8. Добровольский В. Д., Каральник С. М. Изучение тонкой структуры К-спектра поглощения меди в медно-алюминиевых сплавах.—В кн.: Металлофизика: Электронные свойства металлов и сплавов. Киев: Наук. думка, 1966, с. 97—105.

9. Caracterisation par spectroscopic infrarouse et Raman, de N-alkyl imidazolidines et des methylthio-2Δ2-imidazolines correspondantes / G. Mille, M. Guiliano G. Assef, J. Kister.— C. R. Acad. Sci., 1978, AB286, N 10, p. 105—108.

10. Devillanova F. A., Verani G. Investigation spectroscopic infrarouse imidazolidin-2-thion and-2-selon.— J. Chem. Soc. Perkin Trans., 1977, pt 2, N 12, p. 1529—1531.

11. Jilbert T. Morgan Researches on residual affinity and coordination. Part XXX. Complex ethylenethio — carbamido — salts of univalent and bivalent metals. — J. Chem. Soc., 1928, N 1, p. 143—148.

Киевский технологический институт пищевой промышленности

Поступила 18 мая 1982 г.

УДК 548.312.3

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ СЛОЖНЫХ ОКСИДНЫХ ФАЗ СО СЛОИСТОЙ ПЕРОВСКИТОПОДОБНОЙ СТРУКТУРОЙ

А. М. Сыч, Ю. А. Титов

Колебательные спектры соединений $A_2B_2O_7$ со слоистой перовскитоподобной структурой ($\bar{\text{СЛ}}\Pi\text{C}$) исследовались в ряде работ [1—4]. Теоретико-групповой анализ колебаний кристалла А2В2О7 в представлениях фактор-группы пространственной группы C_2^2 — $P2_1$ выполнен в работе [2], однако в ней не описаны спектры. Спектроскопический расчет частот колебаний кристаллов Ca₂Nb₂O₇ с использованием модели, включающей все структурно неэквивалентные октаэдры в элементарной ячейке, а также два атома кальция, проведен в [4]. Близость кристаллического строения и колебательных спектров известных соединений с СЛПС позволяет распространить результаты расчета на всю группу слоистых перовскитоподобных соединений.

Нагреванием шихты совместноосажденных компонентов были синтезированы новые сложные фазы с СЛПС: CaLaTiNbO7, SrLnTiNbO7 $(Ln=La, Pr), SrLnTiTaO_7 (Ln=La, Pr, Nd) [5], La_4Ti_2B^{III}B^{V}O_{14} (B^{III}=Ga, Cr, Fe, Sc; B^{V}=Nb, Ta), Pr_4Ti_2CrB^{V}O_{14} (B^{V}=Nb, Ta),$ $Pr_4Ti_2FeNbO_{14}$, $Nd_4Ti_2CrNbO_{14}$ [6], $La_4Ti_2B_{2/3}^{II}B_{4/3}^{V}O_{14}$ $B^{V} = Nb$, Ta) [7]. Рентгенограммы всех новых фаз с СЛПС индицируются в моноклинной и ромбической установках, однако данные иммерсионного анализа указывают на ромбическую сингонию. Наблюдаемый закон погасания приводит к одной из пространственных групп $Pna2_1 = C_{2v}$ либо $Pnam = D_{2h}$ 16. Исследовав колебательные спектры сложных оксидных фаз с СЛПС, можно определить их некоторые структурные особенности.

ИК-спектры поликристаллических образцов в области 400-1000 см-1 снимали на приборе UR-10 в таблетках из КВг, в области 200—400 см-1 на приборе «Perkin—Elmer-325» в таблетках из CsI, ИК-спектры при температуре жидкого азота сняты на приборе UR-20 с низкотемпературной приставкой. Спектры комбинационного рассеивания снимали на приборе ДФС-24 с возбуждением от Не—Ne ОКГ $(\lambda = 632,82 \text{ нм})$ и He—Cd OKГ $(\lambda = 441,60 \text{ нм})$.

