отражающей первую стадию реакции (1). Ее второй стадией является, по-видимому, диссоциация хлорида меди (II), имеющего квадратнопланарную или тетраэдрическую координацию в расплавах хлоридов щелочных металлов [4]. Кристаллический хлорид меди (I) имеет тетраэдрическую координацию [7]. Соединяясь общими ребрами, тетраэдры хлорида меди (I) образуют бесконечные цепи Cu₂Cl₃-. Допуская, что строение кристалла хлорида меди (I) в расплаве сохраняется, можно предположительно описать термическую диссоциацию хлорида меди (II) на фоне расплавленных хлоридов щелочных металлов схемой

$$4 [CuCl_4^{2-}] \rightarrow 2 [Cu_2Cl_3^{-}] + 5Cl_2.$$
 (4)

- 1. Борисов Е. А., Трусов Г. Н., Ширяев В. К. Оценка перспективности термоэлектрохимических и термохимических циклов для производства водорода из воды. - Электрохимия, 1979, 15, № 1, с. 55—62.
- 2. Шваб Н. А., Тимченко А. П., Городыский А. В. Термическая диссоциация хлорида меди (II) в солевых расплавах.— Укр. хим. журн., 1974, 40, № 1, с. 90—92.

 3. Руководство по препаративной и неорганической химии/Под ред. Г. М. Брауэра.—
- М.: Изд-во иностр. лит., 1956.— 807 с.
 4. Волков С. В., Грищенко В. Ф., Делимарский Ю. К. Координационная химия солевых расплавов.— Киев: Наук. думка, 1977.— 330 с.
 5. Коттон Ф., Уилксон Дж. Современная неорганическая химия.— М.: Мир, 1969.—Ч. III.
- 6. Волков С. В., Буряк Н. И., Бабушкина О. В. Исследование электронных спектров поглощения и координации меди (II) в кристалле и расплаве CuCl₂.— Журн. неорган. химии, 1981, 26, № 8, с. 2026—2030.

 7. Нараи-Сабо И. Неорганическая кристаллохимия.— Будапешт: Изд-во АН Венгрии,
- 1969.— 504 с.

Институт общей и неорганической химии АН УССР

Поступила 13 июля 1981 г.

УДК 541.183:541.128.13

КАТАЛИТИЧЕСКИЕ СВОЙСТВА АЗОТСОДЕРЖАЩИХ УГЛЕЙ

И. А. Тарковская, С. С. Ставицкая, В. В. Стрелко

Известно [1], что на поверхности углеродных материалов могут содержаться химически связанные в виде поверхностных соединений атомы кислорода, водорода, азота, серы, фосфора, хлора, брома и других элементов. Среди них большой интерес представляют, в частности, азотсодержащие угли, получением и исследованием которых занимаются уже давно [2, 3]. Для приготовления углей, содержащих азот, химически связанный с графитоподобной решеткой, используют различные методы — прокаливание исходных углей при разных температурах в присутствии аммиака, дициана, окислов азота, солей аммония либо карбонизацию богатых азотом соединений [2-5].

В ряде работ отмечалось, что угли, содержащие в структуре атомы азота, обладают повышенной анионообменной способностью [4], а также большей каталитической активностью в некоторых реакциях, чем чистые угли [2, 4, 6, 7]. Так, на азотсодержащих углях с большей скоростью окисляются органические соединения [3], лучше разлагается перекись водорода [2, 6, 7]. Авторы [6, 7] считали, что каталитические свойства таких углей обусловлены именно наличием химически связанного азота в поверхностном слое угля.

Каталитическую активность углей можно изменять и введением в их структуру катионов различных металлов. Еще Варбург [2] предлагал активировать азотсодержащие угольные катализаторы железом. При этом, как показано в [3], скорость окисления щавелевой кислоты была в несколько сот раз выше в присутствии угля, полученного карбонизацией смеси сахара с мочевиной и содержащего примеси железа, чем в присутствии немодифицированного угля. Ускорение каталитического окисления органических соединений объясняли наличием на поверхности угля железо-угольно-азотных комплексов [3]. Таким образом, имеющиеся в литературе сведения говорят о перспективности использования азотсодержащих углей в качестве катализаторов. Отсюда вытекает необходимость систематического изучения каталитического действия этих материалов в различных типах реакций.

