лярности и электрофильности растворителей несколько меньше, чем для сложных эфиров, возможно потому, что для кетонов имеются данные по меньшему числу растворителей.

1. Статистические методы расчета коэффициента термодинамической активности в разбавленных растворах неэлектролитов / Г. Г. Девятых, В. М. Степанов, М. Я. Широбоков, С. В. Яньков.— В кн.: Гидриды, галиды и металлорганические соединения особой чистоты. М.: Наука, 1976, с. 5—32.

2. Кузнецова Е. М. О возможности теоретического описания экстракции неполярными

- 2. Ngshequae 2. М. О возможности теоретического описания эксгранции неполярными растворителями.— Журн. физ. химии, 1974, 48, № 11, с. 2865—2868.

 3. Pierotti G., Deal C., Derr E. Activity coefficients and molecular structure.— Ind. Eng. Chem., 1959, 51, N 1, p. 95—102.

 4. Noel D., Meloan C. Empirical correlations in solvent extraction.— Separ. Sci., 1972,
- 7, N 1, p. 95—102.
- Srebrenik S., Cohen S. Theoretical derivation of partition coeefficient from solubility parameter.— J. Phys. Chem., 1976, 80, N 9, p. 996—999.
 Эббер А. В. Описание равновесия в экстракционных системах с распределяющими-
- ся кислородсодержащими соединеннями без Н-связи: Автореф. дис. ... канд. хим. наук. — Иваново, 1981. — 24 с.
- наук.— Иваново, 1981.—24 с.

 7. Макитра Р. Г., Пириг Я. Н. Влияние свойств растворителей на коэффициенты распределения. 4. Применение линейного пятипараметрового уравнения для описания распределения фенолов между водой и органической фазой.— Реакц. способность орган. соединений, 1979, 16, № 2, с. 261—272.

 8. Макитра Р. Г., Пириг Я. Н. Влияние свойств растворителей на коэффициенты распределения. 2. Распределение некоторых карбонильных соединений между водой и органическими растворителями.— Там же, 1978, 15, № 4, с. 547—560.

 9. Макитра Р. Г., Пириг Я. Н., Фильц Д. И. Влияние свойств растворителей на коэффициенты распределения. 5. Извлечение уксусной и пропионовой кислот из водной среды органическими растворителями.— Там же, 1979, 16, № 2, с. 261—262.

 10. Макитра Р. Г., Пириг Я. Н. Применение линейных уравнений, включающих несколько параметров, для характеристики селективности растворителей при экстракции углеводородов.— Нефтехнмия, 1980, 20, № 1, с. 145—154.

 11. Коппель И. А., Паю А. И. Параметры общей основности растворителей.— Реакц.

- 11. Коппель И. А., Паю А. И. Параметры общей основности растворителей.— Реакц. способность орган. соединений, 1974, 11, № 1, с. 121—138.
- 12. Коппель И. А., Паю А. И. Распиренная шкала параметров электрофильности растворителей.— Там же, с. 139—143.
 13. Аарна А. Я., Мэльдер Л. И., Эббер А. В. Использование модифицированной тео-

- Аарна А. Я., Мэльбер Л. И., Эооер А. В. Использование модифицированной теории регулярных растворов для описания растворов кетонов в исполярных растворителях. Жури. прикл. химии, 1980, 53, № 1, с. 156—158.
 Мэльбер Л. И., Эббер А. В. Коэффициенты активности сложных эфиров в гексадекане и воде. Тр. Таллии. политехи. ин-та, 1978, № 449, с. 3—11.
 The influence of the solvent on organic reactivity. Pt. 1. Kinetics and mechanism of the reactions of carboxylic acids with diazodiphenylmethane in donor aprotic solvents/N. B. Chapman, M. R. J. Dack, D. J. Newman, J. Shorter, R. Wilkinson I. Chapman, Trans. 1974, pt. 2. N. 8. p. 962—971. J. Chem. Soc., Perkin Trans., 1974, pt. 2, N 8, p. 962-971.

Институт геологии и геохимии горючих ископаемых АН УССР Таллинский политехнический институт Львовский политехнический институт

Поступила 10 июня 1982 г.

УДК 517:511.1

ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ ТИОСУЛЬФОКИСЛОТ

А. А. Гундорина

Калийные соли тиосульфокислот общей формулы RS_2O_2K (R — органический радикал) используются в качестве исходных веществ в синтезе тиоэфиров, проявляющих биологическую активность на различного рода бактерии [1, 2]. Физико-химические свойства этих соедипений изучены мало, что затрудняет расчеты при разработке аналитических методик, а также практическое использование их в химическом синтезе.

