- 9. Юрченко Э. Н., Кустова Г. Н., Бацанов С. С. Колебательные спектры неорганических соединений. — Новосибирск : Наука, 1981.—140 с.
- 10. Hong H. Y.-P. Crystal structures of neodymium meta-phosphate (NdP₃O₉) and ultraphosphate (NdP₅O₁₄). — Acta Cryst., 1974, **B30**, p. 468—474.
- Физико-химическое исследование двойной системы из метафосфатов натрия и свинца / И. В. Мардиросова, Э. В. Полетаев, В. М. Шпакова, Г. А. Бухалова. — Изв. АН СССР. Неорган. материалы, 1974, 10, № 4, с. 667—669.
- 12. Накамото К. Инфракрасные спектры неорганических и координационных соединений. — М. : Мир, 1966.—410 с.
- 13. Лазарев А. Н., Маженов Н. А., Миргородский А. П. Оптические колебания кристалла YPO4 и его аналогов. Резонансные расшепления колебаний сложных анионов.— Изв. АН СССР. Неорган. материалы, 1978, 14, № 11, с. 2107—2113.
- 14. Ambruster A. Infrared reflection studies on the phosphates arsenates and vanadates of lutetium and itterium. J. Phys. Chem. Solids. 1976, 37, N 3, p. 321—327.
- 15. Влияние воды в стекле па тушение люминесценции редкоземельного активатора / Е. Г. Бондаренко, Е. И. Галант, С. Г. Лунтер, А. К. Пржевуский, М. Н. Толстой. — Оптико-мех. промышленность, 1975, № 6, с. 42—44.

Киевский

политехнический институт

Поступила 11.10.82

УДК 667.044.661.862.241.8

ИК-СПЕКТРЫ И ОСОБЕННОСТИ СТРОЕНИЯ ГИДРОСИЛИКАТОВ КАЛЬЦИЯ, КРИСТАЛЛИЗУЮЩИХСЯ В СИСТЕМЕ Na₂O—CaO—SiO₂—H₂O

В. В. Руденко, В. Ф. Шабанов, А. С. Костенко

Для теоретического обоснования нового гидрохимического способа [1] нами были изучены взаимодействия в системе Na₂O—CaO—SiO₂— —H₂O (температура 320°, молярное отношение CaO:SiO₂=2:1, концентрация щелочи 40—160 г/дм³ по Na₂O). При этом получены осадки, состав которых определяли методами рентгенофазового и химического анализов. Установлено, что осадки представляют смеси гидросиликатов кальция, по рентгенофазовым характеристикам весьма сходные с соединениями, описанными в работах [2—6].

В названных работах отсутствуют полные кристаллохимические сведения об этих соединениях, а рентгеноструктурные данные (сингония, пространственная группа) часто противоречивы. Приведены в основном формулы соединений в виде общего молярного состава, что не отражает структуру кристалла или хотя бы строение аниона и природу кристаллогидратной воды. Это затрудняет проведение кристаллохимической классификации полученных нами гидросиликатов кальция. Поэтому для более глубокого изучения фазового состава осадков в исследуемой системе нами был выполнен анализ их ИК-спектров поглощения в широком интервале частот — от 4000 до 400 см-1. Образцы осадков, обозначенные в порядке возрастания концентрации исходного раствора по Na₂O, готовили прессованием таблеток смеси КВг с 2 % исследуемого вещества. Для проверки воспроизведения спектрограмм из каждого осадка отбирали несколько проб. ИК-спектры пропускания снимали на двухлучевом инфракрасном спектрофотометре ИКС-14А (рис. 1). Рентгенограммы всех исследуемых осадков были получены на дифрактометре ДРОН-0,5 (рис. 2). Частоты полос поглощения идентифицированных соединений и их отнесение к типам колебаний приведены в таблице. Наличие полос поглощения СО32обусловлено адсорбцией некоторого количества атмосферной углекислоты в процессе приготовления исходных растворов. По характеру качественных изменений спектральных и рентгенофазовых данных, а следовательно, по появлению тех или иных фаз в осадках, всю серию исследуемых образцов можно условно разбить на три группы.

Осадки I группы представлены образцами 1—3. Рентгенограмма образца 1 обнаруживает в основном фазу типа фошагита [4]. Рефлексы образцов 2 и 3 указывают на присутствие в них также небольшого количества соединений типа гиллебрандита 2CaO·SiO₂·H₂O [5] и кальциевого гидросиликата 6CaO·3SiO₂·H₂O [6].

Фошагит выражается формулой Са₄ (Si₃O₉) (OH)₂ [4], а его структура, принадлежащая к моноклинной системе, сходна со структурой

Рис. 1. ИК-спектры пропускания твердых фаз в исследуемой системе при концентрации Na_2O в исходном растворе, г/дм³: I = 40; 2 = 80; 3 = 100; 4 = 120; 5 = 140; 6 = 160. Рис. 2. Дифрактограммы твердых фаз в исследуемой системе при концентрации Na_2O в исходном растворе, г/дм³: I = 40; 2 = 80; 3 = 100; 4 = 120; 5 = 140; 6 = 160.

