. П., Кучерук Д. Д.* Влияние размера мембранообразующих частиц из крахмала и пор ацетилцеллюлозной подложки на свойства динамических мембран.— Химия и технология воды, 1982, 4, № 1, с. 10—13.
- 13. Возный П. А., Чураев Н. В. Термоосмотический перенос воды через твердые мембраны.— В кн.: Физика твердого тела. Кнев: Наук. думка, 1975, с. 81—85.
- 14. *Ершова Г. Ф., Зорин З. М., Чураев Н. В.* Температурная зависимость толщины полимолекулярных адсорбционных пленок воды на поверхности кварца.— Коллоид. журн., 1975, **37**, № 1, с. 208—210.

Институт коллоидной химии и химин воды им. А. В. Думанского АН УССР, Киев

Поступила 27.10.82

УДК 537.29

ВЛИЯНИЕ ПРИРОДЫ РАСТВОРИТЕЛЯ НА МОЛЯРНУЮ КОНСТАНТУ КЕРРА

В. В. Преждо, Г. В. Тарасова, М. В. Хащина

Большинство имеющихся в литературе данных о молярных константах Керра (mK) получено путем измерений в разбавленных растворах неполярных растворителей. Определенные таким образом mK зависят от природы растворителя $[1,\ 2]$, что объясняется взаимодействием между молекулами растворенного вещества и растворителя (эффект растворителя). Для количественной оценки эффекта растворителя был предложен ряд эмпирических уравнений, связывающих mK_p с макроскопическими характеристиками среды — диэлектрической проницаемостью и показателем преломления n.

В работе [1] установлена зависимость $mK_{\rm p}$ от $\frac{n^2-1}{n^2+2}$. Экстраполирование этой зависимости к n=1 неплохо воспроизводит величины, полученные для газов. Согласно [3], $\frac{mK_{\rm p}}{mK_{\rm ras}} \approx \left(\frac{\mu_{\rm p}}{\mu_{\rm ras}}\right)^2$ или $\frac{\theta_{\rm 2p}}{\theta_{\rm 2ras}} \approx \frac{\mu_{\rm p}^2}{\mu_{\rm ras}^2}$, где $\mu_{\rm p}$, $\mu_{\rm ras}$ — дипольные моменты, измеренные в растворе и в газовой фазе ссот-

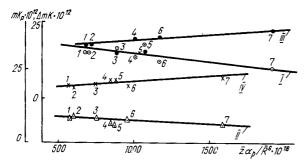


Рис. 1. Зависимость $mK_{\rm p}$ (I, II) и $\Delta mK = mK_{\rm ra3} - mK_{\rm p}$ (III, IV) от $z\alpha_{\rm p}/\bar{R}^{\rm g}$: I, III— сероуглерод; II, IV— бензол. На рис. 1—4 арабские цифры соответствуют померам растворителей в табл. 1.

ветственно. Эта зависимость является приближенной, поскольку может быть справедлива лишь для соединений с относительно высоким дипольным членом θ_2 и результирующим μ , лежащим вдоль оси наибольшей поляризуемости, хотя теоретически и обоснована [4].

Однако ни одно из подобных уравнений не учитывает всех факторов, характеризующих неспецифическое влияние растворителя на молскулярные характеристики. Кроме того, с их помощью нельзя изучить зависимость различных типов межмолекулярного взаимодействия от свойств молекул растворителя и структуры раствора.

Существенную роль в определении $mK_{\rm p}$ играет взаимная ориентация молекул растворенного вещества и растворителя вследствие дисперсионного, диполь—наведенный диполь, и диполь-дипольного взаимо-

действия. Модель парных взаимодействий молекул в растворах в большей мере, чем модель молекулы растворенного вещества, погруженной в непрерывный диэлектрик, соответствует современным представлениям о дискретности структуры окружения молекулы. Поэтому влияние межмолекулярного полевого взаимодействия на mK_p для парных взаимодействий в конденсированных средах интересно было оценить с позиций потенциала Лондона—Дебая—Кеезома (ЛДК) [5]. Такой подход позволяет получить корреляции mK_p с характеристиками молекулярной структуры жидкости и таким образом оценить вклады различных видов полевого взаимодействия в растворах.