Цель данной работы — изучить кислотно-основные и окислительсвойства некоторых соединений этого ряда: но-восстановительные $CH_3S_2O_2K$ — метантиосульфонат (МТС), $C_2H_5S_2O_2K$ — этантиосульфонат (ЭТС), $C_3H_7S_2O_2K$ — пропантиосульфонат (ПТС), $C_6H_5S_2O_2K$ — бензолтиосульфонат (БТС), $n\text{-NH}_2C_6H_4S_2O_2K$ — аминобензолтиосульфонат калия (АБТС). Константы кислотной ионизации указанных тиосульфокислот определяли рН-метрическим методом при $20\pm0,2^\circ$, ионной силе $0.3(KNO_3)$ на рН-метре рН 340. В качестве индикаторного электрода использовали стеклянный электрод, электрода сравнения — хлорсеребряный, точность измерений составляла 0.01 ед. рН. При определении были приготовлены серии буферных растворов, содержащих хлорную кислоту и соль тиосульфокислоты в известных молярных соотношениях. Для каждой серии опытов проводили три параллельных измерения, из которых брали среднее. Константы ионизации рассчитывали по уравнению

$$K = \frac{[H^{+}]\{(C_{c} - C_{K}) + [H^{+}]\}}{C_{K} - [H^{+}]},$$

где $C_{\rm c}$ — концентрация соли, моль/л; $C_{\rm k}$ — концентрация кислоты, моль/л.

В табл. 1 приведены результаты измерений и значения рассчитанных констант ионизации метантиосульфокислоты. Подобные измерения проведены для ЭТС-, ПТС-, БТС- и АБТС-кислот. В табл. 2 представлены сводные данные. Из сопоставления полученных результатов

Таблица 1 Определение константы ионизации метантиосульфокислоты $(t=20\pm0,2^\circ;\;\mu=0,3)$

$C_{\mathrm{c}} \cdot 10^{2}$	C _K ·10 ²			
мол	њ/л	pН	K·10 ²	pΚ
4,28	1,81	2,02	3,84	1,42
4,28	2,11	1,94	3,96	1,40
2,14	0,30	2,79	3,32	1,48
2,14	0,60	2,50	3,04	1,52
2,14	0,90	2,31	3,05	1,52
2,14	1,21	2,14	3,49	1,46
2,14	1,51	2,05	3,21	1,49
		Среднес (3,42 <u>+</u>	=0,30)·10 ²	1,47±0,04

видно, что значения pK в ряду алкановых кислот мало меняются с укрупненнем углеводородного радикала. pK бензолтиосульфокислоты по своему значению приближается к pK алкантиосульфокислот. Сходство в величинах констант ионизации этих кислот объясняется, по всей вероятности, их общей тенденцией к ионизации SH-группы, которая определяется состоянием атома серы этой части молекулы. Очевидно, в данном случае природа углеводородного радикала мало сказывается на величине электроотрицательности атома серы из-за слабого индуктивного влияния. В общем виде процесс ионизации указанных тиосульфокислот можно представить в виде уравнения

$$RSO_2SH \rightleftarrows RSO_2S^- + H^+$$
.

Повышенное значение рK АБТС-кислоты связано, по всей вероятности, с влиянием NH_2 -группы. По данным [3, 4], АБТС-кислота в растворе содержит аммонийную группу, проявляя свойства биполярного иона подобно сульфаниловой кислоте. Высокая основность NH_2 -группы, связанная с ее участием в сопряжении с бензольным кольцом, заметно отражается на общей константе ионизации кислоты.

Учитывая результаты этих работ, процесс ионизации АБТС-кислоты можно выразить в виде

Окислительно-восстановительные свойства соединений ряда тиосульфокислот определяются наличием в них функциональной групны $-SO_2S^-$, в которой атомы серы неравноценны. Один из них приближается к степени окисления +6, а второй $-\kappa$ -2 [5, 6]. Какиелибо данные, характеризующие окислительно-восстановительные свой-

Таблица 2 Значения констант кислотной ионизации тиосульфокислот (t= $20\pm0,2^{\circ}$; μ =0,3)

Қислота	К	p <i>K</i>
CH_3SO_2SH $C_2H_5SO_2SH$ $C_3H_7SO_2SH$ $C_6H_5SO_2SH$ $n-NH_2C_6H_4SO_2SH$	3,42·10 ⁻² 2,71·10 ⁻² 2,05·10 ⁻² 1,59·10 ⁻² 5,03·10 ⁻⁴	1,47 1,57 1,69 1,80 3,26

ства соединений этого ряда, в литературе отсутствуют. С целью получения таких сведений исследовано взаимодействие МТС, ЭТС, ПТС, БТС и АБТС с водными растворами иода в нейтральной и слабощелочной средах. Изучение проводили потенциометрическим методом на потенциометре Р-300. Электрод сравнения — насыщенный каломельный, индикаторный — платиновая проволока.

