УДК 539.26+548.312.5+661.865

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА ТРИНИТРАТОТРИС[ТРИС(ДИМЕТИЛАМИНО)ФОСФИН-ОКСИД]НЕОДИМА (III) [Nd(NO₃)₃{OP[N(CH₃)₂]₃]

В. В. Скопенко, Ю. Л. Зуб, Г. Г. Садиков, М. А. Порай-Кошиц

Трис (диметиламино) фосфиноксид $OP[N(CH_3)_2]_3$ (ТДМФО) образует с нитратами лантаноидов соединения состава Ln(NO₃)₃.nTДМФО, где n=2 [1]; 3 [2, 3]; 3,5 [3]; 4 [2-4]. О строении рассматриваемых комплексов нет единого мнения. Так, центральному атому в Er(NO₃)₃. •4ТДМФО приписывают координационное число (КЧ), равное 7 [2]: 8 [3]; 10 [4]; КЧ неодима в Nd(NO₃)₃.3ТДМФО, по данным [2], равно 6, а по [3] — 8. Так как синтез в этих работах проводили по различным методикам, можно предположить, что состав и строение полученных соединений действительно различны в разных экспериментах. С другой стороны, перекрывание полос поглощения лигандов в колебательном спектре, а также распространение выводов о строении комплексов в растворах и на их кристаллическое состояние (что в общем случае не имеет под собой достаточного основания) могло привести к некорректным заключениям.

Необходимо было изучить выделенные из этанола необычные по составу нитраты РЗЭ, для которых автор [1] на основе данных поэлектропроводности и ИК-спектров предложил KЧ, равное 6: $[Ln(NO_3)_2(TДМФО)_2]NO_3$ (Ln=Y, La, Ce—Lu). Однако получить комплексы указанного состава, как и авторам работы [2], нам не удалось. Для первой половины ряда РЗЭ (Ln=La-Gd) были выделены из этанола соединения состава Ln(NO₃)₃·3ТДМФО; для второй (Ln= =Tb-Lu, Y) в зависимости ОТ условий — комплексы состава Ln (NO₃)₃·4́ТДМФО. 2Ln (NO₃)₃·5ТДМФО или Чтобы установить строение комплексных соединений, относящихся к цериевой подгруппе лантаноидов. ΜЫ провели структурное исследование Nd (NO₃)₃. $\cdot 3T \square M \Phi O.$

Синтез соединения Nd(NO₃)₃·3ТДМФО осуществлен по методике, описанной в [3]. Монокристаллы были выращены из этанольного раствора в присутствии ортоэтилформиата как дегидратирующего агента. Параметры моноклинной решетки: a=16,275(4); b=11,419(2); c==21,287(7) Å; $\beta=93,91(2)^{\circ}$; V=3947(2) Å³; при Z=4 $d_{выч}=$ =1,46(1) г/см³; $\mu_{Mo}=15,1$ см⁻¹; пр. гр. Р2₁. Соединение изоструктурно комплексу лантана аналогичного состава [6].

Отражения с 1(*hkl*) > $3\sigma(1)$ от образца размером 0,020 × 0,025 × ×0,035 см³ в количестве 3456 получали на четырехкружном автоматическом дифрактометре «Syntex P2₁» (МоК_α-излучение, графитовый монохроматор). Сканирование отражений осуществляли методом $\Theta: 2\Theta$ до sin $\Theta/\lambda \leq 0,538$ Å⁻ⁱ. Поправку на поглощение не вводили. Все расчеты проводили по стандартным программам «XTL» и «Рентген-75» на ЭВМ NOVA-1200 и БЭСМ-6 [7].

Структура определена методом «тяжелого» атома. Из трехмерного распределения межатомной функции P(uvw) выявлены положения двух кристаллографически неэквивалентных атомов неодима. Расчет функции $\rho(xyz)$ по координатам этих атомов позволил локализовать ближайшее окружение и атомы фосфора. Последующие приближения электронной плотности, а также разностный синтез Фурье $\Delta \rho(xyz)$ выявил все 92 неводородных атома. Уточнение структуры проводили

