ности) он состоит из смеси 3-хлорсульфолена-3 и 3-хлорсульфолена-2 (R_f 3-хлорсульфолена-3 — 0,523, а хлорсульфолена-2 — 0,452, элюент — серный эфир, проявитель — пары йода). Хромотографированием 3,57 г смеси продуктов на колонке с окисью алюминия получали 1,15 г 3-хлорсульфолена-3. Т. пл. 100—101,5°. Сульфолен-2. Смесь 5,3 г (0,026 моля) 3-бромсульфолена, 5 г (0,026 моля) фталимида калия в 60 мл ДМФА нагревали 10 ч при 95—100°. Осадок КВг (3 г) отделяли, ДМФА отгоняли в вакууме. Остаток экстрагировали водой, которую упаривали в вакууме. Остаток перегоняли. Получали 3 г сульфолена-2. Выход 95 %. Т. кип. 110—115° / 1—1,5 мм, т. пл. 51—53°.

Gabriel S. Ueber eine Darstellungswiese primärer Amine aus den entsprechenden Halogenverbindungen.— Chem. Ber., 1887, 20, N 2, S. 2224—2236.
 Sheehan J. C., Bolhofer W. A. An improved procedure for the condensation of potassium phtalimide with organic halides.—J. Amer. Chem. Soc., 1950, 72, N 6, p. 2786—2788.
 Sakellarios E. J. Phtalimidsynthesen mit Hille von p-Toluolsulfosäure—estern.— Helv. chim. acta., 1946, 29, N 7, S. 1675—1684.
 Bailey W. J., Cummings E. V. Cyclic diens. 3. The synthesis of thiophene 1-dioxide.—J. Amer. Chem. Soc., 1954, 76, N 7, p. 1932—1936.
 Prochazka M., Horák V. Über Sulfolane. 3. Alkalispaltung des Sulfolanringes.— Coll. Czech. Commun., 1959, 24, N 5, S. 1677—1681.

Отделение нефтехимии Института физико-органической химии и углехимии АН УССР

Поступила 15 января 1982 г.

УДК 547.539.132+547.625.9

ФТОРИРОВАНИЕ АРОМАТИЧЕСКИХ КИСЛОТ ЧЕТЫРЕХФТОРИСТОЙ СЕРОЙ В РАСТВОРЕ ФТОРИСТОГО ВОДОРОДА И БЕНЗОЛА

.Л. А. Алексеева, В. М. Белоус, М. О. Лозинский, В. П. Шендрик, Л. М. Ягупольский

Известно, что для успешного проведения реакций ароматических кислот с четырехфтористой серой требуются различные условия в зависимости от строения кислоты [1-3]. В частности, бензолкарбоновые кислоты с электронодонорными заместителями превращаются в соответствующие трифторметилпроизводные при фторировании SF₄ в растворе фтористого водорода [2]. Так из 3-оксибензойной кислоты был получен с выходом 67~% 3-оксибензотрифторид, использующийся для синтеза биологически активных веществ и красителей [4]. Однако при проведении опытов с большим количеством исходных веществ наблюдается полное осмоление продуктов реакции, вследствие чего выделить целевой продукт не удается.

Для смягчения условий реакции мы использовали органические растворители, сохранив неизменным соотношение реагентов. В результате реакции в четыреххлористом углероде, ацетонитриле, эфире, бензотрифториде выход 3-оксибензотрифторида был таким же (менее 10 %), как и в отсутствие растворителя. В бензоле и толуоле выход продукта резко увеличивался и достигал 70-75 %. При этом осмоления не наблюдалось. Для получения 3-оксибензотрифторида в качестве растворителя лучше использовать бензол, чем толуол, так как последний труднее отделить перегонкой от продукта реакции. Поэтому более подробно нами исследована реакция 3-оксибензойной кислоты с четырехфтористой серой в растворе НГ и бензола. Во всех опытах фторирование проводили во вращающемся автоклаве при температуре 20—25° в течение 12 ч (таблица). Изменяли только количество HF и бензола при неизменном соотношении 3-оксибензойной кислоты и SF₄ (1 и 1,5 г соответственно). Как следует из данных таблицы, лучший выход 3-оксибензотрифторида достигается при использовании исходной кислоты и бензола в соотношении 1:1,9. Дальнейшее увели-

чение количества растворителя и НГ существенно не повышает выход продукта реакции. Эти условия позволяют осуществить фторирование 1 кг 3-оксибензойной кислоты в автоклаве емкостью 5 л с высоким выходом (70—78 %) 3-оксибензотрифторида.

