НАУКИ ПРО ЗЕМЛЮ GEOSCIENCES

https://doi.org/10.15407/dopovidi2021.05.061 UDC 550.4 (477); 551.21:551.24

G.V. Artemenko¹, https://orcid.org/0000-0002-4528-6853 **L.V. Shumlyanskyy^{1, 2}**, https://orcid.org/0000-0002-6775-44199

¹ M.P. Semenenko Institute of Geochemistry, Mineralogy

and Ore Formation of the NAS of Ukraine, Kyiv

² Curtin University, School of Earth and Planetary Sciences, Perth, Australia E-mail: regulgeo@gmail.com, leonid.shumlyanskyy@curtin.edu.au

The Paleoarchean and Mesoarchean TTGs of the western Azov area, the Ukrainian Shield

Presented by Academician of the NAS of Ukraine O.M. Ponomarenko

A large anticline structure occurs in the western part of the Azov Domain of the Ukrainian Shield. It is composed of rocks of the Mesoarchean (3.2-3.0 Ga) granite-greenstone association and relics of an older basement. The anticline is divided into two parts by the Bilotserkivka structure of sub-latitudinal strike. The northern part includes the Huliaipole and Remivka blocks, and the southern part comprises the Saltycha anticline. The U-Pb age of plagiogneisses of the Lantsevo anticline of the Bilotserkivka structure is 3299 ± 11 Ma. In terms of geochemical characteristics, they correspond to TTGs. In the western part of the Bilotserkivka structure, we previously identified quartz diorites having an age of 3297 ± 22 Ma. These data show that the Bilotserkivka structure represents an ancient basement. Dislocated trondhjemites were studied in the Ivanivka area at the eastern part of the Saltycha anticline. They contain numerous relics of heavily altered amphibolites. The U-Pb age of zircons from trondhjemite is 3013 ± 15 Ma. These rocks are of the same age as TTGs of the Shevchenko Complex cutting through the sedimentary-volcanogenic rocks of the greenstone structures of the Azov Domain. They share age and geochemical characteristics with biotite and amphibole-biotite gneisses of the "Kainkulak beds" in the Zrazkove village located at the Mokra Konka river (3.1-3.0 Ga) and with biotite gneisses in the lower reaches of the Kainkulak river (2.92 Ga). Thus, gneisses of the "Kainkulak beds" actually represent the Mesoarchean TTGs of the Shevchenko Complex, transformed in the Paleoproterozoic time due to the dislocation metamorphism. The late Paleoarchean (3.3 Ga) tonalites are known in the West Azov and KMA domains; they probably also occur in the basement of the Middle Dnieper domains, where detrital zircons of this age have been reported. These data allow us to assume the existence of a large Late Paleoarchean (3.3 Ga) protocraton, in which the Mesoarchean (3.2-3.0 Ga) greenstone belts and TTGs of the eastern part of the Ukrainian Shield and the KMA Domain were formed.

Keywords: West Azov, Bilotserkivka structure, Paleoarchean protocraton, Mesoarchean craton, TTG, Ukrainian Shield, zircon, U-Pb age.

Цитування: Artemenko G.V., Shumlyanskyy L.V. The Paleoarchean and Mesoarchean TTGs of the western Azov area, the Ukrainian Shield. *Допов. Нац. акад. наук Укр.* 2021. № 5. С. 61–74. https://doi.org/10.15407/dopovidi2021.05.061

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2021. № 5: 61-74

Introduction. A large anticline structure that comprises the West Azov and Remivka blocks occurs in the western part of the Azov Domain of the Ukrainian Shield. These blocks are composed of rocks of the Mesoarchean (3.2-3.0 Ga) granite-greenstone association and relics of an older basement. The anticline is divided into two parts by the Bilotserkivka structure of sub-latitudinal strike; the northern part includes the Huliaipole and Remivka blocks, and the southern part is comprised of the Saltycha anticline (Fig. 1). The Archean plagiogranitoids of the West Azov underwent the intense dislocation metamorphism during the Paleoproterozoic. In many areas, they were transformed into plagioclase gneisses that were attributed to the Paleoarchean "Kainkulak beds" of the West Azov Series [1]. Alternating thin "layers" of biotite-, amphibole-, and biotite-amphibole gneisses crop out locally in the upper reaches of the Konka and Kainkulak rivers. A high degree of dislocation metamorphism is observed in plagiogranitoids of the peripheral parts of the Saltycha anticline. Archean rocks are strongly deformed in the Bilotserkivka structure, where plagiogneisses with a thin-stripe structure can be observed. For this reason, detailed geological-structural and geochronological studies are required for the chronostratigraphic subdivision of these gneisses. We have chosen two areas for our studies: the Lantsevo anticline within the Bilotserkivka structure and the Ivanivka area in the eastern part of the Saltycha anticline (see Fig. 1).

Geological structure of the studied areas. *The Bilotserkivka structure* (up to 20×45 km in size) of a sub-latitudinal strike is located between the Haichur block and Saltycha anticline (see Fig. 1). In the east, it borders the Central Azov syncline, and its western boundary is drawn along the Chernihivka fault [3]. The inclination of the rocks of the Bilotserkivka structure along the contacts in the west, north, and south is very steep, ranging from $70-80^{\circ}$ to 90° . Several anticline and syncline folds are found within its borders. The synclines are composed of rocks of the Dragunove beds (formerly known as the Temryuk Suite of the Central Azov Series),

ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2021. № 5

whereas anticlines (Oleksiivo, Lantsevo, etc.) are composed of plagiogneisses of the "Kainkulak beds" with relics of two-pyroxene crystalline schists, amphibolites, and ferruginous-siliceous rocks [2, 4]. Metamorphic rocks compose lenses and slices from a few centimeters to hundreds of meters thick.