ИК-спектры поглощения основных типов синтезированных фаз с СЛПС приведены на рис. 1. Инфракрасные спектры сложных оксидных фаз с СЛПС характеризуются меньшим числом наблюдаемых полос по сравнению со спектрами бинарных соединений с СЛПС, однако общая картина спектра сохраняется (см. рис. 1, табл. 1). Упрощение ИК-спектров можно объяснить в основном статистическим распределением вводимых заместителей в В- и в А-положениях СЛПС. Это подтверждается фактом увеличения степени упрощения спектра при увеличении степени замещения.

Спектры комбинационного рассеивания основных типов сложных оксидных фаз с СЛПС приведены на рис. 2, а значения частот — в табл. 2. Они также аналогичны спектрам КР бинарных соединений с СЛПС, но содержат ряд дополнительных линий. При сопоставлении значений частот полос ИК- и КР-спектров сложных оксидных фаз с СЛПС наблюдается совпадение значений ряда частот спектров. Невыполнение правила альтернативного запрета, что ранее отмечалось

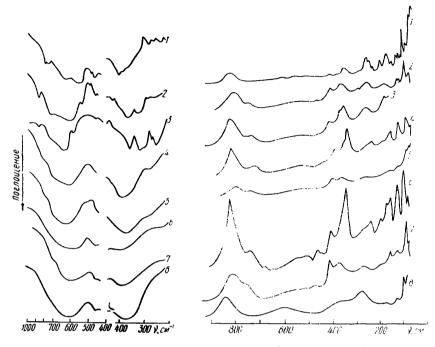


Рис. 1. ИК-спектры оксидных фаз с СЛПС: $1-\text{La}_2\text{Ti}_2\text{O}_7$; $2-\text{Sr}_2\text{Nb}_2\text{O}_7$; $3-\text{Sr}_2\text{Ta}_2\text{O}_7$; $4-\text{Sr}_4\text{Ti}_2\text{Sc}$ $5-\text{Sr}_4\text{Ti}_4\text{Ti}_2$; $6-\text{La}_4\text{Ti}_2\text{GaNbO}_{14}$; $7-\text{La}_4\text{Ti}_2\text{Sc}$ TaO₁₄; $8-\text{La}_4\text{Ti}_2$. $2\text{La}_2\text{Ti}_3\text{Ca}_4\text{Ti}_2$.

Рис. 2. Спектры КР оксидных фаз с СЛПС: $1-\text{La}_2\text{Ti}_2\text{O}_7$; $2-\text{La}_4\text{Ti}_2\text{GaTaO}_{14}$; $3-\text{La}_4\cdot\text{Ti}_2\text{GaNbO}_{14}$; $4-\text{La}_4\text{Ti}_2\text{Zn}_{2/3}\text{Nb}_{4/3}\text{O}_{14}$; $5-\text{La}_4\text{Ti}_2\text{Zn}_{2/3}\text{Ta}_{4/3}\text{O}_{14}$; $6-\text{La}_4\text{Ti}_2\text{Mg}_{2/3}\text{Nb}_{4/3}\text{O}_{14}$; $7-\text{La}_4\text{Ti}_2\text{Mg}_{2/3}\text{Ta}_{4/3}\text{O}_{14}$; $8-\text{SrPrTiTaO}_7$.

и для бинарных соединений с СЛПС [4], указывает на принадлежность сложных оксидных фаз с СЛПС к нецентросимметричной группе симметрии $Pna2_1 = C_{2n}^9$.

При анализе внутренних колебаний октаэдров BO_6 в сложных оксидных фазах с СЛПС использовали модель изолированных октаэдров с учетом резонансного взаимодействия трансляционно неэквивалентных октаэдров в элементарной ячейке. Схема корреляции между неприводимыми представлениями точечной группы симметрии свободных октаэдров (O_h) , группой их локальной симметрии (C_s) и факторгруппой кристаллов полярной пространственной группы симметрии C_2^9 и приведена в табл. 3. При фактор-групповом расщеплении в области внутренних колебаний октаэдров BO_6 должно наблюдаться 24 IK- и 30 KP-активных полос поглощения, из них в области валентных колебаний — II0 II10 II10 II11 II12 II12 II13 II16 II16 II16 II17 II18 II18 II19 II19

Сравнение результатов фактор-группового анализа с экспериментальными данными показывает, что число наблюдаемых полос в области внутренних колебаний октаэдров BO_6 (900—200 см⁻¹) в 2—3 раза меньше, чем возможных. Указанное уменьшение числа полос в спектрах оксидных фаз с СЛПС вызвано значительным уширением полос, слабым фактор-групповым расщеплением, а также малой их интенсивностью, особенно в длинноволновой области спектра.

