
ИК-СПЕКТРЫ И СТРОЕНИЕ ОРТОФОСФАТА ТИТАНАТА КАЛИЯ

М. К. Родионов, Н. П. Евтушенко, И. С. Рез

Кристаллы ортофосфата титаната калия состава КТіОРО₄ (КТР) обладают высокой оптической нелинейностью, лучевой стойкостью, хорошей прозрачностью и малой критичностью к условиям синхронизма [1]. Однако эти свойства изучены недостаточно. Для получения более подробных характеристик этого перспективного для квантовой элект-

роники соединения были исследованы его ИК-спектры поглощения. По рентгеноструктурным данным [2], соединение КТіОРО4 относится к пространственной группе C^9_{2v} и содержит 8 формульных единиц в элементарной ячейке. В этом случае частные положения PO_4 -групп определяются самой низкой симметрией C_1 , что приводит к оптической активности всех (3N-6)=9 колебаний тетраэдра PO_4 (A_1+E+2F) .

ИК-спектр поглощения КТі OPO_4 (таблет-ка с бромидом калия, 0,08 вес.%).

Спектры снимали на спектрофотометре «Спекорд ИР-75» в области $4000-350~{\rm cm^{-1}}$. Исследовали таблетированные с бромидом калия образцы монокристалла КТіОРО4, выращенного методом из раствора в расплаве. Полученный спектр содержит около 25 полос колебаний молекулярной РО4-группы и оксохромофора [TiO6] в области $1200-350~{\rm cm^{-1}}$ (рисунок). На основании теоретико-группового анализа проведено отнесение полос к фрагментарным группировкам [РО4] и

[TiO₆]. Результаты анализа представлены в табл. 1, 2.

Отнесение полос спектра к оксохромофору титана сделано в предположении его сильного искажения. Согласно структурным данным [2], монокристаллы исследуемого состава имеют 6 атомов кислорода на расстояниях 1,718; 1,900—2,161 и 1,738; 1,966—2,101 А от центрального атома. Наши спектральные данные также подтверждают искажение октаэдрической симметрии [ТіО6]-группировки. Характерные для этой симметрии оптически активные колебания F_{1u} -типа, которые проявляются в метатитанате бария [3] в области 490—545 см-1 (валентное колебание связи Ti—O) и 340—400 см-1 (деформационное колебание мостика О-Ті-О), в спектре исследуемого хромофора не обнаружены. Учитывая экспериментальные данные, а также возможность понижения октаэдрической симметрии метатитанатов двухвалентных металлов при тетрагональном, орторомбическом и ромбоэдрическом искажениях соответственно до симметрии C_{4v} , C_{2v} и C_{3v} [3] можно предположить, что в поле ромбической сингонии [2] исследуемого кристалла для $[TiO_6]$ -группировки наиболее вероятна симметрия C_{2v} . В таблице показано отнесение полос этой группировки. При их классификации по формам колебаний учитывали расчетные и экспериментальные данные [4, 5] колебательных спектров рутила ТіО2, имеющего пространственную группу D_{4h}^{14} . Четыре полосы в области $635-665~{
m cm}^{-1}$ отнесены к смешанным колебаниям деформаций фосфатной группы и связей Ti—O на основании расчетных данных [6] нормальных колебаний ортофосфата иттрия. Слабые полосы и плечи коррелируют с оп-