The Saltycha anticline is a dome-shaped structure having an area of about 2000 km². Its prevalent area is composed of plagiogranitoids (TTGs) of the Shevchenko Complex and gneisses of the West Azov Series. Among them, relics of amphibolites and meta-ultrabasic rocks having a thickness of up to 400 m, are found. More than half of the area of the Saltycha anticline is occupied by small (up to 85 km²) intrusions of gabbro, diorites, and granodiorites of the Obitochne complex having an age of 2.91-2.92 Ga. Their geochemical characteristics correspond to intraplate magmatic rocks [5]. Paleoproterozoic potassium-sodium granitoids of the Saltycha and Anadol complexes are spread in a part of the Saltycha anticline. They compose small stocks having an area of up to 2.5 km^2 , as well as smaller bodies confined mainly to tectonic zones.

Analytical methods. Zircon has been extracted from the rock using a shaking table, heavy liquids, and a magnetic separator to produce a heavy non-magnetic fraction. Zircons were handpicked under a binocular microscope. Zircon morphology has been studied under an optical microscope, whereas the internal structure was documented using cathodoluminescence. U-Pb isotopic data were collected using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in the GeoHistory Facility, John de Laeter Centre, Curtin University. Zircon was ablated using a Resonetics RESOlution M-50A-LR system, incorporating a COMPex 102-193 nm excimer UV laser that was coupled to an Agilent 8900 QQQ mass spectrometer. Zircon standard OG1 (3465 ± 0.6 Ma [6]; all uncertainties at 2σ) was utilized as the primary reference material and analyzed in blocks with secondary standards GJ-1 (601.2 ± 0.4 Ma [7]), and Plešovice (337.13 ± 0.37 Ma [8]). The secondary standards yielded weighted mean 207 Pb/ 206 Pb ages and 238 U/ 206 Pb ages within an uncertainty of the recommended values. The time-resolved mass spectra were reduced using Iolite 3.7TM ([9] and references therein) with final ages calculated using Isoplot. Silicate rock analyses were carried out at IGMOF of the NAS of Ukraine, Kyiv.

Research results. *The Bilotserkivka structure* (area of the Lantsevo village). We have dated plagiogneisses of the Lantsevo anticline that were considered to belong to the Kainkulak beds [2]. They often host large xenoliths of metamorphic rocks, i.e., two-pyroxene and pyroxene schists and pyroxene-magnetite quartzites. A sample of biotite gneisses was taken in the upper reaches of the Berda river right tributary (ravine), at the north-eastern outskirts of the Lantsevo village. Bedding elements of gneisses: strike NW 275°, dip NE 5°, inclination 65°.

Biotite gneiss (sample 10-441) has a lepidogranoblastic texture and the following mineral composition (vol. %): feldspar (albite) -75; quartz -15; biotite -5-7; clinopyroxene -1-2; apatite, zircon - single grains. In terms of the chemical composition [7], biotite gneiss belongs to the family of granodiorite-tonalites of the potassium-sodium series (SiO₂ = 65.05 %; Al₂O₃ = 14.79 %; Na₂O = 4.40 %; K₂O = 1.16 %) (Table 1). These rocks have low Mg# = 33.9. In the O'Connor-Barker classification diagram Ab-An-Or, they plot in the tonalite field. They are poor in Rb (25.7 ppm) and rich in Sr (313 ppm) (Table 2). Average concentrations of HFS elements are as follows: Y (7.4 ppm), Nb (6.5 ppm), Yb (0.75 ppm); an average concentration of Ni (the only transition element found) is 19.7 ppm. The multielement diagram shows

