шее увеличение содержания кобальта не приводит к изменению параметра обращенности. Таким образом, в процессе спекания марганецкобальтового феррита сохраняется тенденция Мп и Со занимать криссталлохимические позиции, характерные для соответствующих моноферритов [5].

Параметр кристаллической решетки а (см. рисунок) не имеет отклонений от правила Вегарда.

- 1. Чалый В. П., Новосадова Е. Б. Исследование индивидуальных гидроокисей марганца (II) и железа (II).— Укр. хим. журн., 1970, 36, № 8, с. 771—776.
- 2. Мессбауэровские исследования системы гидроокисей марганца (II), кобальта (II) и железа (III) / Е. В. Пашкова, В. П. Иваницкий, П. О. Вознюк и др. Там же, 1981,
- 47, N_{2} 11, c. 1183–1188. 3. Sawatzky G. A., Van Der Woude F., Morrish A. H. Mössbauer study of several fer-
- rimagnetic spinels. Phys. Rev., 1969, 187, N 2, p. 747 757.
 4. Sawatzky G. A., Van Der Woude F., Morrish A. H. Cation distributions in octahedral and tetrahedral siter of the ferrimagnetig spinel CoFe₂O₄. Z. Appl. Phys., 1968, 39, N 2, p. 1204-1206.

5. Ситидзе Ю., Сато Х. Ферриты. - М. : Мир. 1964. - 407 с.

Институт общей и неорганической химии АН УССР

Поступила 21 мая 1982 г.

УДК 541.12.0124

ОБРАЗОВАНИЕ И РОСТ ЯДЕР ХЛОРИДА МАГНИЯ ПРИ ВЗАИМОДЕЙСТВИИ ХЛОРИСТОГО ВОДОРОДА С МАГНИЕВЫМ АКЦЕПТИРУЮЩИМ КОНТАКТОМ

А. И. Зеленина, Д. Н. Тменов, А. В. Табаков, В. Л. Бабиченко

Возможность использования контактов, содержащих оксиды мсталлов 1-й и 2-й групп для очистки газовых потоков от галоидводородов, в частности хлористого водорода, показана в [1, 2]. В основе процесса очистки лежит топохимическая реакция между мелкодисперсным оксидом магния и хлористым водородом:

$$MgO + 2HCl \rightarrow MgCl_{2} + H_{2}O;$$

$$A_{TB} + G_{ra3} \rightarrow B_{TB} + D_{ra3}.$$
(1)

В настоящей работе изучены закономерности протекания начальной стадии этой реакции. Исследование проводили в проточном реакторе весовым методом с помощью отсчетно-измерительной установки с механотронным преобразователем [3], которая позволила вести непрерывную запись изменения веса образца по ходу реакции. Контакт получали в виде шариков диаметром 2—3 мм по методу, описанному ранее [1, 2]. Количество оксида магния в образце контакта составляло 5,3 %. Удельная поверхность контакта, определяемая хроматографически методом тепловой десорбции азота, составляла 1,1 м²/г [4]. Удельная поверхность частиц оксида магния в контакте равна 2-17,6 м² на 1 г оксида магния. Кинетику реакции изучали в интервале температур 258—400° при разбавлении потока хлористого водорода аргоном в соотношении 1:10, линейной скорости о газовой смеси в реакторе 5 см/с при 305° и 7,14 при температуре 400°, исключающей влияние внешней диффузии (табл. 1).

Изучение кинетики реакции на гранулах различного размера, получаемых дроблением образцов контакта диаметром 2—3 мм, показало, что в транспортных порах носителя диффузионное сопротивление отсутствует. Значения наблюдаемых скоростей реакции рассчитывали дифференцированием зависимостей количества поглощенного хлористого водорода от времени. Характерные дифференциальные кривые приведены на рис. 1, из которого видно, что в начальный период скорость реакции незначительна, затем быстро растет и, достигая максимального значения, падает. Это объясняется образованием, ростом и слиянием ядер хлорида магния на поверхности оксида и последующим продвижением поверхности раздела фаз внутрь частиц активного компонента. Максимальная поверхность раздела фаз относится к моменту, предшествующему перекрыванию ядер новой фазы, и соответствует максимальной наблюдаемой скорости реакции. В результате образова-