Таблица 1 Корреляция частот группы [PO₄] ИК-спектра КТіОРО₄

T_d -симметрия		D_{4h} -симметрия		С1-симметрия		
Часто- та, см—1 [7, 12]	Тип коле- бания	Форма колебания	Часто- та, см ^{—1} [6]	Тип коле- бания	Часто- та. см ^{—1}	Форма колебания
1022; 1080	F_2	Валентное асимметричное связи Р—О	1057 1059 997	B_{1g} A_{2u} E_u	1120; 1100 1050; 1025 1010; 995	Валентное асимметричное связей Р—О
970	A_{i}	Валентное симметричное связи Р—О	998	A_{1g}	978	Валентное симметричное связей Р-О
500; 562	F_2	Деформационное асим- метричное мостика О—Р—О	667 637 580 523	$B_{1g} + MO$ $A_{2u} + MO$ $E_g + MO$	555 545 505	Смешанные деформации группы [РО ₄] и связи Ті—О
360; 450	E	Деформационное сим- метричное мостика ОРО	485 332	$A_{1g} + MO$ B_{2g}		То же Деформации группы [PO ₄]

Таблица 2 Корреляция частот группировки [TiO₆] ИК-спектра КТіОРО₄

D_{4h} -симметрия *			C_{2v} -симметрия		
Часто- та, см—1	Тип коле- бания	Форма колебания	Часто- та, см ^{—1}	Тип колебания	Форма колебания
870	$B_{2\mathbf{g}}$	Валентное связи Ті-О	820	A_2	Валентное связи Ті-О
700	E_u^{2g}	То же	785		То же
			725	B_1 , B_2	» »
		_	705	B_1 , B_2	Валентное цепочки —Ті—О—Ті—О—
611	A_{lg}	Деформации мостика О—Ті—О	635	A_1	Смешанные деформации группы [РО4] и связей Ті—О
585	A_{2u}	То же	6 00	A_1	То же
452	A_{2u}^{2u}	» »	465	A_1	» »
400	A_{2u}^{2u}	Деформации мостика О—Ті—О	430	A_1	Деформации мостика О-Ті-О
375	E_{μ}	То же	402	B_1 , B_2	То же
	•		400	B_1 , B_2	» »
340	E_u	» »	385	B_1 , B_2	» »
			375	B_1, B_2	» »

^{*} Данные для рутила TiO2 по [4, 5].

тически неактивными колебаниями (g-типа). Интенсивную полосу 705 см $^{-1}$ относим к колебанию цепочки —Ti—O—Ti—O—. Таким образом, для принятой симметрии оксохромофора титана в ИК-спектре зафиксированы все 12 нормальных колебаний октаэдра ($A_{1g}+E_{1g}+2F_{1u}+F_{2g}$) вследствие снятия вырождения и оптической активности всех колебаний при переходе от O_h к C_{2v} .

Интерпретация спектра молекулярной [PO₄]-группы проведена на основании расчетных [6, 7] и экспериментальных [8—11] данных изучения колебательных спектров ортофосфатов редкоземельных элементов

(РЗЭ). Для них при переходе от лантана к гадолинию зафиксированы 18, 11] неразрешенные спектры сложной структуры монацитового типа (CePO₄, пр. гр. C^{5}_{2h} , локальная симметрия PO₄-группы C_{1}), а от тербия к лютецию — 4 интенсивные полосы u-типа [4], типичные для природного ксенотима (YPO₄, пр. гр. D_{4h}^{19} , локальная симметрия РО₄-труппы D_{2d}). Отличие спектров РЗЭ и исследуемого соединения по количеству, положению и соотношению интенсивностей полос, а также известные структурные данные являются основанием для принятой нами локальной симметрии C_1 молекулярной PO_4 -группы. Отнесение всех оптически активных колебаний (А-типа) этой группы по формам сделано на основании проведенной корреляции полученных и известных спектральных данных свободного PO_4^{3-} -иона симметрии T_d [12] и искаженного до D_{2d} кристаллическим полем ортофосфата иттрия (пр. гр. D_{4h}^{19} с центром инверсии). [6]. Результаты представлены в таблице. К валентным асимметричным колебаниям фосфатной группы отнесены три интенсивных дублета 1120, 1100, 1050, 1025 и 1010, 995 см⁻¹. Интенсивная полоса 978 см-1 отнесена к валентному симметричному колебанию связи Р-О. Деформационные колебания фосфатной группы в области 635—350 см-1 преимущественно смешаны с колебаниями связей Ті-О.