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2021. № 5

	15	68.81	0.42	15.21	ı	3.31^{*}	0.06	1.29	3.24	4.47	1.76		0.13				41	0-427 – ver Tok- ver Tok- e part of t village; t the ea- te ferru- sition of
	14	68.29	0.40	15.65	I	3.02*	0.05	1.33	3.44	4.70	1.64		0.14				44	village, 1/ on the ri- he middld Ivanivka da river ii -magneti Compo.
	13	71.12	0.25	15.55	ı	1.83^{*}	0.04	0.79	2.63	5.24	1.71		0.09				43.5	antsevo am drain mak, in tj art of the into Berc pyroxene ka village # = 100*
%	10-276	49.57	0.74	14.08	0.44	9.69	0.21	7.31	10.69	3.3	0.50	<0.02	0.08	0.26	1.83	98.72	56.4	rt of the I p in the d river Tok uuthern p y flowing 0/397 – ne Ivaniv
line, wt.	10-397	46.07	0.03	0.61	18.95	25.98	0.31	3.23	2.82	0.10	0.05	<0.02	0.64	0.11	0.67	99.51		astern pai e, outcroj nk of the i in the sc f the gully stream; 1 ncha in th
cha antic	10-378	50.54	1.71	10.05	1.45	9.36	0.22	10.05	11.26	2.00	1.70	0.03	0.12	0.26	1.26	100.01	62.7	a in the e. – tonalit right bar iltychcha iltychcha reaches o heretyna er Kiltycl
the Salty.	10-440	51.93	1.71	15.89	2.72	7.33	0.07	4.52	8.61	4.20	1.08		0.40	0.21	1.15	99.82	45.2	ver Berd. s; 10-314 p) on the ne river K st, upper de of Ocl of the rive
ure and t	10-313	70.90	0.23	14.69	0.66	2.44	<0.02	0.55	3.31	5.26	0.46	<0.02	0.08	0.43	0.59	99.60	24.4	nto the ri ame place te, outcrc pank of th vene schist ist, left si ht bank o
ka struct	10-312	71.67	0.09	15.61	<0.01	2.01	<0.02	0.39	3.42	5.24	0.46	<0.02	0.05	0.38	0.54	99.86	25.7	flowing ii lite, the s – tonalii he right l wo-pyro: oxene sch m the rig
otserkiv	10-318	62.93	0.57	16.01	1.16	4.81	0.08	1.89	5.70	4.30	1.00	< 0.02	0.11	0.39	0.69	99.66	36.5	the gully 2 - tonal 2 - tona 2 - tonal 2
of the Bel	10-314	63.51	0.47	15.76	1.16	4.67	0.08	1.97	5.06	4.62	1.24		0.23	0.48	0.66	99.91	38.1	aches of t aches of t ak village mite, out nibolized nibolized of toolize, o
of rocks o	10-432	64.69	0.94	15.92	1.05	3.88	0.07	1.57	5.17	4.40	0.66		0.27	0.22	0.80	99.61	36.7	upper re upper re 10-430 a tiv Tokmi trondhje te; $10-440$ 8 - ample $6 - ample$
osition o	10-430	69.55	0.74	12.99	2.59	2.37	0.04	1.65	4.95	3.83	0.58		0.21	0.16	0.31	100.02	38.5	op in the e village: e Verkhn 0-312 – same plac ge; 10/27
ical comp	10-427	69.49	0.74	14.88	1.02	2.51	0.04	0.94	3.22	4.18	1.66		0.27	0.18	0.37	99.50	32.8	ite, outcr e Vodyan e Vodyan part of th village; 1 e, in the s evo villag ame plac
ate chemi	10-441	65.05	1.04	14.79	2.48	3.23	0.05	1.57	4.83	4.40	1.16		0.27	0.19	0.60	99.66	33.9	1 - tonal zrop in th northern I r Tokmak nddhjemiti the Lants
Table 1. Silic.	Sample #	SiO_2	TiO_2	$\mathrm{Al}_2\mathrm{O}_3$	${\rm Fe}_2{\rm O}_3$	FeO	MnO	MgO	CaO	$\rm Na_2O$	$\rm K_2O$	Stot.	$\mathrm{P_2O_5}$	$\mathrm{H_2O^-}$	IOI	Total	Mg#	Vote. 10-44 Note. 10-44 mak, in the r he Verkhniy the Verkhniy thern part of thern part of

G.V. Artemenko, L.V. Shumlyanskyy

b: REE distribution for tonalites of the Bilotserkivka structure and trondhjemites of the Saltycha anticline. Normalized to the composition of chondrite [10]

positive Ti, Eu, and Sr anomalies, and negative Nb anomaly (Fig. 2, *a*). The REE pattern is differentiated: $(La/Yb)_N = 15.5$ at $Yb_N = 4.4$ (Fig. 2, *b*). A positive europium anomaly is found: $Eu/Eu^* = 1.2$.

The Saltycha anticline. Separate outcrops of trondhjemites with numerous metabasite relics are observed in a one-kilometer-long section on the right steep bank of the Kiltichia river in the Ivanivka village. Amphibolites are cut by trondhjemite veins. In the southern part of this section, *ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2021. № 5* **65**

Ppm	10-441	10-427	10-432	10-314	10-318	10-313	10-378	10-397	10-276	Low REE	Med REE	High REE
Rb	25.7	38.3	17.5	29.0	25.9	2.8	2.9	3.3	0.5	46.4	55.0	70.6
Sr	313	30	426	315	299	657	290	153	24.9	583	483	327
Ba	583	966	367	417	390	1279	391	162	9.8	542	531	447
V	76	29	82	75	65	29	283	234	13	213	36	42
Cr	50	30	50	21.3	14.6	15.5	103	749	22.8	42.5	38.2	27.6
Со	13.6	6.3	13.7	15.9	15.1	5.5	49.10	56.61	3.32	_	_	_
Ni	19.7	13.1	18.9	29.0	31.7	12.8	138	239	13.9	86.2	21.6	15.2
Cu	31.3	12.0	37.8	36.1	45.9	37.4	47.0	29.82	6.95	_	_	_
Zn	45	44	30	83	69	27	117	107	18	_	—	_
Ga	15.7	15.4	15.8	19.5	_	16.1	16.7	16.8	1.9	_	—	_
Y	7.4	5.4	6.2	20.7	30.0	1.3	16.0	14.4	8.4	5.4	8.3	18.2
Nb	6.5	4.3	4.5	9.5	7.1	0.6	2.5	3.1	2.4	2.9	5.3	8.1
Ta	2.0	0.4	1.2	0.56	0.24	0.02	_	_	_	0.52	0.81	0.79
Zr	193	208	195	199	343	168	41	42	2.6	114	143	174
Hf	4.4	4.8	4.2	5.1	7.7	3.3	1.1	1.4	0.1	3.0	4.2	4.5
U	0.60	0.40	0.40	0.24	0.28	0.16	4.50	0.11	0.18	0.83	1.31	1.83
Th	0.40	0.70	1.10	3.10	1.10	1.60	0.66	0.63	0.27	3.86	6.16	7.16
La	16.2	17.2	13.5	43.7	27.8	35.7	4.7	9.0	3.4	16.4	26.9	31.0
Ce	28.3	24.6	22.2	80.8	58.7	53.6	12.4	20.96	8.03	28.72	52.87	57.91
Pr	3.21	2.98	2.33	8.5	6.90	4.70	1.80	2.70	1.03	_	—	—
Nd	13.0	9.9	7.8	30.9	28.0	14.2	7.7	12.1	4.8	11.6	19.3	22.5
Sm	2.05	1.55	1.21	5.70	5.70	3.22	2.20	2.94	1.19	1.82	3.18	3.76
Eu	0.81	0.64	0.77	0.95	1.20	0.95	0.67	0.97	0.60	0.59	0.91	0.95
Gd	2.02	1.56	1.19	5.00	5.90	2.43	2.40	3.37	1.46	1.24	2.43	3.15
Tb	0.27	0.19	0.18	0.76	0.92	0.31	0.41	0.54	0.24	_	_	_
Dy	1.24	1.09	0.93	4.40	5.70	1.31	2.80	3.50	1.68	0.84	1.63	2.68
Но	0.27	0.19	0.19	0.83	1.20	0.24	0.66	0.68	0.35	_	—	_
Er	0.78	0.56	0.62	2.40	3.30	0.69	2.10	1.99	1.10	0.41	0.81	1.39
Tm	0.12	0.06	0.10	0.32	0.46	0.10	0.31	0.27	0.16	_	—	_
Yb	0.75	0.33	0.66	1.90	3.00	0.52	2.10	1.74	1.07	0.38	0.70	1.18
Lu	0.13	0.06	0.10	0.28	0.44	0.09	0.30	0.25	0.16	0.07	0.13	0.19
Mo	0.5	0.5	0.4	0.5	0.8	<1	0.3	0.5	1.3	_	—	_
Pb	1.1	1.0	1.2	9.4	10.4	7.83	5.70	2.89	0.63	_	—	—
Yb _N	4.4	1.9	3.9	11.2	17.6	3.1	12.4	10.2	6.3	2.2	4.1	6.9
(La/Yb) _N	15.5	37.4	14.7	16.5	6.7	49.2	3.7	2.3	1.6	28.7	26.0	17.7
Eu/Eu*	1.2	1.3	2.0	0.5	0.6	1.0	0.9	0.9	1.4	1.2	1.0	0.8
Sr/Y	42.3	55.5	68.7	15.2	10.0	80.3	18.1	10.6	3.0	107.2	58.1	18.0
Nb/Ta	3.3	10.8	3.8	17	29.6	33.6	_	_	_	5.6	6.5	10.3