Таблица 1				
Координаты атомов (в	долях	ячейки) и	температурные	факторы

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_							- F		
	Атом	x	y	z	$\begin{vmatrix} B_{j}\\ \tilde{\Lambda}^{2} \end{vmatrix}$	Атом	x	Ų	z	^B j∙ Ų
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nd1	0,2527(1)	0	0,1053 (1)		Nd2	0,2454 (1)	0,2240 (2	0,6218(1)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	РI	0,4800 (6)	0,0398 (8	0,1534 (4)		P4	0,2506(6)	0.0452 (9)	0.7762(5)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P2	0,2566 (6)	0,3227 (9	0,1607 (4)		P5	0,3405 (6)	0.035(1)	0.5362(6)	
01 0, 404 (1) 0, 006 (3) 0, 1225 (9) 04 0, 252 (2) 0, 113 (2) 0, 718 (1) 02 0, 266 (1) 0, 202 (2) 0, 147 (1) 05 0, 291 (1) 0, 047 (2) 0, 571 (1) 0, 316 (2) 0, 159 (2) 0, 042 (1) 016 0, 261 (2) 0, 343 (3) 0, 704 (1)	P3	0,0267 (6)	0,0306 (7	0,1480 (4)		P6	0,1382 (8)	0,335 (1)	0.4696(5)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01	0,404 (1)	0,006 (3)	0,1225 (9)		04	0,252 (2)	0,113(2)	0.718(1)	
	02	0,266(1)	0,202 (2)	0,147(1)		05	0,291 (1)	0,047 (2)	0.571(1)	
$ 07 0.316 (2) 0.159 (2) 0.042 (1) \\ 08 0.185 (2) 0.149 (3) 0.028 (1) \\ 017 0.225 (2) 0.443 (3) 0.617 (2) \\ 0.302 (2) 0.287 (3) 0.021 (1) \\ 018 0.234 (3) 0.566 (3) 0.697 (2) \\ 011 0.310 (2) 0.118 (2) 0.016 (1) \\ 011 0.325 (2) 0.298 (3) 0.573 (2) \\ 012 0.246 (2) 0.234 (3) 0.052 (1) \\ 013 0.263 (1) 0.033 (3) 0.227 (1) \\ 013 0.263 (1) 0.033 (3) 0.275 (1) \\ 014 0.257 (2) 0.180 (2) 0.173 (1) \\ 015 0.271 (2) 0.020 (3) 0.275 (1) \\ 0.246 (2) 0.154 (3) 0.009 (2) \\ N1 0.249 (2) 0.154 (3) 0.009 (2) \\ N1 0.249 (2) 0.154 (3) 0.011 (1) \\ 0.265 (2) 0.149 (4) 0.226 (2) \\ N3 0.265 (2) 0.149 (4) 0.226 (2) \\ N7 0.546 (2) 0.014 (3) 0.226 (1) \\ 0.607 (3) 0.163 (4) 0.665 (2) \\ N7 0.546 (2) 0.014 (3) 0.226 (1) \\ 0.607 (3) 0.163 (4) 0.636 (2) \\ N7 0.546 (2) 0.014 (3) 0.226 (1) \\ 0.16 0.35 (2) 0.090 (3) 0.817 (1) \\ 0.360 (2) 0.372 (3) 0.159 (1) 6.5 \\ N18 0.170 (2) 0.090 (3) 0.817 (1) \\ 0.360 (2) 0.372 (3) 0.159 (1) 6.5 \\ N19 0.366 (2) 0.173 (3) 0.146 (2) 9.5 \\ N10 0.160 (2) 0.372 (3) 0.159 (1) 6.5 \\ N12 0.307 (2) 0.093 (3) 0.131 (6) 0.462 (2) 13.4 \\ N11 0.306 (2) 0.373 (3) 0.228 (1) 7.5 \\ N20 0.296 (3) 0.163 (5) 0.530 (2) 14.5 \\ N12 0.307 (2) 0.389 (3) 0.051 (1) 5.4 \\ N24 0.068 (3) 0.416 (5) 0.573 (2) 14.5 \\ N13 0.014 (2) 0.022 (3) 0.094 (1) 6.7 \\ N24 0.068 (3) 0.416 (4) 0.426 (2) 10.4 \\ N14 0.015 (2) 0.036 (4) 0.321 (2) 5.4 \\ N24 0.068 (3) 0.414 (3) 0.089 (2) 14.5 \\ N13 0.044 (2) 0.053 (4) 0.087 (2) 6.5 \\ N23 0.380 (2) 0.44 (3) 0.089 (2) 14.5 \\ N14 0.015 (2) 0.036 (4) 0.372 (5) 6.0 \\ N24 0.068 (3) 0.414 (3) 0.084 (4) 0.797 (2) 10.4 \\ C2 0.642 (3) 0.036 (4) 0.138 (2) 8.3 \\ C20 0.338 (2) 0.047 (3) 0.891 (2) 7.8 \\ N14 0.015 (2) 0.036 (4) 0.037 (2) 2.7 \\ N24 0.068 (3) 0.116 (5) 0.551 (7) 0.548 (3) 14.5 \\ C24 0.138 (3) 0.245 $	03	0,1087 (9)	0,011 (2)	0,1229 (9)		06	0,191 (1)	0,267(2)	0,520(1)	
08 0, 185 (2) 0, 149 (3) 0, 028 (1)	07	0,316(2)	0,159(2)	0,042(1)		016	0,261 (2)	0,383 (3)	0.704 (1)	
	08	0,185 (2)	0,149(3)	0,028(1)		017	0,225 (2)	0,443 (3)	0.617(2)	
$ 010 0.310 \ (2) 0.118 \ (2) 0.016 \ (1) \\ 011 0.184 \ (2) 0.121 \ (2) 0.014 \ (1) \\ 012 0.246 \ (2) 0.223 \ (3) 0.052 \ (1) \\ 0.233 \ (3) 0.227 \ (1) \\ 014 0.257 \ (2) 0.180 \ (2) 0.173 \ (1) \\ 015 0.271 \ (2) 0.200 \ (3) 0.227 \ (1) \\ 0.22 0.113 \ (2) 0.017 \ (3) 0.666 \ (1) \\ 0.246 \ (2) 0.154 \ (3) 0.009 \ (2) \\ N1 0.246 \ (2) 0.154 \ (3) 0.013 \ (1) \\ N5 0.434 \ (2) 0.433 \ (4) 0.656 \ (2) \\ N1 0.246 \ (2) 0.154 \ (3) 0.013 \ (1) \\ N5 0.434 \ (2) 0.463 \ (4) 0.656 \ (2) \\ N1 0.246 \ (2) 0.154 \ (3) 0.013 \ (1) \\ N5 0.434 \ (2) 0.668 \ (3) 0.625 \ (1) \\ N1 0.246 \ (2) 0.154 \ (3) 0.013 \ (1) \\ N5 0.430 \ (2) 0.668 \ (3) 0.625 \ (1) \\ N1 0.246 \ (2) 0.143 \ (3) 0.216 \ (1) 6.5 \\ N17 0.546 \ (2) 0.013 \ (3) 0.117 \ (1) 6.2 \\ N16 0.335 \ (2) 0.068 \ (3) 0.821 \ (1) 5.7 \\ N18 0.491 \ (2) 0.014 \ (3) 0.226 \ (1) 7.5 \\ N10 0.160 \ (2) 0.372 \ (3) 0.159 \ (1) 6.5 \\ N17 0.240 \ (2) 0.090 \ (3) 0.817 \ (1) 5.9 \\ N10 0.160 \ (2) 0.372 \ (3) 0.159 \ (1) 6.5 \\ N19 0.346 \ (3) 0.013 \ (6) 0.462 \ (2) \ 13.4 \\ N11 0.306 \ (2) 0.372 \ (3) 0.055 \ (1) 7.5 \\ N20 0.296 \ (3) 0.013 \ (6) 0.462 \ (2) \ 13.4 \\ N11 0.306 \ (2) 0.372 \ (3) 0.055 \ (1) 5.4 \\ N14 0.015 \ (2) 0.015 \ (3) 0.215 \ (1) 5.4 \\ N14 0.015 \ (2) 0.015 \ (3) 0.215 \ (1) 5.4 \\ N14 0.015 \ (2) 0.015 \ (3) 0.215 \ (1) 5.4 \\ N24 0.068 \ (3) 0.424 \ (3) 0.502 \ (2) \ 10.4 \\ N14 0.015 \ (2) 0.015 \ (3) 0.215 \ (1) 5.4 \\ N24 0.068 \ (3) 0.424 \ (3) 0.502 \ (2) \ 10.4 \\ C1 0.599 \ (3) \ 0.303 \ (4) \ 0.155 \ (2) \ 10.5 \ (1) \ 5.4 \\ N24 0.068 \ (3) 0.424 \ (3) 0.502 \ (2) \ 10.4 \\ C2 0.642 \ (3) 0.036 \ (4) \ 0.737 \ (2) \ 10.4 \\ C2 0.642 \ (3) \ 0.036 \ (4) \ 0.737 \ (2) \ 10.4 \\ C2 0.642 \ (3) \ 0.036 \ (4) \ 0.737 \ (2) \ 10.4 \\ C1 0.599 \ (3) \ 0.303 \ (4) \ 0.155 \ (4) \ 0.255 \ (5) \ 0.113 \ (3) \ 0.038 \ (5) \ 0.58$	09	0,240(2)	0,287 (3)	0,021 (1)		018	0,234 (3)	0,566 (3)	0,697 (2)	
	010	0,310(2)	0,118(2)	0,016(1)		019	0,395(1)	0,225 (3)	0.657(1)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	011	0,184 (2)	0,121 (2)	0,014(1)		020	0,385 (2)	0,298 (3)	0,573 (2)	
	012	0,246 (2)	0,234 (3)	0,052(1)		021	0,501 (2)	0,264(4)	0,598(2)	
$ 014 0.257 (2) 0.180 (2) 0.173 (1) \\ 015 0.271 (2) 0.200 (3) 0.275 (1) \\ 0.24 0.011 (2) 0.117 (3) 0.656 (2) \\ 0.11 0.249 (2) 0.159 (3) 0.009 (2) \\ 0.24 0.011 (2) 0.117 (3) 0.655 (2) \\ 0.2 0.246 (2) 0.154 (3) 0.013 (1) \\ 0.265 (2) 0.149 (4) 0.226 (2) \\ 0.3 0.265 (2) 0.149 (4) 0.226 (2) \\ 0.7 0.546 (2) 0.031 (3) 0.117 (1) 6.2 \\ 0.8 0.491 (2) 0.014 (3) 0.226 (1) 6.0 \\ 0.7 0.546 (2) 0.014 (3) 0.226 (1) 6.0 \\ 0.7 0.546 (2) 0.014 (3) 0.226 (1) 6.0 \\ 0.9 0.508 (2) 0.173 (3) 0.146 (2) 9.5 \\ 0.10 0.160 (2) 0.372 (3) 0.159 (1) 6.5 \\ 0.10 0.160 (2) 0.372 (3) 0.159 (1) 6.5 \\ 0.11 0.306 (2) 0.345 (3) 0.228 (1) 7.5 \\ 0.11 0.306 (2) 0.345 (3) 0.228 (1) 7.5 \\ 0.11 0.307 (2) 0.389 (3) 0.105 (1) 5.8 \\ 0.11 0.307 (2) 0.389 (3) 0.105 (1) 5.8 \\ 0.11 0.304 (2) 0.022 (3) 0.994 (1) 6.7 \\ 0.22 0.166 (3) 0.446 (5) 0.573 (2) 14.2 \\ 0.11 0.015 (2) 0.015 (3) 0.215 (1) 5.7 \\ 0.38 0.036 (2) 0.244 (3) 0.426 (2) 10.4 \\ 0.15 0.016 (4) 0.025 (2) 0.051 (1) 5.8 \\ 0.11 0.016 (2) 0.036 (4) 0.138 (2) 8.3 \\ 0.068 (3) 0.424 (3) 0.425 (1) 7.8 \\ 0.11 0.016 (4) 0.077 (6) 0.251 (2) 8.1 \\ 0.11 0.036 (4) 0.036 (4) 0.138 (2) 8.3 \\ 0.461 (2) 0.094 (4) 0.251 (2) 8.1 \\ C22 0.642 (3) 0.036 (4) 0.138 (2) 8.3 \\ C3 0.461 (2) 0.094 (4) 0.251 (2) 8.1 \\ C4 0.546 (4) 0.077 (6) 0.275 (3) 14.6 \\ C23 0.318 (2) 0.047 (3) 0.891 (2) 6.8 \\ C3 0.447 (3) 0.264 (5) 0.178 (2) 10.6 \\ C42 0.158 (3) 0.223 (5) 0.818 (2) 10.6 \\ C7 0.399 (3) 0.330 (4) 0.192 (2) 7.1 \\ C25 0.365 (5) 0.112 (7) 0.442 (3) 15.4 \\ C5 0.447 (3) 0.264 (5) 0.778 (2) 10.6 \\ C24 0.158 (3) 0.423 (5) 0.592 (4) 14.1 \\ C16 0.390 (3) 0.411 (4) 0.990 (2) 7.1 \\ C29 0.452 (3) 0.057 (4) 0.638 (2) 10.6 \\ C16 0.056 (3) 0.041 (5) 0.255 (2) 10.9 \\ C27 0.349 (4) 0.255 (7) 0.591 (7) 15.2 \\ C3 0.051 $	013	0,263(1)	0,033 (3)	0,227(1)		022	0,113(2)	0,087 (3)	0.613(1)	
$ 015 0,271 (2) 0,200 (3) 0,275 (1) \\ N1 0,249 (2) 0,159 (3) 0,009 (2) \\ N2 0,246 (2) 0,154 (3) 0,013 (1) \\ N3 0,265 (2) 0,149 (4) 0,226 (2) \\ N4 0,234 (2) 0,655 (1) \\ N5 0,430 (2) 0,237 (4) 0,625 (1) \\ N6 0,067 (3) 0,163 (4) 0,636 (2) \\ N7 0,556 (2) 0,117 (3) 0,117 (1) 6,2 \\ N16 0,067 (3) 0,163 (4) 0,636 (2) \\ N17 0,546 (2) 0,014 (3) 0,226 (1) 6,0 \\ N17 0,240 (2) 0,090 (3) 0,817 (1) 5,9 \\ N10 0,160 (2) 0,372 (3) 0,159 (1) 6,5 \\ N19 0,346 (3) 0,013 (5) 0,530 (2) 14,5 \\ N11 0,306 (2) 0,345 (3) 0,228 (1) 7,5 \\ N12 0,307 (2) 0,389 (3) 0,105 (1) 5,8 \\ N21 0,441 (3) 0,044 (5) 0,573 (2) 14,2 \\ N14 0,015 (2) 0,015 (3) 0,215 (1) 5,4 \\ N14 0,015 (2) 0,015 (3) 0,215 (1) 5,4 \\ N14 0,015 (2) 0,015 (3) 0,215 (1) 5,4 \\ N14 0,015 (2) 0,015 (3) 0,215 (1) 5,4 \\ N14 0,016 (2) 0,036 (4) 0,138 (2) 8,3 \\ C1 0,529 (2) 0,091 (3) 0,055 (2) 6,0 \\ C19 0,418 (3) 0,108 (4) 0,777 (2) 10,4 \\ C2 0,642 (3) 0,036 (4) 0,275 (3) 14,6 \\ C12 0,308 (3) 0,101 (4) 0,777 (2) 10,4 \\ C3 0,441 (3) 0,036 (4) 0,275 (3) 14,6 \\ C12 0,308 (3) 0,101 (4) 0,777 (2) 10,4 \\ C2 0,642 (3) 0,036 (4) 0,275 (3) 14,6 \\ C22 0,642 (3) 0,036 (4) 0,275 (3) 14,6 \\ C23 0,131 (3) 0,038 (5) 0,801 (2) 12,0 \\ C4 0,546 (4) 0,077 (6) 0,275 (3) 14,6 \\ C23 0,131 (3) 0,038 (5) 0,801 (2) 12,0 \\ C4 0,546 (4) 0,077 (6) 0,275 (3) 14,6 \\ C24 0,158 (3) 0,223 (5) 0,318 (2) 10,6 \\ C3 0,330 (4) 0,039 (4) 0,255 (7) 0,549 (3) 14,4 \\ C18 0,094 (2) 0,271 (4) 0,285 (2) 0,112 (3) 0,248 (2) 0,55 (5) 0,414 (2) 0,55 (5) 0,414 (2) 0,55 (5) 0,414 (2) 0,55 (5) 0,414 (2) 0,55 $	014	0,257 (2)	0,180(2)	0,173(1)		023	0,100(1)	0,245 (3)	0,660(1)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	015	0,271 (2)	0,200 (3)	0,275(1)		024	0,011(2)	0,117 (3)	0,656 (2)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N1	0,249(2)	0,159(3)	0,009 (2)		N4	0,234 (2)	0,463(4)	0,675 (2)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N2	0,246 (2)	0,154 (3)	0,013(1)		N5	0,430 (2)	0,237 (4)	0,625(1)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N3	0,265 (2)	0,149(4)	0,226 (2)		N6	0,067 (3)	0,163(4)	0,636 (2)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N7	0,546 (2)	0,031 (3)	0,117(1)	6,2	N16	0,335 (2)	0,068 (3)	0,821(1)	5.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N8	0,491 (2)	0,014 (3)	0,226(1)	6,0	N17	0,240 (2)	0,090 (3)	0,766 (1)	5.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N9	0,508 (2)	0,173 (3)	0,146 (2)	9,5	N18	0,170(2)	0,090 (3)	0,817 (1)	5.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N10	0,160 (2)	0,372 (3)	0,159(1)	6,5	N19	0,346 (3)	0,013 (6)	0,462 (2)	13,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N11	0,306 (2)	0,345 (3)	0,228(1)	7,5	N20	0,296 (3)	0,153 (5)	0,530 (2)	14,5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N12	0,307 (2)	0,389 (3)	0,105(1)	5,8	N21	0,441 (3)	0,044 (5)	0,573 (2)	14,2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N13	0,041 (2)	0,022 (3)	0,094 (1)	6,7	N22	0,196 (3)	0,406 (4)	0,426 (2)	10,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N14	0,015 (2)	0,015 (3)	0,215(1)	6,5	N23	0,086 (2)	0,244 (3)	0,425(1)	7,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N15	0,014 (2)	0,175 (2)	0,151(1)	5,4	N24	0,068 (3)	0,424 (3)	0,502 (2)	10.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0,529(2)	0,091 (3)	0,055 (2)	6,0	C19	0,418(3)	0,108 (4)	0,797 (2)	10,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0,642 (3)	0,036 (4)	0,138(2)	8,3	C20	0,338 (2)	0,047 (3)	0,891 (2)	6,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0,461 (2)	0,094 (4)	0,251 (2)	8,1	C21	0,308 (3)	0,191 (5)	0,801 (2)	12,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0,546 (4)	0,077 (6)	0,275 (3)	14,6	C22	0,181 (5)	0,135 (8)	0,732 (4)	18,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	0,447 (3)	0,264 (5)	0,178(2)	10,6	C23	0,131 (3)	0,038 (5)	0,862 (2)	10.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ċ6	0,532 (2)	0,218(4)	0,085 (2)	7,6	C24	0,158(3)	0,223(5)	0,818 (2)	10.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	0,099 (3)	0,330 (4)	0,109 (2)	8,7	C25	0,365 (5)	0,112 (7)	0,442 (3)	15.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	0,136 (3)	0,470 (5)	0,206 (2)	11,1	C26	0,314 (4)	0,096 (6)	0,408 (3)	14.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0,360 (3)	0,451 (4)	0,240(2)	9,0	C27	0,349 (4)	0,265 (7)	0.549 (3)	15.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	0,296(2)	0,291 (4)	0,484 (2)	7,4	C28	0,191 (4)	0,173 (6)	0,529 (3)	14.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0,391 (2)	0,350 (4)	0,092 (2)	7.1	C29	0,452 (3)	0,057 (4)	0,638 (2)	10.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.274(3)	0,486(6)	0.070 (2)	12.3	C30	0.505(4)	0,050 (5)	0.516 (3)	13.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0,021 (2)	0,079 (3)	0,039(1)	4.7	C31	0,286 (3)	0,433 (5)	0,443 (2)	10.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0,133 (3)	0,009 (5)	0.110 (2)	9,0	C32	0,165 (5)	0,432 (8)	0.370 (5)	21,9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0,071 (2)	0,112 (3)	0,248 (2)	5.3	C33	0,126 (2)	0,128 (3)	0,412 (2)	6.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0,056 (3)	0,011 (5)	0,255 (2)	10.9	C34	0,001 (2)	0,271(4)	0.387(2)	7.3
C18 0,004 (2) 0,237 (5) 0,091 (2) 9,1 $\ $ C36 0,790 (4) 0,551 (7) 0,551 (7) 15,2	C17	0,052 (3)	0,233 (5)	0,211 (2)	10.0	C35	0,004 (3)	0,373 (5)	0,536 (2)	11.4
	C18	0,004 (2)	0,237 (5)	0,091 (2)	9,1	C36	0,790 (4)	0,551 (7)	0,551 (7)	15,2

