- 1. Нейман Р. Э. Исследование коагуляции синтетических латексов.— В кн.: Успехи коллоидной химин. М.: Наука, 1973, с. 286—295.
- 2. Suzuki A., Ho II. F. H., Higuchi W. J. Predictiones of the particle size distribution changes in emulsions and suspensions by digital computation. J. Colloid and Interface
- Sci., 1969, 29, N 3, р. 552—564.
 З. Яремко З. М., Солтыс М. Н., Кузь В. И. Расчет кинетики коагуляции суспеизий.— Журн. физ. химии, 1974, 48, № 3, с. 667—670.
- 4. Смолуховский М. В. Коагуляция коллондов. М.: ОНТИ, 1936, с. 7-39.
- 5. Боликевич В. В., Цюрупа А. Н. Влияние распределения частиц на кинетику седимен-тации. Тр. Моск. хим. технол. ин-та, 1973, вып. 75, с. 157-158.
- 6. Хеминг Р. В. Численные методы для научных работников и инженеров / Пер. с англ. под ред. Гутера Р. С.— М.: Наука, 1972.— 400 с. 7. Яремко З. М., Солтыс М. Н. О кинстике медленной коагуляции коллоидных час-
- тиц.— Коллоид. журн., 1976, 38, № 6, с. 1156—1161. 8. Дерягин Б. В. Тсория взаимодействия частиц в присутствии двойных электрических
- шаров и агрегативной устойчивости лисобных коллондов и дисперсных систем.— Изв. АН СССР. Сер. хим., 1937, № 5, с. 1153—1164. 9. Ho N. F. H., Hiquchi W. J. Preferential aggregation and coalescence in heterodispersed
- systems.— J. Pharm. Sci., 1968, 57, N 3, p. 436-442.

Львовский

государственный университет

Поступила 29 июня 1978 г. Вторично — 1 септября 1980 г.

УДК 621.315.5

ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ПОРОШКОВ МАГНИТОТВЕРДЫХ ФЕРРИТОВ

Е. Б. Новосадова, Б. С. Хоменко, В. П. Чалый

В настоящей работе исследованы физико-химические свойства ферромагнитных порошков на основе α-Fe₂O₃, BaFe₁₂O₁₉ и CoFe₂O₄, используемых во многих отраслях техники для создания магнитотвердых материалов [1, 2]. При синтезе порошков применяли метод совместного осаждения гидроксидов [3] (Со-содержащие материалы) и карбонатов металлов (Ва-содержащие материалы) [1, 4], обеспечивающий, в отличие от получения их из оксидов, воспроизводимость состава и свойств. Методика приготовления и исследования образцов описана в работах [3, 4].

Исследовали образцы следующего химического состава: CoFe₂O₄ (1), $Co_{0,88}Fe_{2,12}O_4$ (2); $Co_{0,8}Fe_{2,2}O_4$ (3), $3CoFe_2O_4 \cdot Fe_3O_4$ (4), $BaO \times 5,3Fe_2O_3$ (5), $BaO \cdot 5,5Fe_2O_3$ (6), $BaO \cdot 5,75Fe_2O_3$ (7), $BaO \cdot 6,0Fe_2O_3$ (8), $0,9BaO \cdot 5,3Fe_2O_3 \cdot 0,1CeO_2$ (9), $0,9BaO \cdot 5,75Fe_2O_3 \cdot 0,1CeO_2$ (10), $0,9BaO \times 10^{-1}$ $\times 6,0Fe_2O_3 \cdot 0,1CeO_2$ (11), $0,9BaO \cdot 5,3Fe_2O_3 \cdot 0,02Pr_6O_{11}$ (12), $0,9BaO \times 5,75Fe_2O_3 \cdot 0,02Pr_6O_{11}$ (13), $0,9BaO \cdot 6,0Fe_2O_3 \cdot 0,02Pr_6O_{11}$ (14). По данным химического анализа, отклонение фактического состава порошков от заданного не превышало для Fe₂O₃ \pm 0,26, CoO \pm 0,18, BaO \pm 0,22 %. Плотность высушенных при 100° порошков (2,48-3,17 Г/см³) значительно отличалась от их плотности после прокаливания (5.06---5,59 Г/см³) из-за несовершенства кристаллической структуры, связанного с наличием влаги (10,2-22,4 %), внутренней пористости, вакантных мест в узлах кристаллической решетки и других факторов. Наиболее высокими значениями плотности характеризовались порошки, полученные на основе CeO_2 , Pr_6O_{11} и $BaFe_{12}O_{19}$ (табл. 1). Удельная поверхность высушенных порошков (100°) составляла 3,54-6,85 м²/Г, а после прокаливания (1100°) 0,70-0,81 м²/Г.