Table 2. Trace elements concentrations in rocks of the Belotserkivka structure and Saltycha anticline

Note. For the description of samples see Table 1.

amphibolites strike NW 300°, dip NE 30°, inclination 75°; at the northern edge, their strike is changed to a latitudinal one.

A sample of trondhjemites (10-313) was taken in the area located ca. 500 m away from the southern outskirts of the Ivanivka village. The rock is fine-grained, the texture is lepidog-ranoblastic. Mineral composition (vol. %): plagioclase (albite) -65; quartz -25; biotite -5-7; K-feldspar -2-3; single grains of apatite, zircon, and opaque minerals. Feldspar is replaced by accumulations of secondary minerals.

In terms of the chemical composition [11], trondhjemites correspond to low alkaline granites $(SiO_2 = 70.90-71.67; Al_2O_3 = 14.69-15.61 \%; Na_2O = 5.24-5.26 \%; K_2O = 0.46 \%)$ of the sodium series (see Table 1). The Mg# of the rock is low (25.7-36.2). In the O'Connor-Barker diagram, they plot in the trondhjemite field. They are poor in Rb (2.8) and rich in Sr (657 ppm) (see Table 2). They also have a very low content of such HFSE as Y (1.3 ppm), Nb (0.6 ppm), Yb (0.5 ppm), and of transitional elements, namely, Ni (12.8 ppm) and Cr (15.5 ppm). Negative anomalies of Nb and Ti and positive anomalies of Sr and Eu (see Fig. 2, *a*) are seen in the multielement diagram. The REE pattern is highly differentiated: $(La/Yb)_N = 49.2, Yb_N = 3.1$ (see Fig. 2, *b*). In terms of their geochemical characteristics, trondhjemites correspond to TTGs [12].

Numerous amphibolite xenoliths of a uniform composition, a few meters in size, are found in trondhjemites in the Ivanivka area. In terms of the chemical composition, these are mafic rocks of the normal sodium series (SiO₂ = 49.57 %; TiO₂ = 0.74 %; MgO = 7.31 %; Na₂O = 3.3 %; K₂O = 0.50 %) (see Table 1). They are low in Ti and have a low Mg# = 42. In terms of geochemical characteristics, they are similar to THI tholeiitic basalts.

Results of the U-Pb zircon dating. We have analyzed 32 zircon grains in sample 10-441. In six grains, two analyses were performed, one in the core part of the crystal, and another one in the marginal part (Fig. 3, *a*). Altogether, 38 analyses were carried out in this sample. The results of these analyses are reported in Table 3.

In general, the obtained results spread along the discordia line that intercepts the concordia at 3374 ± 61 and 2530 ± 240 Ma (see Fig. 3, b). However, most of the results (22 spots) cluster near the upper intercept; the concordia age calculated for this cluster is 3299 ± 11 Ma (see Fig. 3, c). We accept that age as the time of the primary tonalite crystallization. The lower intercept age may indicate a metamorphic event during which primary igneous tonalite was transformed into biotite gneiss. In the cases where zircon grains were analyzed in two spots, the core portions have yielded lower ages than the margins. This may be explained by variable Pb-loss during the metamorphic event rather than by the presence of younger zircon populations in the sample.

Sample 10-313. In total, 52 analyses have been performed in 42 grains separated from trondhjemite of the Saltycha anticline (Ivanivka village). Ten grains were analyzed both in the core and marginal parts of the crystals (Fig. 4, *a*). Results of the analyses are reported in Table 3.