Предварительные опыты показали, что реакции взаимодействия всех изучаемых соединений с ио-

дом в нейтральной среде идут очень медленно, в слабощелочной среде (NaHCO₃) — значительно быстрее. В первом случае кривых потенциометрического титрования получить не удалось, за исключением АБТС, а во втором — получены кривые с хорошо выраженным скачком потенциала. На рис. 1 приведена кривая потенциометрического титрования ЭТС водным раствором иода в присутствии NaHCO₃, из которой

m T~a~блица m 3 Определение E_{0} системы $m C_{2}H_{5}SO_{3}^{-}+SO_{4}^{2-}+5H_{2}O/C_{2}H_{5}S_{2}O_{2}^{-}+100H^{-}$ при рН m 9

Прибавлено 0,025 М I, мл		C _{BOC}	Сок	
	<i>Е_х</i> , В	мој	пь/л	E ₀ , B
2,0	0,228	0,0375	0,0125	0,482
2,5	0,230	0,0344	0,0156	0,480
3,5	0,232	0,0281	0,0219	0,484
4,5	0,235	0,0211	0,0281	0,480
6,0	0,239	0,0125	0,0375	0,482

видно, что на окисление одного моля ЭТС расходуется четыре моля I_2 . Среди продуктов реакции обнаружен ион SO_4^{2-} . Это свидетельствует о том, что реакция, по всей вероятности, проходит по уравнению

$$C_2H_5SO_2S^- + 4I_2 + 10OH^- = C_2H_5SO_3^- + SO_4^{2-} + 8I^- + 5H_2O$$

Аналогичные кривые получены для МТС, ПТС и БТС. По данным потенциометрического титрования оценены величины окислительновосстановительных потенциалов системы $RSO_3^- + SO_4^{2-} + 5H_2O/RSO_2S^- + + 10 \ OH^-$.

Величину E_0 рассчитывали по уравнению

$$E_0 = E_x + E_K + \frac{0.059}{8} \lg \frac{C_{OK}}{C_{BOC}} + 0.059 \text{pH},$$

где E_x — э.д.с. цепи, B; $E_{\rm K}$ — потенциал каломельного электрода, равный 0,246 B; $C_{\rm Boc}$ — концентрация RSO₂S⁻, рассчитанная как разность начальной концентрации и концентрации прибавленного окислителя с учетом разбавления, моль/л; $C_{\rm OK}$ — концентрация RSO₃⁻, моль/л.

Экспериментальные данные и результаты расчетов по приведенной кривой представлены в табл. 3. Аналогичные расчеты проведены

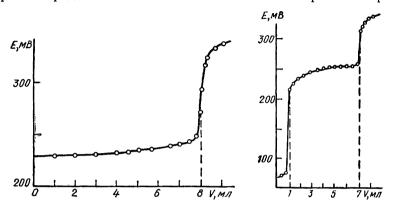


Рис. 1. Кривая потенциометрического титрования 10 мл 0,005 M ЭТС раствором 0,025 M ЭТС в присутствии NaHCO₃.

Рис. 2. Кривая потенциометрического титрования 10 мл 0,005 M АБТС раствором 0,025 M $\rm I_2$.

для систем МТС, ПТС и БТС. Полученные значения окислительновосстановительных потенциалов суммированы в табл. 4.

Как указывалось ранее, в нейтральной среде реакции окисления протекают очень медленно, поэтому для выяснения механизма реакций проведено обратное титрование. Избыток иода оттитровывали тиосульфатом. По результатам титрования, приведенным в табл. 5, вид-

Таблица 4 Значения E_0 окислительно-восстановительных систем $(t=25\pm0,2^\circ)$

	E ₀ , B		
R	$\frac{RSO_3^- + SO_1^{2-} + 5H_2O}{RS_2O_2^- + 10OH^-}$	(RS ₂ O ₂) ₂ /2RS ₂ O ₂	
$-CH_3$	$0,498 \pm 0,004$	$0,598\pm0,008$	
$-C_2H_5$	$0,482 \pm 0,003$	$0,603\pm0,003$	
$-C_3H_7$	$0,474\pm0,004$	$0,612 \pm 0,005$	
$-C_6H_5$	$0,461 \pm 0,002$	$0,553 \pm 0,004$	
$-NH_2C_6H_4$	_	$0,499 \pm 0,002$	

но, что на окисление двух молей тиосульфоната расходуется один моль иода, что соответствует уравнению

$$2C_2H_5SO_2S^- + I_2 = (C_2H_5SO_2S)_2 + 2I^-.$$

Для определения окислительно-восстановительных потенциалов этих систем измеряли потенциал платинового электрода в растворах, содержащих тиосульфонат и иод в известных молярных соотношениях.