Таблица 1 Жарактеристики азотсодержащих углей и углей из фенолальдегидной смолы

Уголь	Адсорбция, ммоль/г			Количест	во групп, м	J		
				карбоксильных			Общий	S _{уд} ,
	0,01 H. HCl	0,01 н. капроновая кислота	0,1 н. NaОН	сильно- кислотных	слабо- кислотных	феноль- ных	объем пор, см ⁸ /г	м²/г
ФАУ	0,37	2,3	0,0	-			0,36	850
ФОУ	0,12	2,0	2,1	1,0	0,6	0,5	0,48	795
CKH-1	0,58	2,3		_			-	-
CKH-2	0,39	2,1	-	_	_		0,52	_
СКНО *	0,31		2,1	_		_		
CKHO **	0,28		2,3	_			_	_
CKHO-58	0,30	1,6	1,9	1,2	0,4	0,3	0,42	360
CKHO-80	0,63	1,9	2,4	0,8	0,4	1,2	0,37	310
CKHO-120	0,49	1,8	2,1	1,1	0,7	0,3	0,68	2 30
CKHO-150	0,50	2,0	1,7	0,8	0,6	0,3	0,95	310
CKHO-200		2,3	2,2	1,2	0,7	0,3	0,90	650

^{*} Окислен воздухом; ** окислен HNO₃.

В данной работе исследовано каталитическое поведение азотсодержащих углей на основе СКН — углей из винилпиридиновой смолы. Получение, строение и свойства углей этого типа описаны в работе [5]. Для приготовления катализаторов использовали СКН, активированный в токе СО₂, а также окисленный воздухом или азотной кислотой (СКНО), и их катионные формы. Каталитическое действие азотсодержащих углей СКН и СКНО изучали на примерах модельных реакций (разложения перекиси водорода, жидкофазного синтеза уксуснобутилового эфира, а также при этерификации и переэтерификации жировых смесей) и сравнивали его с действием углей из фенолальдегидной смолы — активированного (ФАУ) и окисленного (ФОУ) — и их соответствующих катионзамещенных форм. Методики приготовления окисленных и активированных углей и их солевых форм, а также проведения каталитических опытов в названных реакциях описаны в работах [1, 8]. Характеристики примененных катализаторов приведены в табл. 1.

Разложение перекиси водорода существенно ускоряется только в присутствии положительно заряженных в водном растворе обычных активированных углей [1, 9]. Окисленные же угли, имеющие на поверхности большое количество кислотных кислородсодержащих поверхностных группировок и заряженные отрицательно, практически не катализируют эту реакцию.

Способность к ускорению разложения H_2O_2 возрастает с увеличением количества основных групп (анионообменной способности), а распад перекиси водорода происходит после обменного поглощения ионов ООН— углем с выделением в раствор ионов гидроксила [10]. Анионы ООН— в поверхностном слое обладают повышенным окислительным потенциалом и могут либо саморазрушаться, либо окислять новую молекулу H_2O_2 с образованием кислорода и иона гидроксила в поверхностном слое, благодаря чему наружная обкладка двойного слоя угля

приобретает первоначальный состав. Такой механизм разложения $\rm H_2O_2$ на положительно заряженном угле был затем подтвержден в работе [11].

Уменьшение каталитической активности окисленных углей в этой и других реакциях электронного типа связано, согласно работе [9], с повышением работы выхода электрона за счет возникновения на границе раздела фаз значительного дипольного скачка потенциала С—О. Затруднения в переносе электронов на реагирующие частицы (ионы, молекулы) на окисленных углях отмечались и в других поверхностных реакциях, например окисления — восстановления. Из изложенного ясно,

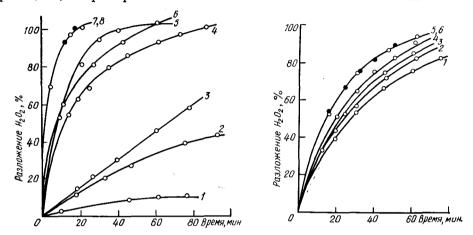


Рис. 1. Кинетика разложения H_2O_2 на углях ФОУ (1), ФАУ (2), СКН-1 (7), СКН-2 (5), СКНО (4), ФОУ — Fе-форма (3), СКНО—Fе-форма (6), СКН-1 — медная форма (8). Рис. 2. Кинетика разложения H_2O_2 на углях СКНО, окисленных воздухом (5), азотной кислотой (6), и их медных формах: I = 0.20; I = 0.20;

что наличие на поверхности углей основных атомов азота, изменяющих заряд углей и увеличивающих емкость двойного электрического слоя и анионообменную способность, должно существенно влиять на каталитические свойства. Проведенные опыты подтверждают эти предположения. Как следует из рис. 1, в присутствии ФОУ перекись водорода почти не разлагалась*, тогда как ФАУ обладал заметным каталитическим действием. Азотсодержащие угли типа СКН в одинаковых условиях обладали намного большей каталитической активностью, чем активированные угли из фенолальдегидной смолы.