волластонита. Однако структура фошагита включает в себя портландитовые слои $Ca(OH)_2$ и ленты ксонотлитового типа [7, 8]. Элементарная ячейка, состоящая из двух формульных единиц кроме двух ксонотлитовых молекул $Ca_6(Si_6O_{17})(OH)_2$, содержит $4Ca(OH)_2$. Записывая портландитовые молекулы в боковую цепь ксонотлитового ядра, кристаллохимическую формулу фошагита можно представить в виде $Ca_{12}(Si_6O_{17})_2 \cdot (OH)_4 \cdot 4Ca(OH)_2$. Эти выводы подтверждены ИКспектром образца 1. В области частот валентных колебаний кремнекислородного аниона (900—1100 см⁻¹) спектру ксонотлита [9] соответствуют четыре максимума поглощения, отвечающие колебаниям

vasSi—O—Si и групп Si—O- и Si О- кремнекислородных лент.

Характерная для ксонотлита полоса при 1200 см⁻¹ отсутствует в спектре фошагита, что можно объяснить значительным уменьшением мос-

тикового угла Si Si в последнем (в ксонотлите его значение близко к 180°) [9]. Присутствие структурных группировок Ca(OH)₂ в фошагите отражается на его спектре в области частот колебаний v_s Si— —O—Si. Вместо четырех интенсивных полос и двух слабых в ксонотлите этим колебаниям в фошагите соответствуют две интенсивные полосы (см. таблицу). Убедительным подтверждением существования указанных группировок является частота колебаний vOH, которая в образце 1 достигает 3610 см⁻¹, что соответствует значению vOH в свободных молекулах Ca(OH)₂.

Образцы 1—3		Образец 5		Образец 6	
ν, см ¹	Тип колеба- ний	v, см—1	Тип колебаний	v, см—1	Тип колебаний
3610 c. 3560 cp. 3410 cp.	νОН	3560 ср. 3430 ср.	νOH	3596 cp. 3580 cp. 3410 cp.	νOH
1080 о. с. 1060* п. 1040* п. 1027 о. с. 977 о. с. 925 о. с.	v_{as} SiOSi; v Si $-O^-$; v Si $\begin{pmatrix} O^-\\ O^- \end{pmatrix}$	1052 с. 1005 п. 957 о. с. 903 с. 828 с. 620 ср.	$\begin{array}{l} \nu_{as} \operatorname{SiOSi}(B_{1u}) \\ \nu_{as} \operatorname{SiO}_3(B_{3u}, B_{2u}) \\ \nu'_{as} \operatorname{SiO}_3(B_{1u}) \\ \nu_s \operatorname{SiO}_3(B_{3u}) \\ \nu'_s \operatorname{SiO}_3(B_{1u}) \\ \nu_s \operatorname{SiOSi}(B_{3u}) \end{array}$	1053 c. 957 o. c. 908 cp. 826 c. 619 c.	$ \begin{array}{l} \nu_{as} \operatorname{SiOSi}\left(B_{1u}\right) \\ \nu_{as} \operatorname{SiO}_{3}\left(B_{3u}, B_{2u}\right) \\ \nu_{s} \operatorname{SiO}_{3}\left(B_{3u}\right) \\ \nu'_{s} \operatorname{SiO}_{3}\left(B_{1u}\right) \\ \nu_{s} \operatorname{SiOSi}\left(B_{3u}\right) \end{array} $
660 сл. 649 ср. 630 сл. 544 с.	v. SiOSi	562 cp. 535 c. 502 c.	Деформационные	534 c. 478 c. 430	Деформационные
458 о. с. 414 сл.	Деформационные	480 c. 430 cp.			

* Частоты поглощения гиллебрандита; остальные максимумы его спектра налагаются на более сильные полосы фошагита.

Ко II группе можно отнести осадок 4, в спектре которого наблюдаются полосы поглощения, характерные для I и III групп. Группу III составляют осадки 5 и 6, каждый из них содержит преимущественно одну фазу. По дифрактограмме образца 5 идентифицировано соединение состава 6CaO·3SiO₂·H₂O, кристаллы которого [6] отнесены к триклинной сингонии. Набор рефлексов образца 6 согласуется с данными работы [10], согласно которой соединение принадлежит к тригональной системе и выражается формулой $Ca_6(Si_2O_7) \cdot (OH)_6$. Тем не менее рентгенограммы осадков 5 и 6 обнаруживают очевидное сходство, а спектроскопические характеристики почти совпадают. Обсуждая структуру соединения $Ca_6(Si_2O_7)(OH)_6$ и близких к нему минералов куспидина и тиллеита, авторы работы [11] пришли к выводу, что в основе кристаллической решетки этих трех соединений одинаковый структурный элемент — тиллеитовая лента, звеном которой является ядро 2[Ca₄(Si₂O₇)]²⁺. Такое звено, названное ими куспидиновой «молекулой», состоит из Са-октаэдров и дитетраэдров Si₂O7. Избыточная часть катионов Са (свыше необходимого для строительства ленты количества) образует слой молекул Са(OH)2. Такие слои, «сшивая» тиллентовые ленты, создают структуру с симметрией D_{2h}. Поэтому соединение $Ca_6(Si_2O_7)(OH)_6$ можно представить в виде $Ca_4(Si_2O_7)\times$ $\times (OH)_2 \cdot 2Ca (OH)_2$.