Изменение какого-либо свойства в растворе по сравнению с газом пропорционально полной энергии взаимодействия между молекулами компонентов U [6]. Значение U как функции от усредненного по всему объему числа соседей \bar{z} и расстояния между молекулами вещества и растворителя \bar{R} в различных координационных сферах K может быть удовлетворительно оценено потенциалом $\Pi A K$ для конденсированных сред:

$$|U| = \left\{ \operatorname{const} \sum_{K} \left(\frac{\overline{z}}{\overline{R}^{6}} \right) \left[\frac{3}{2} \frac{I_{p} I_{B}}{I_{p} + I_{B}} \alpha_{p} \alpha_{B} + \mu_{p}^{2} \alpha_{B} + \mu_{B}^{2} \alpha_{p} + \frac{2}{3} \frac{\mu_{p}^{2} \mu_{B}^{2}}{KT} \right] \right\}. \quad (1)$$

Из (1) следует, что для растворов того же вещества в серии однотипных растворителей, для которых const существенно не отличаются, можно ожидать, что

$$\Delta mK = mK_{ras} - mK_{p} \sim \sum_{K} \left(\frac{\overline{z}}{\overline{R}^{6}}\right) \left[\frac{I_{p}I_{B}}{I_{p} + I_{B}} \alpha_{B}\alpha_{p} + \mu_{p}^{2}\alpha_{p} + \mu_{p}^{2}\alpha_{B} + \frac{2\mu_{p}^{2}\mu_{B}^{2}}{3KT}\right]. (2)$$

Тогда для одного и того же неполярного вещества (μ_B =0) в серии неполярных растворителей (μ_p =0) с близкими I_p (первыми потенциалами ионизации молекул растворителя) получим

$$\Delta_m K \sim c_1 \sum_{\overline{R}^6} \bar{\alpha}_p \quad \left(c_1 = \frac{3}{2} \frac{I_p I_B}{I_p + I_B} \alpha_B \right), \tag{3}$$

а для полярного вещества ---

$$\Delta mK \sim c_2 \sum_{n=0}^{\infty} \frac{z_n}{R^6} \alpha_p \quad (c_2 = c_1 + \mu_B^2).$$
 (4)

В серии полярных растворителей с близкими I_p при T = const для того же неполярного вещества (μ_B = 0)

$$\Delta mK \sim c_1 \sum_{\overline{R}^6} \overline{\alpha}_p + c_3 \sum_{\overline{R}^6} \overline{\mu}_p^2 \quad (c_3 = \alpha_B), \tag{5}$$

а для того же полярного вещества

$$\Delta mK = c_2 \sum_{\overline{R}^6} \bar{\alpha}_p + c_4 \sum_{\overline{R}^6} \bar{z}_{\overline{R}^6} \mu_p^2 \left(c_4 = \alpha_B + \frac{2}{3KT} \mu_B^2 \right). \tag{6}$$

Для серии неполярных веществ ($\mu_{\rm B}$ =0) с близкими $I_{\rm B}$ в одном и том же полярном растворителе ($\mu_{\rm p}$ =const)

$$\Delta mK = c_5 \sum_{\bar{R}^6} \bar{\alpha}_{\rm B} \left(c_6 = \frac{3}{2} \frac{I_{\rm p} I_{\rm B}}{I_{\rm p} + I_{\rm B}} \alpha_{\rm p} + \mu_{\rm p}^2 \right). \tag{7}$$

Чтобы проверить закономерности, вытекающие из уравнений (3), (4), (7), нами были рассмотрены имеющиеся в литературе данные по mK [7,8].

Значения \overline{z} для первой координационной сферы рассчитывали по формуле $\overline{z}=\frac{4/3\pi N_0\overline{R}^3-N_0V_{\rm M}}{V}$, где $V_{\rm M}$ — объем молекулы вещества; $\overline{R}=\overline{r_{\rm B}}+\overline{r_{\rm p}},\ r_i=(V/2,52\cdot 10^{24})^{1/3}$ — радиус сферического объема, приходящегося на одну молекулу в чистой жидкости при $20^\circ;\ V$ — молярный объем. Рассчитанные величины $\overline{za_{\rm D}}/R^6$ и mK приведены в таблицах.

В сериях неполярных растворителей с близкими I_p в соответствии с уравнениями (3), (4) $\Delta m K$ увеличивается, а $m K_p$ уменьшается почти

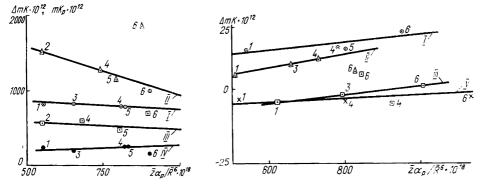


Рис. 2. Зависимость mK_p (*I—III*) и ΔmK (*IV*) от $\overline{z\alpha_p}/\overline{R^6}$: *I*, *IV* — нитробензол; *II* — *о*-динитробензол, *III* — *м*-динитробензол. Рис. 3. Зависимость ΔmK от $\overline{z\alpha_p}/\overline{R^6}$: *I* — толуол; *II* — *n*-ксилол; *III* — хлороформ; *IV* —

Рис. 3. Зависимость ΔmK от $z\alpha_p/R^6$: I — толуол; II — n-ксилол; III — хлороформ; IV — диэтиловый эфир.