Фторирование 3-оксибензойной кислоты

HF, r	Бензол, г	Выход 3-окси- бензотрифторида, %	HF, r	Бензол, г	Выход 3-окси- бензотрифторида, %
0,6	0,2	28,3	0,6	1,9	71,8
0,6	1,0	48,3	1,5	1,5	72,0
0,6	1,5	65,3	1,5	0,2	27,1

Представлялось интересным выяснить, как влияет добавление к реакционной смеси бензола при фторировании других карбоновых кислот. Мы исследовали реакцию с четырехфтористой серой 4-метоксибензойной и 2-пентафторэтокси-3-нафтойной кислот, которые в отсутствие бензола превращаются в соответствующие трифторметильные производные с выходами 60 [2] и 20 % соответственно. При фторировании указанных кислот в бензоле выход 4-метоксибензотрифторида достигает 96 %, а 2-пентафторэтокси-3-трифторметилнафталина — 82 %. Опыты проводили в автоклавах емкостью 100 мл при нагревании в течение 6 ч при 100°. В этих условиях 3-оксибензотрифторид образуется из 3-оксибензойной кислоты с выходом 88 %.

Таким образом, при фторировании ароматических кислот четырехфтористой серой в растворе HF и бензола выходы трифторметилпроизводных существенно повышаются по сравнению с фторированием четырехфтористой серой в растворе HF. Чистоту полученных 3-оксибензотрифторида и 4-метоксибензотрифторида проверяли методом ГЖХ. Физические константы этих соединений (температура кипения, плотность, показатель преломления) совпадают с описанными в литературе [2, 4].

3-Оксибензотрифторид. В автоклаве емкостью 5 л перемешивали 12 ч при 20-25° смесь 1000,0 г (7,2 моля) 3-оксибензойной кислоты, 1500,0 г (13,8 моля) четырехфтористой серы, 600,0 г (30,0 моля) фтористого водорода и 1900,0 г (12,8 моля) бензола. По окончании реакции газообразные продукты выпускали через вентиль, реакционную смесь выливали на лед и нейтрализовали бикарбонатом натрия. Продукт перегоняли с водяным паром, органический слой отделяли, сушили CaCl₂ и перегоняли. Выход

842,5 г (71,8%).

4-Метоксибензотрифторид. В автоклаве емкостью 100 мл нагревали 6 ч при 100° смесь 15,2 г (0,1 моля) 4-метоксибензойной кислоты, 15 г (0,1 моля) SF₄, 15 г (0,7 моля) HF и 20 г (0,3 моля) бензола. Выделяли продукт так же, как при получении 3-оксибензотрифторида. Выход 96 %.

2-Пентафторэтокси-3-трифторметилнафталин получали в аналогичных условиях. Выход 82 %; т. кип. 250— 251° ; n^{25}_D 1,4707. Найдено, %: F 46,30; 46,18. $C_{18}H_6F_8O$. Вычислено, %: F 46,09.

- 1. Ягупольский Л. М., Бурмаков А. И., Алексеева Л. А. Реакции и методы исследования органических соединений. - М.: Химия, 1971. - 165 с.

- органических соединении.— М.: Анмия, 1971.—103 с.

 2. Фторирование ароматических карбоновых кислот четырехфтористой серой в растворе фтористого водорода / Б. В. Куншенко, А. И. Бурмаков, Л. А. Алексеева, В. Г. Лукманов.— Журн. орган. химии, 1974, 10, № 4, с. 886—887.

 3. А. с. 449904 (СССР). Способ получения трифторметилзамещенных ароматических соединений / Л. А. Алексеева, В. М. Белоус, А. И. Бурмаков, Б. В. Куншенко, В. Г. Лукманов, Л. М. Ягупольский.— Опубл. в Б. И., 1975, № 42.

 4. Фторирование ароматических карбоновых кислот четырехфтористой серой. XII. Фторирование ароматических карбоновых кислот четырехфтористой серой. ХІІ. Фторирование оксибензойных кислот и их производных / А. И. Блакитный, И. М. Залесская, Б. В. Куншенко, Ю. А. Фиялков, Л. М. Ягупольский.— Журн, орган, химии. ская, Б. В. Куншенко, Ю. А. Фиалков, Л. М. Ягупольский.— Журн. орган. химии, 1977, 13, № 10, с. 2149—2152.

Одесский политехнический институт Институт органической химии АН УССР

Поступила 12 июня 1981 г.