В связи с неоднозначностью в описании этого соединения нами спектроскопически оценены особенности его строения при помощи фактор-группового анализа внутренних колебаний кремнекислородного аниона $[Si_2O_7]^{6-}$. Отдельное рассмотрение колебаний сложного иона возможно для кристаллов с преимущественно электростатическим взаимодействием между анионной и катионной подрешетками. Полносимметричные колебания типа A группы SiO₄ при переходе к диортогруппе Si₂O₇ расщепляются на полносимметричное колебание v_s SiOSi и колебание типа v_{as} SiOSi. Активность частоты v_s может служить критерием величины угла связи Si—O—Si и, следовательно, конфигурации диортогруппы. Так, при нецентросимметричном строении последней частота v_s активна в ИК-спектре. В этом случае конфигурация Si₂O₇ может иметь симметрии C₂ v_c , C_s или C₂.

Для ряда пиросиликатов частота v_s SiOSi обнаруживается в области 730—600 см⁻¹ [9]. В спектре образца 6 в этом интервале наблюдается интенсивная полоса при 619 см-1, что свидетельствует о нецентросимметричности Si₂O₇. Теоретико-групповой анализ валентных колебаний этой группы при фактор-группе кристалла D_{2h} показал, что наблюдаемый спектр образца 6 в области 600—1100 см⁻¹ согласуется с полученными теоретическими правилами отбора в том случае, если при четырех молекулах в элементарной ячейке диортогруппы занимают четырехкратный набор кристаллографических позиций с местной симметрией C_2 или два двухкратных набора C_{2v} . Ниже приведена схема корреляции неприводимых представлений местной группы С_{2v} аниона $[Si_2O_7]^{6-}$ в кристалле $Ca_6(Si_2O_7)(OH)_6$ и фактор-группы кристалла D_{2h}.

Идентичность спектров образцов 5 и 6 в области частот 1100-600 см⁻¹ свидетельствует о сходном строении кремнекислородных анионов и близости структур их кристаллических решеток. Рентгенограммы этих соединений обнаруживают серию дифракционных пиков, обусловленных одинаковыми для обоих кристаллов межплоскостными расстояниями; 80 %-ный рефлекс, отвечающий d/n=2,88 Å образца 5, в рентгенограмме образца 6 становится 100 %-ным. Отражение 002 для образца 6 можно однозначно отнести к d/n=3,86 Å, что соответствует параметру $c = 7,5 \div 7,6$ Å, вычисленному в работе [11] для пиросиликатов группы куспидина. Аналогичное отражение наблюдается в рентгенограмме образца 5.

Обнаруженное сходство дифрактограмм и колебательных спектров позволяет предположить принадлежность образца 5 к группе силикатов, ядром которых является куспидиновая молекула, тем более, что содержащаяся в нем вода спектроскопически проявляется в виде гидроксильных групп.

- А. с. 341757 (СССР). Способ переработки нефелина / В. С. Сажин, О. И. Шор, Р. Г. Панченко, А. И. Волковская. Опубл. в Б. И., 1972, № 19.
- 2. Бут Ю. М., Рашкович Л. Н. Твердение вяжущих при повышенных температурах. М.: Стройиздат, 1965.—238 с. 3. Винчелл А. Н., Винчелл Г. В. Оптические свойства искусственных минералов. — М.:
- Мир, 1967.—529 с. 4. Gard J. A., Taylor H. F. W. Foshagite: composition, unit cell and dehydration.—
- Am. Min., 1958, 43, p. 1–15.
 5. Heller W. The identification of hillebrandite. Min. Mag., 1953, 30, p. 150–154.
 6. The identity of some dicalcium silicate hydrates / L. F. D. Glasser, H. Funk, W. Hil-

- тмет, Н. F. W. Taylor. J. Appl. Chem., 1961, 11, р. 186—190.
 7. Мамедов Х. С., Белов Н. В. Кристаллическая структура фошагита. Докл. АН СССР, 1958, 121, № 5, с. 901—903.
 8. Мамедов Х. С., Белов Н. В. О кристаллической структуре гиллсбрандита. Там теор 22. № 4. с. 741. 743.
- же, 123, № 4, с. 741—743.
- 9. Лазарев А. Н. Колебательные спсктры и строение силикатов. Л.: Наука, 1968. 10. Buckle E. R., Gard J. A., Taylor H. F. W. Tricalcium silicate hydrate. J. Chem. Soc., 1958, 4 / 5, р. 1351—1355. 11. Мамедов Х. С., Клевцова Р. Ф., Белов Н. В. О кристаллической структуре гидрата
- трехкальциевого силиката. Докл. АН СССР, 1963, 126, № 1, с. 151—154.

Институт общей и неорганической химии АН УССР, Киев

Поступила 01.08.80, вторично — 30.02.82