Таблица I Реметите в став

Влияние линейной скорости газового потока на величину максимальной скорости реакции

<i>t</i> . °C	ω. см/с	W _{макс} , мин-1
305	1,47	2,68
	2,1	5,27
	2,8	7,13
	3,57	9,28
	4,83	11,75
	7,14	10,88
400	5,17	21,5
	7,14	28,5
	9,0	28,1

Рис. 1. Зависимости скорости реакции акцептирования хлористого водорода от времени при разных температурах, °C: 1—273; 2—305; 3—333; 4—363; 5—400.

ния сплошного слоя хлорида магния на поверхности оксида и увеличения его толщины скорость реакции снижается, что связано с уменьшением реакционной поверхности и ростом диффузионного сопротивления в нем.

Удельные скорости реакции могут быть найдены на основании кинетических данных суммарного процесса, включающего различные его

Рис. 2. Микрофотографин поверхности монокристалла оксида магния: a — исходное состояние; б — при обработке хлористым водородом 1 с; s — 2 с.

стадии [5]. Форму ядер новой фазы (хлорида магния) определяли, изучая поверхность кристаллов окиси магния после взаимодействия с HCl методом электронной микроскопии.

Образцы кристаллического оксида магния получали раскалыванием монокристаллов оксида вдоль базисных граней. Образцы обрабатывали в проточном реакторе при 300° газообразным хлористым водородом в смеси с аргоном при отношении HCl: Ar=1:10 с последующим охлаждением в токе аргона, затем вынимали из реактора и поверхность скола монокристалла оттеняли слоем золота, нанесенного методом вакуумной конденсации. Полученные образцы подвергали микроскопическому исследованию на растровом электронном микроскопе JSM-U3.

Фотографии сколов кристаллов при увеличении ×18000 приведены на рис. 2. Видно, что на поверхности исходного оксида магния имеются четко выраженные кристаллографические дефекты. На рис. 2, б, в приведен участок поверхности оксида магния после обработки газообразным хлористым водородом. Видны зародыши фазы хлорида магния, локализованные в местах кристаллографических дефектов. Ядра имеют сферическую форму, размеры и количество их увеличивается во времени. Для сферических частиц, исходя из допущения о независимом росте ядер, скорость образования ядер фазы твердого продукта можно выразить уравнениями степенного или экспоненциального законов [5].

Используя данные, полученные гравиметрическим методом, определили закон образования ядер на поверхности магниевого акцепти-

Рис. 3. Линсаризация степенного закона образования зародышей фазы хлорида магния при t, ° C: 1—273; 2—305; 3—333.

Рис. 4. Определение количества перекрывающихся ядер в момент максимальной скорости реакции при t, °C: a — 273; б — 305; в — 333.

рующего контакта в начальный период реакции. Экспериментальные данные хорошо укладываются на прямую в координатах степенного уравнения (рис. 3). Вблизи максимума скорости реакции наблюдается некоторое отклонение от линейной зависимости, по-видимому, в результате перекрывания ядер продукта реакции.

Следовательно, удельные скорости реакции могут быть рассчитаны на основании степенного закона образования зародышей по формуле [4]

$$W_{\rm yg} = -\frac{2q\alpha_{\rm Makc}}{\pi g S_g \tau_{\rm Makc} c} ,$$

где $\alpha_{\text{макс}}$ — степень превращения в момент максимума; g — вес навески, г; S_g — удельная поверхность твердого оксида магния; $\tau_{\text{макс}}$ — время достижения максимальной скорости; c — содержание MgO в контакте.