В спектрах полученных фаз и соединений с СЛПС можно выделит: высокочастотную (900—500 см $^{-1}$), среднечастотную (500—200) и низ кочастотную (200—50) группы полос. Колебательные частоты в області 500—830 см $^{-1}$ в основном не зависят от характеристик атомов типа I и могут быть отнесены к валентным колебаниям октаэдров I воскочастотная область ИК-спектров сложных оксидных фаз с СЛПС характеризуется наличием сильной широкой полосы при I вы сокочастотная область ИК-спектров сложных оксидных фаз с СЛПС характеризуется наличием сильной широкой полосы при I см I обусловленной в основном асимметричным валентным колебанием I октаэдров I высокочастотные компоненты этой полосы (I см I см I см I характерные для простых соединений состава I сл I (I сл I сл I см $^{$

Таблица 1 Колебательные частоты ИК-спектров основных типов оксидных фаз с СЛПС, см $^{-1}$

La ₂ Ti ₂ O ₇	Sr ₂ Nb ₂ O ₇	Sr ₂ Ta ₂ O ₇	SrLaTiNbO,
810 сл.	860 о. сл.	855 о. сл.	750—800 пл.
760 cp.	852 о. сл.	835 cp.	585—600 с. ш.
625—630 с. ш.	830 c.	700 пл.	560 пл.
550—560 с. ш.	695—700 с. ш.	625—630 с. ш.	370 cp.
493 сл.	635—650 сл. ш.	575 cp.	340 пл.
465 cp.	575—590 с. ш.	450 cp.	270 cp.
400 cp.	525 cp.	420 сл.	•
380 сл.	475 сл.	355 с.	
350370 сл. ш.	445 cp.	320 cp.	
330 пл.	420 cp.	300 ср.	
275 c.	350 c.	270 сл.	
255 сл.	310 c.	250 с.	
235 о. сл.	265 сл.		
225 cp.	245 с. ш.		
212 о. сл.			

SrLaTiTaO,	La ₄ Ti ₂ GaNbO ₁₄	La ₄ Ti ₂ ScTaO ₁₄	La ₄ Ti ₂ Zn _{2/3} Ta _{4/3} O ₁₄
750—800 пл. 600—620 с. ш. 500 сл. 365 ср. 250—280 сл. ш.	795 пл. 590—610 с. ш. 455 сл. 380—390 ср. ш. 340 пл. 225 сл. ш.	795 сл. 580—600 с. ш. 452 ср. 395 ср. 345—370 пл. 210—230 сл. ш.	790 пл. 730—750 пл. 595—620 с. ш. 455 ср. 375 ср. ш. 330—350 пл. 210—230 сл. ш.

Наиболее характерной чертой высокочастотной области спектров KP сложных оксидных фаз с гетеровалентным замещением атомов Ti в $\rm Ln_2Ti_2O_7$ типа $\rm La_4Ti_2B^{II}B^VO_{14}$ и $\rm La_4Ti_2B^{II}_{2/3}B^V_{3/3}O_{14}$ является наличие вместо одной сильной полосы при $\sim 800~\rm cm^{-1}$ ($\rm v_1BO_6$) дублета в области $700-850~\rm cm^{-1}$. Следует отметить аномальное положение низкочастотной полосы дублета. Для Nb-содержащих фаз она лежит ниже по частоте, чем для $\rm Ta$ -содержащих фаз (рис. 2).