линейно с увеличением $\overline{z}\alpha_{\rm p}/\overline{R}^6$ (рис. 1—4), а в серии неполярных веществ с близкими $I_{\rm p}$ в одном и том же полярном растворителе C_6H_5Cl ΔmK линейно возрастает с увеличением $z\alpha_{\rm B}/R^6$ (рис. 5).

Влияние неполярных растворителей на mK объясняют тем, что в результате сольватации вокруг молекул растворенного вещества воз-

Таблица 1 Молярные константы Керра mK^* и $z\overline{\mathbf{z}}_{\mathbf{p}}/\overline{R^6}$ в неполярных растворителях

Соединенис	mK _{Γα3} ·10 ¹²	Гептан (1)		Гексан (2)		Циклогексан (3)	
		mK _p ·10 ¹²	\\frac{1}{**}	mK _p ·10 ¹²	f	mK _p ·10 ¹²	f
CHCl ₃	29,41	-25,2	620			-27,0	790
CCI ₄	0,933	_	_	1,3	580		_
CS_2	47,4	30,0	680	30,0	701	31,9	890
CH ₃ CN	363	_		259	505	219	935
$(CH_3)_2O$	8,7		-	_		8,1	1170
$(CH_3)_2CO$	99	66,0	625	_	_	-	-
$(C_2H_5)_2O$	-11,4	8,94	559	_			-
C_5H_5N		120	605			119,2	784
$C_6H_5NO_2$	1132	888	549	_		920	644
C_6H_6	12,8	8,3	580	8,58	598	8,14	754
$C_6H_5CH_3$	33	18,5	541	-		_	
$C_6H_5NH_2$		_	-			22,2	745
$H-C_6H_4(CH_3)_2$	21,3	15,6	508			13,7	655
$C_6H_5N(CH_3)_2$		_	-			177	642
$o-C_6H_4(NO_2)_2$				1510	549		-
$M - C_6 H_4 (NO_2)_2$			_	550	553	-	
$H-C_8H_{18}$	8,4			3,34	407	2,16	566
$C_{10}H_{8}$		40	531	49,4	602	42,3	678
Фенантрен		114	465	_		114,1	596

 $[\]overline{}^*$ Использованы значения mK, полученные в [7]; ** $f=\overline{z\alpha_p}/\overline{R^6}\cdot 10^{18}$.

никают оболочки, составленные из молекул растворителя, слабо ориентированных за счет дисперсионного взаимодействия или диполь наведенный диполь. Это взаимодействие способствует торможению свободного вращения молекул растворенного вещества и в соответствии с ориентационной теорией Ланжевена — Борна [10, 11] затрудняет ориентацию молекул в поле и, следовательно, уменьшает величину mK.

Рис. 4. Зависимость $mK_{\rm p}$ от $z\alpha_{\rm p}/R^6$: I — ацетонитрил; II — тетрахлорметан; III — диметиланилин; IV — пиридин; V — фенантрен; VI — нафталин.

Рис. 5. Зависимость $\Delta m K$ неполярных веществ в хлорбензоле от $\overline{z}\alpha_{\rm B}/\overline{R}^6$. Номера точек соответствуют номерам соединений в табл. 2.

о существенной роли в разбавленных растворах взаимодействия, вызванного частными диполями или образованием, например, молекулами CCl₄ комплексов с молекулами растворенного вещества.

Объемный характер взаимодействия диполь — наведенный диполь не исключает того, что при больших размерах полярных молекул или

CC1 (4)		Диоксан (5)		Бензол (6)		CS , (7)	
mK _p ·10¹²	f	mKp·1012	f	<i>mK</i> _p ·10¹²	f	mK _p ⋅10 ¹²	j
24,12	923	-34,39	836	-31,0	1002		_
1,5	821		_	1,6	921	1,12	1518
27,8	1005	33,2	1070	27,1	1171	24,8	191-
217	1060			244	1390	_	_
5,5	1324		_	6,6	1514		
93,0	923	_		51,0	1038	_	_
7 ,5	792		_	8,5	1132		
128	892	111,5	908		_		
880	808	880	814	980	897	_	_
7,0	850	6,57	869	8,10	955	6,3	158
13,7	780	13,0	801	13,8	950	_	
12,5	841	51,2	869	17,2	940		
10,6	730		_	14,93	827	_	_
158	722	195	774	134,2	807	_	_
1300	745	1160	790	1870	875		_
580	677	460	795	685	885	_	_
3,06	634	_		_	_		
40,9	762	_		45,5	824	45,0	141
97,6	660	_	_	78,5	735		