МНК в изо-анизотропном * варианте по полной матрице [7]. Окончательный R-фактор по 3012 отражениям, участвующим в уточнении, равен 0,099, а по всем наблюдаемым — 0,104. Соответствующие значения координат атомов и констант тепловых колебаний приведены в табл. 1, а длины связей и валентные углы в табл. 2, 3.

^{*} Анизотропное уточнение проводили для обоих атомов Nd, всех атомов P, O и атомов N нитратогрупп; B_{ij} не приводятся.

Рис. 1. Строение кристаллографически (ТДМФО)₃].

Таблица	2	
Межатомные	расстояния	(Å)

MICMAIOMHDIC	расстояния (д)				
Атомы	Расстояние	Атомы	Расстояние	Атомы	Расстояние
Nd1-01	2,472 (23)	P3—N15	1,66 (3)	N18-C23	1,33 (6)
Nd102	2,473 (20)	P4N16	1,64 (3)	N18-C24	1,52(7)
Nd1-03	2,402 (15)	P4—N17	1,57 (3)	N19-C25	1,26 (10)
Nd2-04	2,408 (23)	P4—N18	1,70(3)	N19-C26	1,76 (9)
Nd2-05	2,430 (22)	P5—N19	1,67 (5)	N20C27	1,57 (10)
Nd206	2,346 (23)	P5—N20	1,54 (6)	N20C28	1,72 (8)
Nd1-07	2,521 (29)	P5-N21	1,76 (5)	N21-C29	1,40(7)
Nd108	2,564 (30)	P6-N22	1,58 (4)	N21-C30	1,64 (8)
Nd1010	2,565 (25)	P6-N23	1,63(4)	N22C31	1,53 (7)
Nd1011	2,578 (25)	P6—N24	1,71 (5)	N22	1,30 (10)
Nd1-013	2,603 (23)	Cp P_N	1 63 (3)	N23	1,51 (5)
Nd1-014	2,507 (23)	Cp. F—N	1,03(3)	N23-C34	1,58 (5)
Nd2-016	2,517 (29)	N7-C1	1,50 (4)	N24—C35	1,43(7)
Nd2-017	2,522 (34)	N7-C2	1,60 (5)	N24C36	1,49 (10)
Nd2-019	2,492 (21)	N8	1,45 (5)	Cn N—C	1 50 (6)
Nd2-020	2,702 (29)	N8—C4	1,52(7)	op. 11–0	1,50(0)
Nd2-022	2,658 (32)	N9—C5	1,62 (6)	N1-07	1,33 (4)
Nd2-023	2,562 (24)	N9-C6	1,47 (5)	N1-08	1,26 (5)
01—P1	1,45 (2)	N10—C7	1,48 (5)	N1-09	1,20 (4)
02—P2	1,42 (2)	N10-C8	1,56 (6)	N2—010	1,25 (4)
03—P3	1,54 (2)	N11-C9	1,50 (6)	N2—011	1,23 (4)
04—P4	1,46 (2)	N11-C10	1,37 (5)	N2-012	1,24 (4)
05 —P5	1,47 (3)	N12-C11	1,48 (5)	N3013	1,32 (5)
06—P6	1,53 (2)	N12—C12	1,41 (7)	N3014	1,19(4)
Cn A D	1 40 (9)	N13-C13	1,40 (4)	N3015	1,19 (5)
Ср. 0—Р	1,49(2)	N13-C14	1,60 (5)	N4-016	1,17 (5)
P1—N7	1,58(3)	N14-C15	1,57 (5)	N4-017	1,24 (5)
P1—N8	1,58 (2)	N14-C16	1,50 (5)	N4018	1,27 (5)
P1N9	1,60 (6)	N15-C17	1,51 (5)	N5019	0,98 (4)
P2—N10	1,66 (3)	N15-C18	1,46 (5)	N5-020	1,47 (4)
P2—N11	1,61 (3)	N16-C19	1,55 (6)	N5-021	1,36 (5)
P3—N12	1,67 (3)	N16-C20	1,51 (4)	N6-022	1,24 (6)
P3—N13	1,64 (3)	N17-C21	1,68 (6)	N6-023	1,18 (5)
P3—N14	1,54 (3)	N17-C22	1,27 (9)	N6-024	1,17(6)