Наличие атомов азота в поверхностном слое сообщало каталитическую активность и окисленным углям: в отличие от ФОУ в присутствии СКНО наблюдалось хотя и меньшее, чем на СКН, но все жезначительное разложение перекиси водорода (рис. 1).

Поскольку общая анионообменная емкость сравниваемых углей: (например ФОУ и СКН-1 — см. табл. 1) была почти одинаковой, повышенное каталитическое действие, очевидно, обусловлено содержанием химически связанного азота. При этом следует отметить, что различия в пористой структуре отдельных образцов углей вряд ли могут оказывать существенное влияние на разложение перекиси водорода.

вать существенное влияние на разложение перекиси водорода.

Ранее было показано [8], что замещение ионов водорода кислотных поверхностных групп окисленных углей каталитически активными ионами металлов (железа, меди, кобальта, никеля) приводит к значительному увеличению способности таких контактов ускорять окислительно-восстановительные реакции и, в частности, разложение перекиси водорода. Это связывалось с образованием поверхностных комплексов сорбированных ионов с функциональными группами и увеличе-

 $[\]bullet$ За ходом разложения H_2O_2 следили по изменению концентрации перекиси, определяемому перманганатометрически [8].

нием, вследствие этого, каталитической активности ионов. Известно, что некоторые комплексы железа (III) и меди (II) с азотсодержащими лигандами обладают повышенной катализной активностью [12]. В связи с этим необходимо было проверить каталитическое действие азотсодержащих углей с сорбированными на них ионами металлов.

Таблица 2 Химическая модификация жировой смеси и жидкофазный синтез уксуснобутилового эфира в присутствии различных углей

Количество ионов нат- рия в угле, ммоль/г	Температура плавления жира, К		Кислотность жира, мг КОН		Этерификация, %		
					свободных	1	
	исходная	конечная	исход- ная	конечная	жирных кис- лот глицери- ном	уксусной кис- лоты бутано- лом	
	312,6	312,0	6,1	5,2	14,8	6,1	
	312,6	311,7	6,1	6,1	0,0	9,0	
-	_	_	_	_	_	45,1	
1,6	312,5	312,3	6,1	3,2	47,7	-	
_		-	-	_	-	16,9	
1,8	312,8	311,4	7,5	6,4	14,7		
1,5	312,5	312,0	5,0	3,7	26,0	_	
1,7	311,0	310,5	5,0	3,8	24,0		
1,7	314,8	310,8	_	_		_	
2,2	313,0	309,0	4,5	2,2	51,1		
	ионов натрия в угле, ммоль/г 1,6 1,8 1,5 1,7 1,7	Количество ния ж рия в угле, мимоль/г исходная 312,6 — 312,6 — 1,6 312,5 — 1,8 312,5 1,7 311,0 1,7 314,8	Количество ния жира, К рия в угле, мимоль/г исходная конечная — 312,6 312,0 312,6 311,7 — — — — — — — — — — — — — — — — — — —	Количество иня жира, К мг мсходная конечная исходная конечная кон	Количество иня жира, К мг КОН — 312,6 312,0 6,1 5,2 — 312,6 311,7 6,1 6,1 1,6 312,5 312,3 6,1 3,2 1,8 312,8 311,4 7,5 6,4 1,5 312,5 312,0 5,0 3,7 1,7 311,0 310,5 5,0 3,8 1,7 314,8 310,8 —	Количество нонов натрия в угле, миоль/г исходная конечная конечная исходная исходная исходная конечная исходная исходна	

^{*} Nа-форма.

Опыты показали (см. рис. 1), что, как и в случае обычного окисленного угля, железная форма СКНО была более активной, чем исходный (незамещенный) уголь. Однако введение на поверхность ионов меди или не изменяло активности (в случае СКН, рис. 1), или даже уменьшало ее на образцах СКНО (рис. 2). Очевидно, это объясняется тем, что на угле СКНО ионы меди связываются в более прочные, чем на ФОУ, и потому уже каталитически неактивные комплексы за счет координационного взаимодействия катиона-комплексообразователя одновременно с кислородом и азотом поверхностных групп. Правда, с увеличением степени заполнения поверхности замещающими катионами (рис. 2) каталитическое действие несколько возрастает.

Была исследована способность азотсодержащих активных и окисленных углей ускорять реакции кислотно-основного типа — этерификации и переэтерификации. О ходе реакции синтеза уксуснобутилового эфира судили по убыли уксусной кислоты [1]. Исследовалось также действие угольных контактов в реакциях этерификации и переэтерификации жировых смесей, которые, как показано в [1], ускоряются натриевыми формами углей. Каталитическое действие в этих случаях фиксировалось по уменьшению кислотного числа смеси (этерификация) и температуры плавления (переэтерификация) [1]. Исследования показали (табл. 2), что природа поверхности угольных контактов весьма существенно влияет на каталитическую реакцию образования уксуснобутилового эфира, которая протекает со значительной скоростью только в присутствии окисленных образцов с протоногенными активными центрами. При этом, однако, хотя окисленный образец СКНО лучше ускорял данную реакцию, чем активный СКН, он намного уступал ФОУ. Таким образом, на каталитическое действие в протолитических реакциях наличие химически связанного азота благоприятного влияния не оказывает.