при низких температурах, когда вращение затруднено, и при взаимодействии диполь—наведенный диполь одна из возможных ориентаций молекул может стать господствующей, а само взаимодействие локальным. Так, в случае растворителя с ярко выраженной анизотрописй поляризуемости и способностью к образованию комплексов переноса заряда, как бензол, с помощью константы Керра можно определить строение такого локального комплекса по методике, предложенной в [12].

Таблица 2 Молярные константы Керра неполярных соединений mK [9] и $z_{\alpha_{\rm D}}/R^6$ в полярном растворителе — хлорбензоле

Номер соединения	Соединение	mK _{ra3} ·10 ¹²	mK _p ⋅10 ¹²	$\Delta m K = m K_{\text{ras}} - m K_{\text{p}}$	$\overline{z}\alpha_{\mathrm{B}}/\overline{R}^{6}\cdot 10^{18}$
1	CCl₄	2,0	44,3	-42,3	726
2	C_6H_6	15,6	53,3	—27.7	755
3	CS_2	52,5	49,3	3.2	814

Выпадение из общей зависимости значений mK нитробензола, o- и м-динитробензолов (см. рис. 2) и ацетонитрила (см. рис. 4), измеренных в бензоле, подтверждает образование этими соединениями с бензолом комплексов $\pi - \pi^*$ -типа. Вещества-протонодоноры, например хлороформ, образуют с диоксаном комплексы с водородной связью, что также приводит к выпадению значений mK из общей зависимости (см. рис. 3). В этих случаях к внешнему полю ориентируются уже не отдельные молекулы, а комплексы в целом.

Таким образом, при изучении электрооптических характеристик веществ предлагаемый подход позволяет показать роль структурных факторов строения раствора и молекулярных характеристик растворителя.

- 1. Molar polarisability. Dependence of apparent molar Kerr constant of infinite dilution on the medium in which they are measured / R. S. Amstrong, M. Arney, C. G. Le Fevre et al. - J. Chem. Soc., 1958, 80, N 6, p. 1474-1480.
- 2. Верещагин А. Н. Поляризуемость молскул.— М.: Наука, 1980.— 177 с. 3. Le Fevre R. J. W., Williams A. J. Molecular polarisability chloroform as a solvent for the determination of molar Kerr constant of solutes. - Ibid., 1961, 83, N 7, p. 1671-1676.
- 4. Buckingham A. D. The Kerr effect in dilute solutions .-- Trans. Faraday Soc., 1956,
- 52, N 5, p. 611-614.
 5. Hirschfelder J., Curtiss Ch., Rird R. Molecular theory of casses and linguids.—New York, 1954.— 988 p.
- Луцкий А. Е., Врагова С. Н. Межмолекулярное диполь-дипольное взаимодействие в растворах.— Журп. физ. химии, 1975, 49, № 11, с. 2869—2873.
 Верещагин А. Н. Характеристики анизотропии поляризуемости молекул: Справоч-
- ник.— М.: Наука, 1982.— 250 с.
- 8. Calderbank K. E., Le Fevre R. J. W., Ritchil G. L. D. Molar polarisability, the dupole moments and molar Kerr constant of the dinitrobenzenes.- J. Chem. Soc. B, 1968,
- 90, N 2, p. 503 507.
 9. Le Feure R. J. W., Williams A. J. Molecular polarisability chlorbenzene as a solvent for the determination of molar Kerr constant of solutes. -- Ibid., 1964, 86, N 4, p. 562-
- 10. Langevin P. Sur les birefringences electrique et magnetique.— Le Radium, 1970, 7, N 2,
- p. 249 260.

 11. Born M. I. Electronentheorie des natürlichen optischen Drchungsvermogens isotroper und anisotroper flussigkeiten - Ann. Physik, 1918, 55, N 1, S. 177-240.
- 12. Le Feure R. J. W. Molecular retractivity and polarisability.—Adv. Phys. Chem., 1965, 3, N 1, p. 1-90.

Харьковский политехнический институт Поступила 12.04.82