валентные углы	ш, град				
угол	ω	Угол	Ŵ	Угол	ω
Nd1-01-P1 Nd1-02-P3	149,5(1,6) 165,9(1,4)	06-P6-N24 N22-P6-N23	111,8(2,0) 107,0(2,0)	P4-N18-C24	115 (3) 112 (4)
Nd1-03-P3	156.0(1.2)	N22 - P6 - N24	111.8(2.2)	P5	131 (5)
Nd2-04-P4	176.5(1.6)	N23-P6-N24	106.6(2.0)	P5-N19-C26	111 (4)
Nd2-05-P5	161.1 (1.4)	P1N7C1	125 (2)	C25 - N19 - C26	119 (5)
Nd2-06-P6	155.8 (1.5)	P1-N7-C2	124 (2)	P5-N20-C27	116 (4)
01-P1-N7	100,0(1,5)	C1-N7-C2	110 (3)	P5-N20-C28	125 (4)
01-P1-N8	114, 4(1, 5)	P1-N8-C3	120 (2)	C27-N20-C28	115 (5)
01-P1-N9	122,8(1,8)	P1-N8-C4	127 (3)	P5—N21—C29	119 (4)
N7-P1-N8	110,4 (1,5)	C3—N8—C4	111 (3)	P5-N21-C30	107 (3)
N7-P1-N9	103,6(1,8)	PI-N9-C5	113 (3)	C29—N21—C30	133 (4)
N8-P1-N9	104,8(1,8)	P1-N9-C6	120 (3)	P6-N22-C31	124 (3)
02— P2—N10	116,4(1,5)	C5—N9—C6	111 (3)	P6—N22—C32	117 (5)
02 —P2—N11	106,6(1,6)	P2-N10-C7	120 (3)	C32—N22—C32	119 (5)
02 —P2—N12	103,0(1,4)	P2-N10-C8	120 (3)	P6-N23-C33	118 (2)
N10—P2—N11	111,9(1,6)	C7—N10—C8	120 (3)	P6—N23—C34	126 (3)
N10-P2-N12	109,6 (1,5)	P2-N11-C9	122 (3)	C33—N23—C34	116 (3)
N11—P2—N12	108,8(1,6)	P2-N11-C10	129 (3)	P6—N24—C35	120 (4)
0 3—P3—N13	101,4(1,4)	C9-N11-C10	108 (3)	P6—N24—C36	113 (4)
0 3P3N14	112,4(1,4)	P2-N12-C11	120 (2)	C35—N24—C36	127 (5)
03 —P3—N15	115,5(1,3)	P2—N12—C12	123 (3)	07—N1—08	110 (3)
N13-P3-N14	113,6(1,6)	C11—N12—C12	117 (3)	07—N1—09	129 (3)
N13-P3-N15	108,6(1,5)	P3-N13-C13	125 (2)	08—N1—09	119 (3)
N14—P3—N15	105,7(1,5)	P3—N13—C14	111 (2)	010—N2—011	111 (3)
04—P4—N16	110,0(1,5)	C13-N13-C14	124 (3)	010—N2—012	123 (3)
04—P4—N17	115,0(1,5)	P3-N14-C15	123 (2)	011—N2—012	124 (3)
04—P4—N18	109,2(1,5)	P3-N14-C16	127 (3)	013-N3-014	108 (3)
N16-P4-N17	108,6(1,5)	C15-N14-C16	109 (3)	013—N3—015	119 (3)
N16-P4-N18	106,9(1,5)	P3-N15-C17	115 (2)	014—N3—015	133 (4)
N17—P4N18	106,8 (1,5)	P3	117 (2)	016—N4—017	114 (4)
05—P5—N19	109,7 (2,1)	CI7-NI5-CI8	122 (3)	016—N4—018	122 (4)
05—P5—N20	109,6 (2,3)	P4—N16—C19	125 (2)	017—N4—018	122 (4)
05-P5-N21	109,8(1,9)	P4-N16-C20	121 (2)	019—N5—020	109 (3)
N19-P5-N20	104,9 (2,8)	C19—N16—C20	113 (3)	019-N5-021	158 (4)
N19-P5-N21	108,8 (2,5)	P4-N17-C21	124 (2)	020-N5-021	88 (3)
N20-P5-N21	113,9 (2,6)	P4-N1/-C22	123 (4)	022-N6-023	118 (4)
Ub - Pb - N22	110,1(1,9)	C21 - N17 - C22	113 (5)	022-N6-024	109 (4)
00-P6-N23	109,3(1,6)	P4—N18—C23	131 (3)	023-Nb-024	123 (4)
		1		JI	

Таблица З Валентные углы ю, град

В независимой части элементарной ячейки кристаллов рассматриваемого соединения находятся два кристаллографически различных атома неодима, каждый из которых имеет в ближайшем окружении девять атомов кислорода. Три из них принадлежат фосфиноксидным лигандам, а шесть — трем бидентатным нитратным группам (рис. 1). Интерпретация формы координационного полиэдра (КП) центральных атомов встречает определенные затруднения, вызванные присутствием в координационной сфере комплекса различных лигандов. Попытаемся оценить форму и степень искажения КП с использованием критериев [5], распространенных в [8] на КЧ, равное 9, полагая при этом, что каждый атом кислорода, находящийся в координационной сфере, занимает одну вершину полиэдра. В этом случае КП обоих атомов неодима, имеющих близкое строение, можно описать двояко (табл. 4): искаженной одношапочной квадратной антипризмой (ОКА) (рис. 2, *a*) или искаженной трехшапочной тригональной призмой (ТТП) (рис. 2, *б*).

Таблица 4 Валентные расстояния и двугранные углы в КП некоторых комплексов РЗЭ с КЧ, равным 9

	Длина связи, Å		Двугранные углы, град [8]				1
Соедивение	Ln-O(NO ₈)	Ln—О (нейтраль- ный лиганд)	δι	ð ₂	δ,	v/h [8]	Литературные данные
ТТП (D _{3h})			180	146,4 (×3)	26,4 (×3)	1,17	[8]
ОКА (С _{4<i>v</i>})			163,5 (× 2)	138 ,2 (×2)	0		[8]
Nd(NO _{s)s} .3TДMФO	2,56 (3) 2,58 (3) Cp. 2,57 (3)	2,45 (2) 2,40 (2) 2,42 (2)	165,4 (Nd1) ¹ 175,3 (Nd2) ¹ 165,4; 172,9 (Nd1) ² 175,3; 164,5 (Nd2) ²	172,9; 123,3; 131,7 (Nd1) 164,5; 129,9; 143,7 (Nd2) 155,6; 113,7 (Nd1) 156,2; 120,2 (Nd2)	8,2; 32,1; 47,4 (Nd1) 13,1; 25,4; 41,8 (Nd2) 8,2 (Nd1) 13,1 (Nd2)	1,08 1,07 —	Эта работа
Nd(NO₃)₃·3AH∏_	2,547 (6)	2,348 (5)	172,9	147,2; 149,0; 144,5	24,2; 26,1; 31,2	1,05	[9]
Eu(NO ₃) ₃ ·3TMM ³	2,51 (1)	2,33 (1)	174,6 ¹ 174,6; 152,9 ²	152,9; 146,3; 133,5 122,1; 147,3	33,1; 17,9; 22,0 22,0	1,09	[10]
Er(NO ₃) ₃ ·3ДМСО	2,47 (3)	2,27 (2)	178,3	143,6; 135,3; 1 49,4	32,1; 20,3; 16,7	1,09	[11]
Yb(NO ₃)₃·3ДМСО	2,43 (4)	2,24 (3)	177.5	151,0; 146,3; 142,0	23,2; 31,0; 26,0	1,04	[12]
Lu(NO ₃) ₃ ·3ДМСО ³	2,47 (4)	2,26 (4)	—	-	-	_	[13]

¹ Для ТТП; ² для ОКА; ³ для соединения европия координатам атома 0 (17), приведенным в [10], соответствует расстояние Eu—0 (17) 2,37 Å, а не 2,50 Å [10]. Для соединения лютеция в координатах атома 0 (3) допущена опечатка [13].