По данным рентгенофазового анализа и измерения удельной намагниченности насыщения о $_s$ (табл. 2), Со-содержащие порошки (образцы 1) после термообработки при 40-100° представляли собой однофазный продукт кубической кристаллической структуры обращенной шпинели [4], параметры которого равны 8,390—8,398 Å, а $\sigma_s = 1.6$ — 44,0 Гс.см³/Г. С повышением температуры и увеличением продолжи-

Образец	H ₂ O, %	Плотность, Г/см ³		Удельная поверхность, м²/Г	
		100°	1100°	100°	1100°
1	10,8	3,12	5,14	6,72	0,80
2	10,4	3,07	5,10	6,50	0,76
3	10,3	3,04	5,07	6,30	0,81
4	10,2	2,98	5,06	6,85	0,77
5	17,2	2,65	5,42	3,56	0,80
6	19,5	2,54	5,28	3,78	0,78
7	22,4	2,56	5,29	3,79	0,74
8	19,1	2,48	5,14	3,94	0,80
9	20,5	3,17	5,59	3,86	0,72
10	21,8	3,14	5,40	3,76	0,75
11	18,6	3,08	5,32	3,64	0,72
12	18,6	3,03	5,54	3,58	0,76
13	19,3	2,87	5,36	3,65	0,78
14	20,4	2,81	5,19	3,54	0,70

Таблица 1 Физико-химические свойства образцов

Таблица 2

Фазовый состав и удельная намагниченность насыщения σ_s образцов после термообработки

06.03-	Условия тер- мообработки				σ,	
зец	состав фазовый состав t, °C τ, ч		Фазовыи состав	параметры решетки, д	Гс.см³/Г	
1	40	6	Шпинель		5,1	
	80	6	То же	8,390	38,4	
	100	I	» »		36,5	
	100	6	» »	8,386	43,7	
	1100	4	» *	8,375	80,0	
2	100	6	Шпинель+а-FeOOH (очень мало)	8,391	39,2	
	1100	4	Шпинель+СоО (очень мало)	8,380	72,0	
3	100	6	Шпинель+α-FeOOH (мало)	8,390	37,2	
	1100	4	Шпинель+СоО (очень мало)	8,384	71,8	
4	100	6	Шпинель+α-FeOOH (мало)	8,388	33,6	
	1100	4	Шпинель+СоО (мало)	8,385	70,6	
5	1200	6	Гексаферрит Ва+ВаО	a=5,874; c=23,165	52,0	
6	1200	6	Гексаферрит Ва+ВаО (мало)	a=5,874; c=23,168	53,6	
7	1200	6	Гексаферрит Ва+ВаО (мало)	a=5,875; c=23,170	53,8	
8	1200	6	Гексаферрит Ва	a=5,876; c=23,170	53,5	
9; 12	1200	6	Гексаферрит Ва (следы ВаО)	a = 5,874; c = 23,165	54,1	
10; 13	1200	6	Гексаферрит Ва+α-Fe ₂ O ₃ (очень мало)	a = 5,875; c = 23,170	57,2	
11; 14	1200	6	Гексаферрит Ва+α-Fe ₂ O ₃ (мало)	a=5,875; c=23,172	56,1	

тельности обработки этих порошков в связи с упорядочением их кристаллической структуры, уменьшением содержания H_2O и др. параметр их шпинельной решетки уменьшался от 8,398 до 8,375 Å, а выход ферромагнитной фазы увеличивался, достигая в прокаленных (1100°, атмосфера азота) образцах 100 % (a = 8,375 Å).