Примерно такая же картина наблюдалась и при сопоставлении каталитического действия ФАУ, СКН, ФОУ и СКНО и натриевых форм последних в реакциях модифицирования жировой смеси (табл. 2).

Здесь также большую активность имели угли, не содержащие азота. Для исследования были выбраны азотсодержащие угли, обладающие различной пористостью (см. табл. 1). По-видимому, в реакции переэтерификации жиров каталитическое действие образцов СКНО определялось главным образом их пористой структурой (ср. табл. 1 и табл. 2).

На основании проведенных исследований можно заключить, что наличие на поверхности углей основных атомов азота существенно повышает каталитическое действие активных углей в реакции разложения перекиси водорода и сообщает такую способность неактивным в этой реакции окисленным углям. Однако на ход реакций кислотного типа (жидкофазной этерификации уксусной кислоты бутанолом, этерификации и переэтерификации жировых смесей) присутствие в структуре углей азота существенного влияния не оказывает. Каталитическое действие угольных контактов в этих последних типах реакций определяется присутствием кислотных групп, модифицирующих катионов, а также пористой структурой.

Тарковская И. А. Окисленный уголь.— Кнев: Наук. думка, 1981.— 197 с.
 Warburg O., Brefeld W. Uber die Aktivierung Stichstoffhaltinger Koller durch Eisen.— Biochem. Z., 1924, 125, S. 461—480.
 Rideal S. K., Wright W. M. Low temperature oxidation at charcoal surfaces. II. The behaviour of charcoal in the presence of promotors.— J. Chem. Soc., 1926, p. 1813—1891.

4. Кузин И. А., Лоскутов А. И. Получение и исследование ионообменных свойств азот-

А. Узин И. А., Лоскутов А. И. Получение и исследование ионоооменных своиств азотсодержащего угля.— Журн. прикл. химии, 1966, 39, № 1, с. 100—104.
 Николаев В. Г., Стрелко В. В. Гемосорбция на активированных углях.—Киев: Наук. думка, 1979.—288 с.
 Кeegel G. F., Suruda W. A., Schwob A. C. The catalytic properties of charcoal.— J. Amer. Chem. Soc., 1938, 60, N 10, p. 2483—2486.
 Larsen E. C., Walton J. H. The catalytic properties of active coals.— J. Phys. Chem., 1940, 44, N 1, p. 70—76.
 Тарковская И. А., Ставицкая С. С., Петренко Т. П. Исследование каталитической активическия и предуставления в предуставления предуставления в предуста

тивности окисленных углей различного происхождения в окислительно-восстановительных реакциях.— Адсорбция и адсорбенты, 1979, № 7, с. 3—7.

9. Стражеско Д. Н. Электрофизические свойства активных углей и механизм процессов, происходящих на их поверхности.— Адсорбция и адсорбенты, 1976, № 4, с. 3—14. 10. Brinkmann G. Katalytische Wirkungen von Aktivkohle.— Kolloid Z., 1951, 123, Н 2/3,

S. 116—129. 11. Фоменко А. С., Ганкина И. П., Абрамова Т. М. Изучение механизма разложения пе-

рекиси водорода на активированном угле изотопным методом.— Кинетика и катализ, 1961, 2, № 5, с. 732—736. 12. *Николаев Л. А.* Биокатализаторы и их модели.— 2-е изд. испр. и доп. — М.: Высш.

школа, 1967.— 193 с.

Институт физической химии им. Л. В. Писаржевского АН УССР

Поступила 1 февраля 1982 г.

УДК 661.718.5:549.6

ИССЛЕДОВАНИЕ ПРОЦЕССОВ ДИСПЕРГИРОВАНИЯ ОКСИДА АЛЮМИНИЯ В СРЕДЕ ПОЛИОРГАНОСИЛОКСАНА

А. А. Пащенко, В. А. Свидерский, В. В. Ткач, В. Ф. Рушелюк

Введение в состав кремнийорганических полимеров минеральных наполнителей позволяет существенным образом улучшить ряд их физико-химических и эксплуатационных характеристик [1]. Решающее значение на свойства полученных композиционных материалов оказывает характер взаимодействия в системе полимер — наполнитель [2].