Указанные факты говорят об отличии в строении октаэдров BO_6 Nb-и Та-содержащих фаз с СЛПС состава $La_4Ti_2B^{II}B^VO_{14}$ и $La_4Ti_2B^{IJ}B^{IJ}_{4/3}O_{14}$.

Таблица 2 Колебательные частоты спектоов КР основных типов оксилных фаз с СЛПС см-

Колебате.	льные часто	оты спект	ров КР	основных	типов оксиді	ных фаз с	CJIIIC, cm ⁻¹
Lagli,O,	Sr.Ta.O,	SrprtitaO,	La,TigGaTaO14	La,Ti,GaNbO,	La4Ti2Mg2/3Nb4/3014	La,Ti,Zn2/3Nb4/3014	La,Ti,Zh2/3 ^{Ta} 4/3 ^O 14
800	873	810	782	802	804	798	787
587	832	580	727	739	718	707	719
543	627	342	443	710	66 2	384	384
433	574	245	392	435	625	340	344
390	437	142	344	394	443	325	236
360	428	9 9	268	345	422	233	136
331	352	65	238	328	387	222	101
275	322	43	154	268	338	175	68
261	295		104	231	323	143	59
238	277		99	151	268	135	52
225	246		72		247	106	
212	207		63		220	98	
178	136		52		175	72	
145	115				145	56	
127	55				135		
109					109		
105					98		
87					72		
77					56		
63							
50							

Таблица 3 Фактор-групповой анализ внутренних колебаний октаэдров BO_6 в кристаллах типа $A_2B_2O_7$ ромбической сингонии с СЛПС

		Группы с	имметрии ВО _в		
	Тип колебания	точечная O_h	локальная С _s	Фактор-группа С ₂₀	
v_1	ν _s [ΚΡ]	A _{lg}	А' [ИК, КР]	A ₁ [ИҚ, ҚР]; В ₁ [ИҚ, ҚР]	
v_2	vas [KP]	E_g	A' [ИК, КР] A" [ИК, КР]	$A_1[HK, KP]; B_1[HK, KP] A_2[KP]; B_2[HK, KP]$	
\mathbf{v}_3	v _{as} [ИК]	F_{1u}	2A' [ИК, КР] A" [ИК, КР]	2А ₁ [ИК, КР]; 2В ₁ [ИК, КР]	
v_4	δ_{as} [ИК]	F_{1u}	A [ИК, КР] 2A' [ИК, КР] A" [ИК, КР]	$A_{2}[KP]; B_{2}[HK, KP]$ $2A_{1}[HK, KP]; 2B_{1}[HK, KP]$ $A_{2}[KP]; B_{2}[HK, KP]$	
\mathbf{v}_5	δ, [ΚΡ]	F_{2g}	2А′ [ИК, КР]	2A ₁ [ИК, КР]; 2B ₁ [ИК, КР]	
v_6	$\delta_{\alpha s}$ [H. a.]	F_{2u}	А" [ИК, КР] А' [ИК, КР] 2А" [ИК, КР]	$A_{2}[KP]; B_{2}[HK, KP]$ $A_{1}[HK, KP]; B_{1}[HK, KP]$ $2A_{2}[KP]; 2B_{2}[HK, KP]$	

Аномальное положение полосы дублета Nb-содержащих фаз по сравнению с аналогичными Та-содержащими фазами можно объяснить наличием аномальных длин связей Nb—O в октаэдрах NbO₆, то есть более сильным искажением октаэдров BO₆, чем у Та-содержащих фаз. Высокочастотная область спектра KP фаз состава $A^IA^{II}TiB^VO_7$ ($A^I=Ca$, Sr; $A^{II}=La$ —Nd; $B^V=Nb$, Ta) с СЛПС характеризуется наличием одной сильной полосы в области 810—835 см⁻¹.