Порошок других составов (образцы 2—4) имели двухфазную структуру с явным преобладанием шпинельной фазы. После термообработки при 40—100° кристаллизовались феррит кобальта (а=8,389 Å,

 $\sigma_s = 33,6-39,2$ Гс·см³/Г) и небольшое количество α -FeOOH ромбической структуры. В прокаленных образцах наряду с основной шпинельной фазой, представляющей собой твердый раствор CoFe₂O₄ и Fe₃O₄ (a = 8,380-8,385 Å, $\sigma_s = 71,5-72,0$ Гс·см³/Г), присутствовала также СоО кубической структуры типа NaCl [4].

В отличие от Со-содержащих порошков, заметный процесс ферритообразования в которых происходил при сравнительно низкой температуре (40—100°), ферритизация Ва-содержащих порошков начиналась при значительно более высокой температуре (900—950°), соответствующей разложению совместно осажденных карбонатов железа и бария [4]. Выход ферромагнитной фазы в этом случае составлял 4—10 %.

Порошки на основе гексаферрита бария (образцы 8, 9, 12) после прокаливания (1200°, 6 ч) представляли собой однофазный продукт — ВаFe₁₂O₁₉ гексагональной кристаллической структуры типа магнетоплюмбита Pb(Fe, Mn, Al, Ti)₁₂O₁₉ [4] (a=5,87 Å; c=23,17 Å). Образцы с Fe₂O₃: BaO=5,3—5,75 (5—7), кроме BaFe₁₂O₁₉ (основная фаза), содержали также оксид BaO с кубической решеткой типа NaCl (a==5,533 Å). В порошках с Fe₂O₃: BaO=6,4—6,6 (10, 11, 13, 14) в качестве второй фазы присутствовала α -Fe₂O₃ ромбоэдрической кристаллической структуры типа корунда α -Al₂O₃ (a=5,420 Å; $\alpha=55^{\circ}17'$).

Порошки различного состава после термообработки при 100° (6 ч) использовали для приготовления контрольных изделий в виде шайб диаметром $10\pm0,1$ мм и высотой 5—7 мм по методике [1]; их спекание проводили в тех же условиях, что и прокаливание порошков (табл. 2). Результаты измерения их магнитных свойств приведены в табл. 3. Полученные изделия характеризовались сравнительно [4] высокими значениями максимальной и остаточной магнитной индукции, коэрцитив-

Таблица З

магнитные свойст	ва изделий
------------------	------------

Образец	Магнитная и	ндукция, Гс	Коэрцитивная сила, Э	Магнитная энер- гия, МГс-Э	Температура Кюри, °С				
	Максимальная	Остаточная							
После спекания									
1	1690	81	422		520				
2	15820	3690	2225	2,1	550				
3	15950	3580	1950	1,8	545				
4	15810	3260	1570	1,3	534				
5	15860	4100	2800	2,9	440				
6	16520	4150	3020	3,2	450				
7	16510	4310	3050	3,3	450				
8	15750	4160	2710	2,8	454				
Изделия с наполнителем и связкой после сушки									
2	12810	1280	1195	0,38	197				
3,	12680	1265	1150	0,36	195				
4	12590	1260	1110	0,34	192				
5	12070	1705	1020	0,43	195				
6	12460	1700	1100	0,47	195				
7	12450	1700	1160	0,49	195				
8	12050	1470	1100	0,40	196				
9	11550	1475	1090	0,40	195				
10	11570	1470	1120	0,41	196				
11	11610	1455	1110	0,40	195				
12	12550	1490	1270	0,47	196				
13	12580	1710	7200	0,51	196				
14	12560	1475	1120	0,41	195				