При описании КП в виде ТТП донорные атомы лигандов распределятся по вершинам следующим образом: «центрирующие» положения заняты кислородами нитратных групп; одно основание призмы образовано двумя фосфорильными кислородами и одним атомом кислорода нитратогруппы, второе — одним атомом кислорода ТДМФО и двумя — от двух нитратогрупп. Аналогичное описание КП принято авторами и в соединении La(NO₃)₃·ЗТДМФО [6]. Этот же тип КП—ТТП — реализуется во всех нитратных комплексах лантаноидов состава 1:3:3 с

Рис. 2. Интерпретация (на примере Nd 1) КП центральных атомов в виде ОКА (а), ТТП (б), додекаэдра (в), октаэдра (г).

монодентатными нейтральными лигандами (см. табл. 4). Однако взаимное расположение в КП нейтральных и ацидных лигандов носит совершенно различный характер. За исключением соединения нитрата свропия с тетраметилмочевиной (ТММ), в комплексных нитратах РЗЭ каждое треугольное основание призмы образовано атомами кислорода лигандов одного и того же сорта. Судя по величинам отклонения б от идеальных значений, это ведет к более симметричному строению девятивершинников.

При описании КП атомов неодима в виде ОКА (см. рис. 2, a) нижнюю «квадратную» грань образуют четыре атома кислорода двух бидентатных нитратных групп, а верхнюю — три фосфорильных атома кислорода и один из атомов кислорода третьей нитратной группы. Второй атом кислорода этой нитратогруппы «центрирует» эту же грань.

Наличие достаточных искажений в КП атомов неодима (см. табл. 4) дает основание при интерпретации их формы использовать принцип Коттона — Бергмана [14]. В рассматриваемом фосфиноксидном комплексе неодима КП можно представить и додекаэдрами (рис. 2, в), и октаэдрами (рис. 2, г). В первом случае за одну из вершин КП (типа В) принимается точка, находящаяся посредине между двумя донорными атомами (07 и 08) первой нитратной группы (для второго комплекса — между атомами 016 и 017 четвертой нитратогруппы). Оценка формы полученных таким образом КП с помощью δ- и φ-критериев [5] приводит к выводу, что полиэдры являются типичными додекаэдрами, слегка вытянутыми вдоль направления двух нитратогрупп (для КП Nd 1 δ_1 =43,5°; δ_2 =42,5; δ_3 =31,9; δ_4 =47,4; φ_1 =0,7°; φ_2 =0,4; ω =90,6°; для КП Nd 2 δ_1 =45,7°; δ_2 =33,5; δ_3 =43,3; δ_4 =41,8; φ₁==6,6°; φ₂==0,4; ω==91,1°; в идеальном додекаэдре δ==29,5° (×4); $\varphi = 0^{\circ}; \omega = 90^{\circ}$ [5]). Эти нитратогруппы, лежащие практически в плоскостях соответствующих трапецоидов, по своему положению отвечают нитратным группам в катионах таких соединений, как [Er(NO₃)₂. \cdot (ТДМФО)₄]NO₃ и [Er (NO₃)₂(ТДМФО)₄] \cdot [Er (NO₃)₄ (ТДМФО)]. Во втором случае принимается, что все три нитратные группы занимают в КП по одной вершине (вершины X, Y и Z на рис. 2, z). Это позволяет увидеть аналогию в строении комплексов Nd (NO₃)₃.3TДМФО и PrCl₃·3ТДМФО [15]: одноименные лиганды в КП находятся в мередиальном положении. Аналогичным образом интерпретируют авторы [10] строение внутренней координационной сферы и в Ец (NO₃)₃. •3TMM.

Проанализировав расстояния Nd—O(ТДМФО), можно отметить для них наличие существенного разброса: 2,401(15) — 2,473(20) Å и

2,346(23) —2,430(22) Å соответственно для первого и второго комплексов (см. табл. 2). Следует также указать на большую погрешность в определении длин связей Nd—O. Тем не менее различие между средними длинами связей Nd-O(NO₃) и Nd-O(TДMФO) лежит в преде-(3-5) о и, таким образом, реально. Увеличение расстояния лах Ln—O(NO₃) по сравнению с Ln—O (нейтральный лиганд) на 0,15-0,24 Å наблюдается и для всех остальных нитратных комплексов (см. табл. 4). Это различие трудно объяснить стерическими затруднения-

по-видимому, оно обусми; ловлено величиной эффективного заряда на донорных атомах.

Все нитратные группы в рассматриваемом соединении неодима плоские. Среднее значение длины связи О-N составляет 1,24(5) Å, а угла ONO — 119(4)° (эти величины совпадают с приведенны-

Рис. 3. Мотив упаковки в кристаллах комплекса $[Nd(NO_3)_3 (TДM\Phi O)_3]$.

ми в [16]). Необходимо отметить, однако, существенные угловые и линейные искажения в пятой нитратогруппе, координированной к атому Nd2 (см. табл. 2, 3). Причины этого искажения неясны. Нулевой синтез дополнительных пиков на распределении электронной плотности не выявил.

Молекулы фосфиноксидных лигандов имеют сравнимое строение (средняя длина связи О—Р составляет 1,49(2) Å, а Р—N — 1,63(3) Å) и по своей геометрии (см. табл. 3) не отличаются от таковых в других комплексах РЗЭ.

Углы Nd—O—P весьма различны. Однако они в целом близки для первой и шестой, второй и пятой молекул ТДМФО, соответствующих друг другу по положению в разных КП (см. рис. 1). Существенное различие наблюдается только между углами присосдинения третьей и четвертой молекул ТДМФО. Однако отличие между находящимися в независимой части ячейки комплексами [Nd(NO₃)₃(TДМФО)₃] заключается не только в этом. Комплексы могли бы быть зеркальными изомерами по отношению друг к другу, если бы не различие в ориентации лигандов ТДМФО-2 и ТДМФО-5 относительно зеркальной плоскости (см. рис. 1) и торсионных углах OPNC двух пар $N(CH_3)_{2}$ групп лигандов ТДМФО-3 и ТДМФО-4 (N15 - N18 и N14 - N17). Молекулярные комплексы [Nd(NO₃)₃ (ТДМФО)₃] располагаются в кристалле по мотиву структуры Mg (рис. 3): каждый из них окружен двенадцатью соседними по вершинам искаженного гексагонального кубооктаэдра.