Around 65 % of the analyses yielded concordant results, while the rest demonstrate a significant spread toward younger ages. The upper intercept age calculated for all results is 3027 ± 30 Ma (the low intercept is at ca. 500 Ma, MSWD = 12) (see Fig. 4, b). The weighted average 207 Pb/ 206 Pb age calculated for the concordant results is 3013 ± 15 Ma (MSWD = 3.9). We assume that this age corresponds to the time of the initial trondhjemite crystallization.

Discussion and conclusions. The Paleoarchean (ca. 3.3 Ga) age of tonalites of the Lantsevo anticline in the Bilotserkivka structure has been established. A similar age was earlier obtained

Fig. 3. a: Optical images of the studied zircon crystals from biotite gneisses of the Lantsevo anticline of the Bilotserkivka structure (sample 10-441). Numbers of the analyses and their 207 Pb/ 206 Pb ages as in Table 3.

b: U-Pb diagram for zircons from biotite gneisses of the Lantsevo anticline of the Bilotserkivka structure (sample 10-441). 1 - diagram showing all results and corresponding concordia intercepts; 2 - the concordia age for the ca. 3000 Ma cluster

for tonalites located at 30 km in the western part of the Bilotserkivka structure (Verkhniy Tokmak area) [13]. Tonalites of the Lantsevo anticline have been formed under a medium pressure according to [12]. They have low concentrations of heavy REE and a positive anomaly $Eu/Eu^* =$ = 1.2. Rare earth elements are highly differentiated (La/Yb)_N = 14.7-37.4; Nb/Ta ratio varies

Fig. 4. a: Optical images of the studied zircon crystals from trondhjemite of the Saltycha anticline (sample 10-313). Numbers of the analyses and 207 Pb/ 206 Pb ages as in Table 3.

b: U-Pb diagram with concordia for zircon from trondhjemite (Saltycha anticline, Ivanivka village, sample 10-313)

from 3.3 to 10.8. In contrast, tonalites of the Verhniy Tokmak area belong to the low-pressure TTG according to [12]. They have high concentrations of heavy REE and the negative anomaly Eu/Eu * = 0.54-0.63. Rare earth elements are highly differentiated $- (La/Yb)_N = 6.65-16.50$; Nb/Ta ratio varies from 17 to 29.6.

Paleoarchean tonalites of the Lantsevo anticline contain remnants of supracrustal rocks metamorphosed in the granulite facies (two-pyroxene schists, pyroxene-magnetite quartzites, and gar-

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2021. № 5

Table 3. R	Results of U-	Pb isotope	dating of zir	rcons from	n tonalite (sample 10-44	41) and tron	dhjemite (:	sample 10-31	3)		
Analysis			Isotope 1	ratios				Isotope 2	ıges, Ma		Concentra	tions, ppm
ŧ	$^{238}\mathrm{U}/^{206}\mathrm{Pb}$	2 σ	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	2 σ	Err Corr	$^{206}\mathrm{Pb}/^{204}\mathrm{Pb}$	$^{238}\mathrm{U}/^{206}\mathrm{Pb}$	2σ	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	2 σ	n	Pb
						Sample 10-4 ²	41					
1	1.88218	0.09211	0.2257	0.0057	0.30	3300	2746	30	3013	42	206.8	67.7
2	1.49566	0.07382	0.2691	0.0060	0.43	64000	3303	36	3300	34	187.2	91
ŝ	1.52207	0.07645	0.2727	0.0057	0.35	11700	3252	45	3317	34	132	73.8
4	1.50830	0.07507	0.2735	0.0078	0.25	18000	3273	49	3316	46	97.1	105.3
12	1.54083	0.07597	0.2645	0.0053	0.13	8200	3226	43	3266	32	267	127
9	1.51768	0.07371	0.2687	0.0047	0.35	200	3262	30	3292	28	256.9	146.5
7	1.72414	0.08918	0.2149	0.0080	0.30	2000	2951	55	2951	62	78.2	82.9
8	1.49009	0.07105	0.2598	0.0034	0.53	28000	3309	30	3241	21	832	1860
6	1.53374	0.07528	0.2698	0.0060	0.14	42000	3235	42	3296	34	201	108
10	1.50105	0.07210	0.2719	0.0043	0.34	10000	3290	31	3315	25	327	180.1
11	1.57779	0.07468	0.2592	0.0024	0.17	243000	3164	22	3239	15	1169	368
12	1.60565	0.07477	0.2431	0.0022	0.29		3121	17	3140	14	952	68.8
13	1.58479	0.08539	0.2553	0.0093	0.33	4000	3145	64	3214	58	63.2	36.3
14	1.61031	0.08039	0.2652	0.0065	0.40	10000	3116	43	3291	37	157.4	63.1
15	1.50038	0.07429	0.2709	0.0058	0.25	30000	3290	38	3311	34	230	408
16	1.64745	0.08142	0.2618	0.0066	0.39	8300	3055	38	3263	38	181.6	74.9
17	1.54488	0.07637	0.2728	0.0066	0.03	8100	3215	38	3319	38	193	141
18	1.52905	0.07715	0.2749	0.0071	0.47	0009	3242	46	3326	40	121.1	104.9
19	1.55039	0.07932	0.2707	0.0082	0.21	3100	3219	47	3323	51	90.2	60.3
20	1.49656	0.07391	0.2613	0.0051	0.46	4000	3297	37	3255	31	238.7	207
21	1.62417	0.07914	0.2518	0.0056	0.30	15400	3095	31	3186	36	207	250
22	1.58454	0.07783	0.2549	0.0054	0.23	800	3152	31	3211	33	204	198.1
23	1.70649	0.08445	0.2470	0.0032	0.05	350000	2980	34	3169	21	754	98.4
24	1.53610	0.07315	0.2709	0.0041	0.29	22000	3231	28	3306	24	388	562
25	1.52091	0.07402	0.2709	0.0043	0.39	7600	3256	33	3312	25	418	520
26	1.50060	0.07206	0.2586	0.0041	0.39	40000	3294	29	3240	25	379	367.5
27	1.47275	0.07375	0.2769	0.0066	0.38	67000	3348	42	3339	38	155.2	258.8
28	1.49054	0.07109	0.2691	0.0046	0.40	55000	3312	32	3295	27	360	219.7
_				_	_			_	_			