Таблица 2

	MILLO - M		
Участок кинетической	Температура, °С		
кривой	273	305	333
Начальный	0,4717	0,9623	1,3962
Максимум скорости	0,5717	1,0613	1,1887
Снижение скорости	0,4830	0,0169	1,3660
Среднее	0,5094	0,9477	1,3019

Удельная скорость реакции акцептирования,

Результаты расчета приведены в табл. 2. Как уже отмечалось, вблизи максимума скорости реакции наблюдается перекрывание ядер продукта, вызывающее изменение поверхности раздела твердых фаз, что соответственно изменяет значение наблюдаемой скорости реакции. Допуская независимость роста ядер и одновременное их соприкосновение, можно определить взаимную конфигурацию зародышей на поверхности оксида магния. Теоретически на плоскости возможно одновременно соприкосновение трех, четырех или шести ядер, определяющихся числом h [5]. Для равновеликих ядер, суммарный объем которых при т=тмакс соответствует количеству превращенного вещества, в отрезке времени $\tau_{\text{макс}} \leq \tau \leq 1,4$ $\tau_{\text{макс}}$ были рассчитаны $\Sigma h = f$ (τ , $\tau_{\text{макс}}$) по формулам, приведенным в [5].

Линейные зависимости в координатах а-*Σh* были получены для случая касания четырех ядер (рис. 4).

Для расчета удельных скоростей реакции на участке после максимума скорости применяли уравнение

$$W_{yg} = \frac{6\tau_{Makc}^2 \varphi}{\pi g S_g c},$$

где ϕ — тангенс угла наклона прямых (рис. 4).

Удельные скорости также могут быть рассчитаны из условий максимума скорости реакции по уравнению

$$W_{\rm yg} = \frac{2W_{\rm Makc}}{\pi g S_g c} ,$$

где W_{макс} — наблюдаемая скорость в момент максимума (мин⁻¹). Значения удельной скорости реакции, рассчитанные разными методами, достаточно близки (см. табл. 2). Это свидетельствует о применимости расчета удельной скорости реакции по методике, предложенной в [6].

Исходя из стационарного приближения, на основе удельных скоростей топохимической реакции определяли энергию активации, равную 40±4 кДж/моль.

Поскольку для начальной стадии реакции, характеризующей период образования и роста ядер хлорида магния до образования сплошного слоя твердого продукта реакции, достоверным является предположение об отсутствии влияния диффузионного сопротивления, вычисленная величина энергии активации относится к реакции взаимодействия оксида магния с газообразным хлористым водородом.

Таким образом, изучение начальной стадии реакции оксида магния с хлористым водородом показывает, что сферические зародыши новой фазы локализуются вблизи макродефектов кристаллов. Рост зародышей хлорида магния сопровождается образованием новых ядер в менее энергетически выгодных точках поверхности. Изменение их числа во времени удовлетворительно описывается степенным уравнением вплоть до перекрывания ядерных полей. Величина удельной скорости реакции линейно связана с концентрацией хлористого водорода в газовом потоке и при низких степенях превращения не зависит от содержания активного компонента в контакте. Зависимость удельной поверхности активного компонента от его содержания в контакте не является линейной [2]. Снижение скорости реакции, наблюдаемой во времени, объясняет. ся уменьшением поверхности раздела фаз по мере ее продвижения вглубь частиц активного компонента и возрастающими диффузионными затруднениями транспорту газообразного реагента к реакционной поверхности через увеличивающийся слой хлорида магния.

- 1. Зеленина А. И., Тменов Д. Н., Табаков А. В. Взаимодействие хлористого водорода с акцептирующими контактами, содержащими окнсь магния.— Хим. технология, 1978, № 2, c. 13—15.
- Исследование взаимодействия хлористого водорода с магниевым акцептирующим контактом / А. И. Зеленина, Д. Н. Тменов, А. В. Табаков, М. Л. Дворецкий. Там жс, 1979, № 1, с. 46—49. 3. Зайцевский И. Л. Зеленина А. И., Тменов Д. Н. Микровесы с механотронным пре-
- Зайцевский И. Л., Зеленина А. И., Гменов Д. П. Микровссы с мехапогропписа пре образователем.— Приборы п техника эксперимента, 1979, № 5, с. 254—257.
 Буянова И. Б., Гудкова Г. Б., Карнаухов А. П. Определение удельной поверхности твердых тел методом тепловой десорбции аргона.— Кинетика и катализ, 1965, 6, вып. 6, с. 1085—1091.
 Розовский А. Я. Кинетика топохимических реакций.— М.: Химия, 1974.—217 с.

Отделение нефтехимии Института физико-органической химии АН УССР

Поступила 25 мая 1982 г.