Дублетное строение полос [РО4]-группы может быть объяснено давыдовским расщеплением из-за упаковки нескольких молекулярных единиц (z=8) в элементарной ячейке кристалла.

Для описания электрооптических параметров фосфатных кристаллов, многие из которых обладают сегнетоэлектрическими свойствами, необходима также информация о наличии водородных связей (Н-связей), играющих существенную роль при сегнетоэлектрических фазовых переходах [13]. В связи с этим было исследовано наличие или отсутствие кристаллизационной и сорбированной воды, а также кислых фосфатных групп в образцах соединения KTiOPO₄. Спектры образцов, прокаленных в течение 6 ч при температуре 200°, теряли интенсивные полосы сорбированной воды (валентное колебание ОН-групп при 3450 см⁻¹, деформационное — при 1640 см⁻¹). Однако слабая единичная полоса в этой области спектра была зафиксирована и после прокаливания образца, что можно объяснить наличием не более одной молекулы Н2О на формульную единицу соединения. Не обнаружено в спектрах полос поглощения в области колебаний кислых фосфатных групп РОН: **2900**—2300 и 1200—1400 см⁻¹ [14].

Таким образом, нами впервые изучен ИК-спектр нового фосфатного соединения четырехвалентного титана состава КТіОРО4. Проведен теоретико-групповой анализ тетраэдрической [РО4]-группировки в приближении позиционной симметрии C_1 и октаэдрической [TiO6]-группировки локальной симметрии C_{2v} . Сделано отнесение полос по формам и типам колебаний. Дублетное строение полос фосфатной группы классифицируется как давыдовское расщепление и может свидетельствовать о значительном ковалентном вкладе в связи катион — анион. Интенсивная полоса 705 см-1 отнесена к цепочке —Ті-О-Ті-О-, которая, вероятно, совпадает с направлением полярной оси кристалла. Исследовано наличие кристаллизационной воды в этом соединении.

Zumsteig F. G. News, evaluators of new crystals KTP. Report efficient doubling of Nd: XAG frequency.— Lasers Focus, 1978, 14, N 7, p. 18—20.
 Tordman I., Masse R., Guitel I. C. Structure cristalline du monophosphate KTiPO₅.— Z. Kristallogr., 1974, 139, N 1/2, S. 103—115.
 Last J. T. Infrared absorption stadies on barium titanate and related materials.— Phys. Rev., 1957, N 6, p. 1740—1750.
 Юрченко Э. Н., Кустов Г. Н., Бацанов С. С. Колебательные спектры неорганических соединений. — Новособирок : Наука, 1981.—140 с.

соединений. — Новосибирск: Наука, 1981.—140 с. 5. Миргородский А. П., Игнатьев И. С., Лазарев А. Н. Оптические колебания, силовое поле и динамические заряды кристалла тетрагональной модификации двуокиси кремния.— Физика твердого тела, 1974, 16, № 9, с. 2589—2604.

- 6. Лазарев А. Н., Маженов Н. А., Миргородский А. П. Оптические колебания кристалла YPO4 и его аналогов, резонансные расщепления колебаний сложных анионов.-Изв. АН СССР. Неорган. материалы, 1978, 14, № 11, с. 2107—2118.

- Изв. АН СССР. Неорган. материалы, 1978, 14, № 11, с. 2107—2118.

 7. Ambruster A. Infrared reflection studies on the phosphates arsenates and vanadates of lutetium and ittrium.— J. Phys. Chem. Solids, 1976, 37, N 3, р. 321—327.

 8. Тенишев А. Т., Павлюкевич Т. М., Лазарев А. Н. Инфракрасные спектры и строение фосфатов и сульфатов РЗЭ.— Изв. АН СССР. Сер. хим., 1965, 10, с. 1771—1781.