G.V. Artemenko, L.V. Shumlyanskyy

976	101.6	766	290	116	73.5	252	412	423	391		129.5	47.8	259	155.2	238	79	182.7	94.8	211.5	151.8	68.5	102	333	528	29.5	130	318	123	79.6	64.7	85.8	139	170	60.7	1.37	102.6	109.6
066	135.2	800	274	142.3	82.4	474	384	373	376		597	46.1	155	85.4	171.3	65.4	183	126.1	326	333	77.7	213	794	298.6	187.5	259.1	598	570	178	135.9	117.4	231	552	177.7	66.2	781	1245
и С	44	20	27	40	68	23	29	27	28		29	84	47	60	42	85	42	57	35	31	73	48	24	37	43	37	28	31	36	52	47	62	28	35	60	30	27
00KK	3301	3301	3263	3288	3152	3097	3135	3277	3321		2773	2947	2945	2950	2857	2712	3080	3004	3035	3051	3009	3043	2920	3059	3060	3135	3005	2951	2982	2853	3015	2977	3030	2963	3046	2870	2575
и С	52	23	33	40	59	29	32	32	35		66	57	51	48	33	61	45	48	52	78	71	81	46	43	43	38	34	42	51	45	42	120	46	39	53	57	24
010	3202	3292	3234	3265	3050	2984	2934	3193	3280	13	1978	2851	2736	2900	2659	2388	3092	3065	2893	2878	2760	2962	2297	2731	3114	3054	2521	2534	3131	2929	3120	2240	2184	2937	2881	1566	1498
6500	3100	360000	84000	16000	11300	17000	1700	260000	1100	Sample 10-3	61000	8400	68000	4200	23000	5100	7500	9100	270000	28000	102000	36000	60000	2000	19200	0099	14000	30000	33000	59000	1300	9600	10000	35000	800	4760	22000
06 U	0.43	0.26	0.19	0.38	0.15	0.19	0.50	0.22	0.29		0.28	0.14	0.44	0.33	0.33	0.24	0.23	0.41	0.16	0.01	0.50	0.05	0.07	0.47	0.30	0.21	0.27	0.21	0.17	0.40	0.26	0.04	0.37	0.18	0.26	0.08	0.19
0.0064	0.0075	0.0034	0.0047	0.0070	0.0100	0.0034	0.0044	0.0045	0.0048		0.0035	0.0110	0.0062	0.0080	0.0049	0.0090	0.0061	0.0075	0.0049	0.0044	0.0099	0.0069	0.0032	0.0054	0.0062	0.0056	0.0038	0.0041	0.0051	0.0064	0.0064	0.0082	0.0040	0.0047	0.0089	0.0037	0.0027
0 9705	0.2708	0.2698	0.2632	0.2656	0.2440	0.2368	0.2421	0.2654	0.2725		0.1944	0.2160	0.2159	0.2167	0.2040	0.1885	0.2352	0.2224	0.2284	0.2292	0.2266	0.2260	0.2125	0.2319	0.2326	0.2433	0.2228	0.2170	0.2196	0.2051	0.2246	0.2201	0.2272	0.2170	0.2295	0.2058	0.1708
0.075.40	0.07957	0.07199	0.07551	0.07346	0.08859	0.08068	0.08413	0.07538	0.07289		0.16881	0.09381	0.09722	0.08957	0.09574	0.12346	0.08196	0.08414	0.09052	0.10338	0.10521	0.10072	0.12066	0.09759	0.08013	0.08156	0.10465	0.10756	0.08192	0.08741	0.07987	0.19183	0.12866	0.08692	0.09085	0.22317	0.18982
1 55050	1.5528	1.49993	1.53610	1.51515	1.66389	1.69751	1.73340	1.55933	1.50921		2.77008	1.79856	1.89753	1.75747	1.95695	2.22222	1.62602	1.64745	1.76678	1.76991	1.87266	1.72117	2.34192	1.90114	1.60772	1.64881	2.08812	2.07426	1.60000	1.73611	1.60514	2.37530	2.47525	1.73130	1.76991	3.62319	3.82117
06	30	31	32	33	34	35	36	37	38		1	2	n	4	ы	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2021. № 5