Расчет E_0 проводили по уравнению

$$E_0 = E_x + E_K + 0.059 \lg C_{\text{BOC}}$$

Поведение АБТС отличается от МТС, ЭТС, ПТС и БТС. В этом случае реакция окисления иодом идет значительно быстрее. Как в нейтральной, так и в слабощелочной среде на кривой потенциометрического титрования обозначаются два скачка потенциала (рис. 2). Первый скачок соответствует молярному соотношению AБТС: $I_2 = 2:1$, а второй — 1:6, что, очевидно, соответствует стехиометрии окисления по уравнениям

$$2NH_{2}C_{6}H_{4}SO_{2}S^{-} + I_{2} = (NH_{2}C_{6}H_{4}SO_{2}S)_{2} + 2I^{-};$$

$$(NH_{2}C_{6}H_{4}SO_{2}S)_{2} + 6I_{2} + 4H_{2}O = (NO_{2}C_{6}H_{4}SO_{2}S)_{2} + 12I^{-} + 2H^{+}.$$

Окислительно-восстановительный потенциал системы ($NO_2C_6H_4\times$ $\times SO_2S)_2/2NH_2C_6H_4SO_2S^-$ рассчитывали указанным выше способом. В табл. 4 приведены значения окислительно-восстановительных потенциалов всех изученных систем в нейтральной среде. Значения E_0 опре-

Таблица 5 Результаты обратного титрования ЭТС и БТС раствором иода

1	$T_{\mathbf{c}}$	I	$Na_2S_2O_3$	
Титруемое соединение		мг∙моль		Соотношение
этс	0,303	0,375	0,604	2:1
БТС	0,200	0,510	0,901	2:1

делены приближенно, так как окислительно-восстановительные процессы в некоторых случаях необратимы, и могут быть использованы лишь для сравнительной характеристики соединений данного ряда.

Полученные данные дают сснование полагать, что реакции окисления тиосульфокислот иодом могут быть использованы для их количественного определения.

- 1. Бельтюкова К. И., Болдырев Б. Г. Эфиры тиосульфокислот новые средства для борьбы с бактериальными болезнями растений. Докл. АН СССР, 1957, 117, № 3,
- с. 500—503.
 2. Болдырев Б. Г., Гар К. А., Евтеева Л. Е. Эфиры тиосульфокислот новые фунгицидные средства. Там же, 1960, 132, № 2, с. 346—348.
 3. Болдырев Б. Г., Слесарчук Л. П., Гатала М. Е. ИК-спектры и строение эфиров тиосульфокислот. Журн. орган. химии, 1966, 2, № 1, с. 96—103.
 4. Валяшко Н. А., Чешко Ф. Ф., Ромазанович Н. П. Спектры поглощения и строение производных бензола. Журн. общ. химии, 1956, 26, № 9, с. 2516—2524.
 5. Simon A., Kunoth D. Die Schwingungsspektren der Alkanthiosulfonat. Z. anorg. und allg. Chem., 1961, Lfg. 308, S. 321—329.
 6. Валяшко Н. А., Ромазанович Н. П. Спектры поглощения и строение производных бензола. Журн. общ. химии, 1956, 26, № 9, с. 2509—2516.

Львовский политехнический институт

Поступила 9 июня 1982 г.

УДК 535.217

ИССЛЕДОВАНИЕ ЛАЗЕРОХИМИЧЕСКИХ (СО2-ЛАЗЕР) РЕАКЦИЙ ТРИХЛОРИДА БОРА С УГЛЕВОДОРОДАМИ

А. Ф. Гурко, В. И. Лутошкин, С. В. Волков

Цель работы — изучить механизм лазерохимических реакций на основе ВСІ₃ и углеводородов, а также оценить их константы скорости. Принципиальная возможность прохождения лазерохимических реакций под действием сравнительно маломощных лазеров непрерывного действия ($\sim 10^5 - 10^6$ Вт/м²) является предметом дискуссии. Отличие