 9. ИК- и КР-спектры безводных ортофосфатов ТЬ—Lu/Э. Н. Юрченко, Е. Б. Бургина, В. И. Бугаков и др.— Изв. АН СССР. Неорган. материалы, 1978, 14, № 11, с. 2038—
- 10. Колебательные спектры оксофосфатов РЗЭ/В. П. Орловский, А. Н. Цивадзе, Ю. Я. Харитонов и др.— Изв. АН СССР. Неорган. материалы, 1979, 15, № 6, с. 975—979. 11. Инфракрасные спектры фосфатов гадолиния/Е. И. Петров, И. В. Тананаев, В. Г.
- Первых, С. М. Петушкова.— Журн. неорган. химин, 1967, 12, № 10, с. 2645—2650. 12. *Накамото К.* Инфракрасные спектры неорганических и координационных соедине-
- ний.— М.: Мир, 1966.— 410 с. 13. Ratajzak H., Baran J. Infrared and raman polarized spectra of monoclinic KD₂PO₄
- 13. Капатан 7. Infrared and Faman polarized spectra of monochine KD₂FO₄ crystal.— J. Raman Spectrosc., 1978, 7, N 1, p. 54—60.

 14. Колебательные спектры тригидратов двузамещенных фосфатов магния и марганца / В. В. Печковский, Р. Я. Мельникова, Е. Д. Дзюба, Т. И. Баранникова.— Изв. АН СССР. Неорган. материалы, 1979, 15, № 6, с. 957—962.

Киевский политехнический институт

Поступила 30 марта 1982 г.

УДК 546.56:541.486:543.42.062

КОМПЛЕКСООБРАЗОВАНИЕ МЕДИ (11) С 1-АМИНО-8-НАФТОЛ-2,4-ДИСУЛЬФОКИСЛОТОЙ В ВОДЕ И ВОДНО-ДИОКСАНОВОЙ СРЕДЕ

И. И. Сейфуллина, Л. С. Скороход, Т. Е. Мазепа

Комплексообразование Сu (II) с сульфокислотами нафталина наиболее широко представлено для различных нитрозопроизводных [1-3]. Наименее изучены аминопроизводные [4, 5].

В настоящей работе спектрофотометрически исследовано комплексообразование меди (II) с 1-амино-8-нафтол-2,4-дисульфокислотой в воде и водно-диоксановой среде. Выбор среды обусловлен тем, что исследования, описанные в [1-5], проведены в аналогичных условиях. В работе использовали нитрат меди (II) высокой чистоты с содержанием отдельных примесей не более $1 \cdot 10^{-5}$ % и 1-амино-8-нафтол-2,4дисульфокислоту марки «х. ч.». Водный раствор лиганда окрашен. Поэтому оптическую плотность растворов измеряли в видимой области (390-800 нм) на спектрофотометре СФ-18 в кюветах толщиной 10 мм со специальными кварцевыми окошками при температуре $18\pm0.5^{\circ}$, спустя 30 мин (время наступления равновесного состояния).

Исследование комплексообразования меди (II) с 1-амино-8-нафтол-2,4-дисульфокислотой проводили при концентрации меди 7·10-4 моль/л, область концентрации лиганда составляла 1.10-4-7.10-3 моль/л. рН растворов создавали азотной кислотой и гидроксидом калия и контролировали при помощи рН-метра рН-121 со стеклянным электродом. Постоянство ионной силы (I=1,0 и 0,1) в каждой серии опытов поддерживали нитратом калия.

Исследование комплексообразования в смешанном растворителе проводили в водно-диоксановой среде с 75 %-ным содержанием последнего. Предварительно было проверено соблюдение основного закона светопоглощения; найдены длина волны и оптимальные рН, соответствующие максимуму поглощения растворов. При двух ионных силах (I=0,1 и I=1,0) и длине волны, соответствующей максимальному поглощению растворов, и оптимальных рН измерена оптическая плотность раствора лиганда в зависимости от его концентрации и смеси