ions, ppm	Pb	62.2	80.6	160	169	61.8	125	261	53.6	114.1	93	103.2	143	59.8	80	100.5	204	59.4	6.6	110.9	9.2	34.9	79.6	136	56.5	4.17	367.5	258.8	219.7
Concentrat	n	250	157.2	148	179.5	368	348	1399	68.4	250	580.9	183	191	440	450	1151	281	118	202	329	71.4	47.1	187	215	50.8	12.98	379	155.2	360
	2σ	34	41	47	38	42	48	35	63	40	28	48	43	41	45	24	32	56	72	42	50	79	34	38	82	140	25	38	27
ıges, Ma	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	3024	3027	2990	2989	2988	2890	2747	3010	3021	2938	2878	3035	2910	2837	2769	3044	3060	2940	2961	2966	2907	2994	3082	2905	3000	3240	3339	3295
Isotope a	2σ	37	50	37	37	100	100	18	59	47	47	50	94	41	51	34	37	58	72	78	49	64	64	82	53	130	29	42	32
	$^{238}\mathrm{U}/^{206}\mathrm{Pb}$	2824	2944	2730	2854	2320	2080	974	3038	2945	1740	2854	2350	1917	1616	1665	2960	2790	1474	2232	2925	2795	2899	2793	2926	2980	3294	3348	3312
	$^{206}\mathrm{Pb}/^{204}\mathrm{Pb}$	00006	20000	13600	9200	7100	6600	2600	5300	21000	11100	8600	13200	23000	10500	5320	7400	4600	1000	4600	14100	500	11000	28000	2900	330	40000	67000	55000
	Err Corr	0.32	0.12	0.25	0.32	0.16	0.12	0.61	0.52	0.28	0.12	0.22	0.08	0.23	0.13	0.30	0.27	0.35	0.02	0.22	0.20	0.18	0.22	0.29	0.43	0.49	0.39	0.38	0.40
atios	2σ	0.0047	0.0057	0.0065	0.0049	0.0057	0.0057	0.0041	0.0087	0.0057	0.0038	0.0060	0.0062	0.0053	0.0057	0.0029	0.0044	0.0082	0.0095	0.0056	0.0068	0.0100	0.0048	0.0055	0.0100	0.0210	0.0041	0.0066	0.0046
Isotope 1	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	0.2257	0.2261	0.2237	0.2207	0.2206	0.2093	0.1911	0.2269	0.2268	0.2151	0.2057	0.2288	0.2123	0.2017	0.1935	0.2294	0.2336	0.2105	0.2185	0.2190	0.2140	0.2210	0.2323	0.2110	0.2350	0.2586	0.2769	0.2691
	2σ	0.08919	0.08918	0.09337	0.08797	0.16233	0.18989	0.31201	0.08859	0.08621	0.17633	0.09314	0.15287	0.14958	0.21226	0.17319	0.08523	0.09908	0.28544	0.15024	0.08802	0.10137	0.09575	0.10893	0.09074	0.12025	0.07206	0.07375	0.07109
	$^{238}\mathrm{U}/^{206}\mathrm{Pb}$	1.81752	1.72414	1.89502	1.80505	2.28833	2.60417	6.13121	1.66389	1.72414	3.22061	1.79212	2.25734	2.88268	3.53357	3.39789	1.71438	1.84843	3.87597	2.40385	1.74216	1.83824	1.75747	1.84502	1.73913	1.69205	1.50060	1.47275	1.49054
Analysis	ŧ	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	26	27	28

G.V. Artemenko, L.V. Shumlyanskyy

net-pyroxene-magnetite rocks) of the unknown age. In terms of the chemical composition, twopyroxene schists correspond to tholeiitic basalts and basaltic komatiites, whereas ferruginous-siliceous rocks correspond to the Algoma type which is typical of the Archean greenstone belts.

The Mesoarchean (ca. 3.0 Ga) age of trondhjemites of the Ivanivka area of the Saltycha anticline was determined. In terms of geochemical characteristics, they correspond to the TTGs [12]. They are strongly depleted in HFSE: Y (1.3 ppm), Nb (0.64 ppm), Yb (0.52 ppm). Rare earth elements are highly differentiated $- (La/Yb)_N = 49.2$. These trondhjemites are of the same age as TTGs of the Shevchenko complex that cut through the sedimentary-volcanogenic rocks of the greenstone structures in the Azov block. These trondhjemites could have been formed due to the partial melting at depths >40 km of metabasic rocks with a restite bearing garnet and/or hornblende.

A similar age was obtained for biotite and amphibole-biotite gneisses of the "Kainkulak beds" in the area of the Zrazkove village located on the Mokra Konka river (3.1-3.0 Ga) [5] and for biotite gneisses in the lower reaches of the Kainkulak river (2.92 Ga) [14]. Correspondingly, rocks of the "Kainkulak beds" represent TTGs of the Shevchenko complex transformed into gneisses in the Paleoproterozoic due to the dislocation metamorphism.

The Late Paleoarchean (ca. 3.3 Ga) TTGs occur in the West Azov and the Kursk Magnetic Anomaly block of the Voronezh crystalline massif [15]. They can also be present in the basement of the Middle Dnieper Domain, where detrital zircons of this age occur in the Vysokopillya greenstone structure [16]. These data indicate that the extensive late Paleoarchean (ca. 3.3 Ga) protocraton existed in the eastern part of the Ukrainian Shield and the Kursk magnetic anomaly block of the Voronezh massif. Greenstone belts and TTGs were formed on this protocraton in the Mesoarchean (ca. 3.2-3.0 Ga) time.

REFERENCES

- 1. Yesipchuk, K. Yu., Bobrov, O. B., Stepanyuk, L. M. et. al. (2004). Correlative chronostratigraphic chart of the Early Precambrian of the Ukrainian shield (chart and explanatory note). Kyiv: UkrDGRI (in Russian).
- Borodinya, B. V. (1998). Geological map and map of the minerals of the crystalline basement 1: 200000, Central-Ukrainian Series. L-37-YII (Berdyansk). Kyiv: State Geological Survey of Ukraine, Ministry of Ecology and Nature resources of Ukraine (in Russian).
- 3. Razdorozhny, V. F., Vasilchenko, V. V. & Borodynya, B. V. (2000). Stratigraphy of the Precambrian Berdyansk sheet (the South-Western Azov). Coll. articles of the meeting "Geology and magmatism of the Precambrian of the Ukrainian Shield". Kyiv, pp. 97-101 (in Russian).
- 4. Kravchenko, G. L. & Dovgan, R. N. (1962). Materials for the state geological map of the USSR, scale 1: 200000, map sheets: L-37-VII and L-37-VIII. UTGF (in Russian).
- Bibikova, E. V., Lobach-Zhuchenko, S. B., Artemenko, G. V., Claesson, S., Kovalenko, A. V. & Krylov, I. N. (2008). Late Archean magmatic complexes of the Azov terrane, Ukrainian Shield: Geological setting, isotopic age, and sources of material. Petrology, 16, pp. 211-231 (in Russian).
- Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H. & Corfu, F. (2009). Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand. Geoanal. Res., 33, pp. 145-168. https://doi.org/10.1111/j.1751-908X.2009.00023.x
- Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, pp. 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
- Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. (2008). Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249, pp. 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005

- Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. (2011). Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom., 26, pp. 2508-2518. https://doi.org/10.1039/C1JA10172B
- Sun S. S. & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Saunders, A. D. & Norry, M. J. (Eds.) Magmatism in the Ocean Basins (pp. 313-345). Geological Society, London, Special Publication, Vol. 42. https://doi.org/10.1144/GSL.SP.1989.042.01.19
- 11. Bogatikova, O. A., Bogdanova, S. V., Borsuk, A. M. et al. (Eds.). (1987). Igneous rocks. Acid and intermediate rocks . Moscow: Nauka, Vol. 4 (in Russian).
- 12. Moyen, J. F. & Martin, H. (2012). Forty years of TTG research. Lithos, 148, pp. 312-336. https://doi.org/10.1016/j.lithos.2012.06.010
- 13. Artemenko, G. V., Shumlyanskyy, L. V. & Shvaika, I. A. (2014). Late Paleoarchean tonalite gneisses of the Western Azov block (Azov Domain of the Ukrainian shield). Geol. J., No. 4, pp. 91-102 (in Russian).
- Artemenko, G. V., Bibikova, E. V., Samborskaya, I. A., Demedyuk, V. V. & Shvaika, I. A. (2013). Age, geochemical features and stages of metamorphism of rocks of the Western Azov series (Azov block). Mineral. J. (Ukraine), 35, No. 4, pp. 73-85 (in Russian).
- Savko, K. A., Samsonov, A. V., Larionov, A. N., Chervyakovskaya, M. V., Korish, E. K., Larionova, Y. O., Bazikov, N. S. & Tsybulyaev, S. V. (2021). A buried Paleoarchean core of the Eastern Sarmatia, Kursk block: U-Pb, Lu-Hf and Sm-Nd isotope mapping and paleotectonic application. Precambr. Res., 353, 106021, pp. 1-24. https://doi.org/10.1016/j.precamres.2020.106021
- 16. Artemenko, G. V., Shumlyanskyy, L. V. & Wilde, S. A. (2020). The Neoarchean age of metaterrigenous rocks of the Vysokopillya greenstone structure, Middle-Dnieper Craton of the Ukrainian Shield. Geol. J., No. 2, pp. 3-17 (in Russian).

Received 28.05.2021

*Г.В.Артеменко*¹, https://orcid.org/0000-0002-4528-6853 *Л.В. Шумлянський*^{1,2}, https://orcid.org/0000-0002-6775-4419

¹ M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine, Kyiv ² Curtin University, School of Earth and Planetary Sciences, Perth, Australia

E-mail: regulgeo@gmail.com, leonid.shumlyanskyy@curtin.edu.au

ПАЛЕОАРХЕЙСЬКІ ТА МЕЗОАРХЕЙСЬКІ ТТГ ЗАХІДНОГО ПРИАЗОВ'Я (УКРАЇНСЬКИЙ ЩИТ)

У Західній частині Приазовського блока знаходиться велика антиклінорна структура, яка складена породами мезоархейської (3,2—3,0 млрд років) граніт-зеленокам'яної асоціації. Вона розділена Білоцерківською структурою субширотного простягання на дві частини — північну, що включає Гуляйпільський і Ремівський блоки, і південну — Салтичанський антиклінорій. Визначено, що U-Pb вік плагіогнейсів Ланцівської антикліналі Білоцерківської структури становить 3299 ± 11 млн років. За геохімічними характеристиками біотитові гнейси відповідають ТТГ. На відстані 30 км у західній частині Білоцерківської структури раніше нами були виявлені кварцеві діорити такого ж віку — 3297 ± 22 млн років. Ці дані показують, що Білоцерківська структура є блоком давнього фундаменту. На Іванівській ділянці східної частини Салтичанського антиклінорію вивчені дислоковані тронд'єміти. Визначено, що U-Pb вік тронд'ємітів 3013 ± 15 млн років. Ці тронд'єміти, таким чином, є одновіковими з ТТГ шевченківського комплексу, які проривають осадово-вулканогенні породи зеленокам'яних структур Приазовського мегаблока. Пізньопалеоархейські (3,3 млрд років) тоналіти, поширені на Західному Приазов'ї, знайдено також на мегаблоці КМА Воронезького кристалічного масиву, і, ймовірно, вони є у складі гнейсового фундаменту Середньопридніпровського блока, де у Високопільській зеленокам'яній структурі було знайдено кластогенний циркон такого віку. Ці дані вказують на вірогідне існування більш давнього протократону віком 3,3 млрд років, на якому формувалися мезоархейські (3,2—3,0 млрд років) зеленокам'яні пояси східної частини УЩ і мегаблока КМА.

Ключові слова: Західне Приазов'я, Білоцерківська структура, Салтичанський антиклінорій, палеоархейський прократон, мезоархейський кратон, ТТГ, Український щит, циркон, U-Pb вік.