В среднечастотной области спектра КР фаз типа $La_{\bf 4}Ti_{\bf 2}B^{II}B^{\bf V}O_{\bf 14}$ и $La_{\bf 4}Ti_{\bf 2}B^{II}_{2/3}B^{\bf V}_{4/3}O_{\bf 14}$ в интервале частот 315—345 см $^{-1}$ для Nb-содержащих фаз, аналогично La₂Ti₂O₇, наблюдается дублет, низкочастотная полоса которого не проявляется в Та-содержащих фазах, что подтверждает вывод об отличии деталей СЛПС для Nb- и Та-содержащих оксидных фаз. В низкочастотной области спектра КР наблюдается большое количество полос, обусловленных в основном колебаниями решетки. В этой части спектра, согласно [4], должна находиться «мягкая мода» коллективное нехарактеристическое колебание, соответствующее сегнетоэлектрическому фазовому переходу. Нами не выявлено заметных отличий в колебательных спектрах Sr₂Ta₂O₇, снятых при —196° (нецентросимметричная группа симметрии), от соответствующих спектров $Sr_2Ta_2O_7$ при комнатной температуре (центросимметричная группа симметрии). Это указывает на малые изменения в структуре соединений с СЛПС при переходе сегнетоэлектрик⇒параэлектрик, что согласуется с данными исследований других характеристик соединений с СЛПС [8].

Таким образом, колебательные спектры сложных оксидных фаз с СЛПС указывают на нецентросимметричную группу симметрии этих фаз аналогично простым соединениям типа $A_2B_2O_7$ с СЛПС. Гетеровалентное замещение А и В позиций в СЛПС приводит к статистическому распределению гетероатомов. Из анализа колебательных спектров также можно сделать вывод о большей степени искажения октаэдров NbO₆ в СЛПС сложных оксидных фаз по сравнению с аналогичными Та-содержащими фазами.

1. Klee W. E., Weitz G. Infrared spectra of ordered and disordered pyrochlore-type compounds in the series Re₂Ti₂O₇, Re₂Zr₂O₇, Re₂Hf₂O₇.— J. Inorg. Nucl. Chem., 1969, 31, p. 2367—2372.

2. Ross S. D. The vibrational spectrum of monoclinic calcium pyroniobate.— Spectrochim. acta, 1976, 32A, N 6, p. 1331—1334.

3. Исследование структуры соединений $Ln_2Ti_2O_7$ (Ln = La, Pr, Nd) и фазы высокого давления $Sm_2Ti_2O_7$ методами колебательной спектроскопии / B. H. Агафонов, В. А. Давыдов, Н. В. Поротников, К. И. Пстров. Журн. неорган. химии, 1979, 24, № 6, c. 1473—1477.

- 4. Колебания кристаллической решетки сегнетоэлектриков $A_2B_2O_7$ со слоистой структурой / С. Ю. Стефанович, Н. А. Захаров, Ф. Х. Чибирова, Р. Р. Шифрина.— В кн.: Физика и химия неорганических материалов. М.: НИФХИ им. Л. Я. Карпова, 1981,
- 5. Сыч А. М., Титов Ю. А., Недилько С. А. Синтез и исследование соединений со слоистой перовскитоподобной структурой.— Журн. неорган. химии, 1980, 25, № 8,
- с. 2056—2061.
 6. Сыч А. М., Титов Ю. А. Синтез новых слоистых перовскитоподобных соединений состава Ln₄Ti₂B^{III}B^VO₁₄ (Ln=La—Nd; B^{III}=Ga, Cr, Fe, Sc; B^V=Nb, Ta). Там же, 1981, **26**, № **4**, с. 871—876.
- 7. Chiu A. M., Tutob IO. A. Chhtes La₄Ti₂B $_{2/3}^{11}$ B $_{4/3}^{V}$ O₁₄ (B¹¹=Mg, Zn; B^V=Nb, Ta).—
- Там же, № 8, с. 1995—1999. 8. Стефанович С. Ю., Захаров Н. А., Веневцев Ю. Н. Ссгнстоэлектрики A₂B₂O₇ со слоистой перовскитоподобной структурой.— М.: НИИТЭХИМ, 1978.—52 с. (Сер. «Научно-технические прогнозы в области физико-химических исследований»).

Киевский государственный университет им. Т. Г. Шевченко

Поступила 21 сентября 1982 г.