ной силы, магнитной энергии и температуры Кюри. По методике [2] были приготовлены также изделия другого типа — на основе прокаленных порошков наполнителя и связки (поливиниловый спирт). Отпрессованные изделия спеканию не подвергали, а лишь сушили при температуре $120 \pm 10^{\circ}$ в течение 20—24 ч. после чего измеряли их магнитные параметры. Максимальная и остаточная магнитная индукция этих образцов составляла 11 550-12 810 и 1260-1705 Гс соответственно, коэрцитивная сила 1020—1270 Э, а магнитная энергия 0,34—0,51 Мгс·Э.

Таким образом, изучены области образования Со- и Ва-содержащих ферритовых фаз при термообработке совместно осажденных их труднорастворимых соединений (гидроксидов, карбонатов), исследованы свойства и показана возможность их использования в качестве наполнителей для эластичных магнитов и других материалов с высокой магнитной энергией.

- 1. Преображенский А. А. Магнитные материалы и элементы. М.: Высш. школа, 1976.— 336 c.
- 2. Алексеев А. Г., Корнев А. Е. Эластичные матнитные материалы.— М.: Химия, 1976.-200 c.
- 3. Чалый В. П., Новосадова Е. Б., Гуторова Е. В. Исследование условий образования ферритов со структурой шпинели в четырехкомпонентной системе гидроксидов металлов. В кн.: Методы получения и анализа ферритовых, сегнето-, пьезоэлектрических материалов. М.: Изд-во ВНИИреактивэлектрон, 1975, с. 21—27. 4. Левин Б. Е., Третьяков Ю. Д., Леток Л. М. Физико-химические основы получения,
- свойства и применение ферритов. М.: Металлургия, 1979. 472 с.

Институт общей и неорганической химии АН УССР

Поступила 23 марта 1982 г.

УДК 541.124:546.214

ИЗУЧЕНИЕ МЕХАНИЗМА РАЗЛОЖЕНИЯ ОЗОНА В СЛАБОЩЕЛОЧНОЙ СРЕДЕ

В. А. Луненок-Бурмакина, Т. М. Франчук,

Г. Г. Лезина, В. Б. Емельянов

В большинстве работ предполагается, что в реакциях с участием озона промежуточно образуется озонидный радикал-ион. Последний содержит 19 валентных электронов, парамагнитен и распадается на О₂ и О-[1]. Скорость распада озонидного радикал-иона обратно пропорциональна концентрации гидроксильных ионов. Повышение стабильности $\mathsf{O}_{\overline{\bullet}}^{-}$ при высоких концентрациях щелочи объясняют образованием ионной пары указанных выше продуктов распада. Для начальной стадии разложения озона в щелочной среде на основании стабильности озонидного радикал-иона предполагается реакция с переносом заряда и образованием О3::

$$O_3 + HO^- = O_3^- + HO^-. \tag{1}$$

Обе образовавшиеся частицы могут принимать участие в дальнейших реакциях, приводящих в случае отсутствия восстановителя к выделению кислорода. Для выяснения источника выделения кислорода был применен изотопный метод [2]. Мы использовали тяжелокислородную воду с высоким содержанием ¹⁸О (молярная доля $U_1 = 16,1\%$), что дало возможность провести анализ распределения изотопных разновидностей в выделяющемся кислороде. Масс-спектрометрически определяли в этом кислороде величины пиков масс $36(^{18}O^{18}O),$ 34 ($^{16}O^{18}O$), 32($^{16}O^{16}O$) и рассчитывали в нем молярную долю $^{18}O(U_2)$:

$$U_2 = \frac{2,36+34}{2(32+34+36)} \,. \tag{2}$$

УКРАИНСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ, 1983, т. 49, № 2

133