Таким образом, рентгеноструктурное исследование $[Nd(NO_3)_3]$ • (ТДМФО)₃] показало, что предлагаемые ранее для центрального атома КЧ, равные 6 (монодентатные NO₃-группы) [2, 17] или 8 (две нитратогруппы координированы бидентатно-циклически и одна — монодентатно) [3], в кристаллическом состоянии не реализуются, а реализуется КЧ 9.

- 1. Pneumaticakis G. A. Complexes of Yttrium and rare earth nitrates with hexamethyl-
- phosphoric-triamide.— Chem. and Ind., 1968, 26, p. 822.
 Gonnet C., Porthault M. Extraction liquide-liquide a partir de nitrates alcalins fon-dus a l'aide de composes organophosphores neutres. II.— Etude de l'hexamethyl-phosphorotriamide.— Bull. Soc. chim. France, 1970, N 11, p. 4157—4162.
- 3. Silvanovich J. A., Madan S. K. Lanthanide nitrate complexes of hexamethylphosphoramide.— J. Inorg. Nucl. Chem., 1972, 34, N 5, p. 1675—1683.

- 4. Sinha S. P. Ternary lanthanide complexes of the type [M(HMPA)₄(NO₃)₃]: A new method of synthesis and spectroscopic studies including a comparison of the electronic spectra of the [M(HMPA)_{*}(ClO₄)₃] complexes.-Z. anorg. allg. Chem., 1977, 434, S. 277-292.
- Спорай-Кошиц М. А., Асланов Л. А. Некоторые аспекты стереохимии восьмикоординационных комплексов.— Журн. структурн. химии, 1972, 13, № 2, с. 266—276.
 Джавахишвили З. О., Александров Г. Г. Кристаллическая структура тринитратотрис (гексаметилфосфорамид) лантана (III).—В кн.: II Всесоюзное совещание по посталическая структура совещание посталическая структура совещание посталическая структура совещание по посталическая структура совещание по посталическая структура совещание по посталическая структура совещание посталическая структура совещани посталическая структура совещание посталическая структура неорганической кристаллохимии и кристаллохимии координационных соединений:
- Тез. докл. Тбилиси, 1980, с. 77. 7. Андрианов В. И., Сафина З. Ш., Тарнопольский Б. Л. Рентген-75. Автоматизированная система программ для расшифровки структур кристаллов. — Черноголовка :
- Отделение ин-та физхимия, 1975.— 85 с. 8. Guggenberger L. J., Muetterties E. L. Reaction path analysis. 2. The nine-atom fami-ly.- J. Amer. Chem. Soc., 1976, 98, N 23, p. 7221—7225. 9. Krishna B. K., Manohar H., Venkatesan K. The crystal and molecular structure of
- tris (antipyrine) trinitratoneodymium, Nd (NO₃)₃ (C₁₁H₁₂ON₂)₃.— Acta crystallogr. B, 1976, 32, N 3, p. 861---867.
- 10. Tris(tetramethylurea)trinitratoeuropium(III) / C. Chieh, G. E. Toogood, T. D. Boyle et al.— Ibid., N 4, р. 1008—1011. 11. Асланов Л. А., Солева Л. И., Порай-Кошиц М. А. Рентгеноструктурное исследова-
- ние строения диметилсульфоксидного комплекса нитрата эрбия. Журн. структурн.
- химии, 1972, 13, № 6, с. 1101—1104. 12. Bhandary K. K., Manohar H., Venkatesan K. Crystal and molecular structure of tris(dimethyl sulphoxide)trinitratoytterbium.— J. Chem. Soc. Dalton Trans., 1975, N 4, р. 288—291. 13. Асланов Л. А., Солева Л. И., Порай-Кошиц М. А. Строение трис-нитрато-трис-ди-
- метилсульфоксидных комплексов в кристаллах Lu(NO₃)₃(OSMe₂)₃.— Журн. струк-
- турн. химии, 1973, 14, № 4, с. 1064—1066. 14. Cotton F. A., Bergmann J. G. Eight-coordinate complexes of cobalt (II). A principle influencing the occurence of high coordination numbers.— J. Amer. Chem. Soc., 1964,
- 86, N 14, p. 2941-2942.
 15. Radonovich L. J., Glick M. D. Structure of a six-coordinate rare earth complex : trichlorotris (hexamethylphosphoramide) praseodymium (III).— J. Inorg. Nucl. Chem., 1973, 35, N 8, p. 2745—2752.
 16. Leclaire A. Geometrie de l'ion nitrate dans les composes cristallises.— J. Solid State
- Chem., 1979, 28, N 2, p. 235-245.
- 17. Gonnet C. Etude de phosphoramides en extraction liquide a partir de nitrates alkalins fondus et a partir de solutions nitriques. These doct.— Lyon: Univ., 1972.— 109 p.

Киевский государственный университет им. Т. Г. Шевченко Поступила Институт общей и неорганической химии АН СССР, Москва 5.08.82

УДК 541.43+547.442+546.831,832

ЛЕГКОЛЕТУЧИЕ В-ДИКЕТОНАТНЫЕ КОМПЛЕКСЫ Zr (IV) И Hf (IV)

С. В. Волков, Л. Е. Миропольская, Л. А. Мельникова, Е. А. Мазуренко

Интерес к соединениям, способным к обратнмому парообразованию, обусловлен возможностью их использования в процессах массопереноса через паровую фазу: анализ и разделение соединений металлов методами фракционной сублимации или газовой хроматографии; получение пленок, покрытий и функциональных материалов осаждением из газовой фазы; получение металлов особой чистоты и др. В ряду соединений металлов, переходящих без разложения в паровую фазу (например, галогениды, алкоголяты, гидриды, карбонилы), β-дикетонатные комплексы отличаются простотой получения, невысокими температурами сублимации и разложения, достаточно высоким давлением пара в интервале температур 100—300°, нетоксичностью.

В настоящей работе изучено поведение комплексов Zr (IV) Нf (IV) с различными β-дикетонами в газовой фазе. Синтез β-дикетонатов циркония и гафния, их свойства в твердом состоянии и поведение в водных растворах и органических растворителях исследованы в работах [1---3]. Известны два основных метода синтеза β-дикетонатов. Один из них основан на получении пентандионатов-2,4 металлов