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Abstract. It is proved that the point ¢ = 0 in difference of other points of continious spectrum is
point of branchement of logarithmic type of the resolvent of transport operator.

INTRODUCTION

We consider partial case of so-called "equation of transmission". There is much lit-
erature concerning (during many years) different problems in this direction. One of such
problems, namely the problem of neutron transport, leads to the operator

Lf(z,p) = —w%(x,u) +C(fﬂ)/f(fv,u’)du’ (1)

in the space L?(D), where D = R x [—1,1]. In [1] in the case

C, r<a
C(ZL'):{O, ||

|z| > a,c = const

it was obtained that continuous spectrum of the operator L coincides with
real axis R and that the set of eingen-values is finite. In [2] in the
case ¢ € L*(R), supp ¢ C [—a,al, ¢(x) > 0 well-known functional model is applied.

1. STATEMENT OF THE PROBLEM

Among other publications we mention only several of them, which are the closest to
our problem. In [3] the authors use Friedrichs’ model to study the operator L. In the
case of exponentialy decreasing potential the sufficient condition of finiteness of point
spectrum was obtained. The methods of this work were used in [4] in more general case
of the operator

Lf () = —inS () + afa) [ @)

As it was proved in [4] the value ¢ = 0 only can be the point of accumulation of point
spectrum of the operator L if the following conditions hold:
a) the function a(x) is locally integrable and satisfies the estimate

la(z)| < Me™?l 2 € R, (3)

where € > 0, M > 0 are some constants;
b) the function b(n), p € (—1,1) admits analytic prolongation b(2) into the circle
|z| <1+e.
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In that work it was proved that resolvent has analytic prolongation over the semi-
axis (—oo;0) and (0,00). But in this work the point of spectrum ¢ = 0 remains to be
unstudied.

Our aim is to prove that the point ¢ = 0 is the point of branchment of the
resolvent.Apropos in a similar situation in the work [3] it was proved that the point ( = 0
was spectral singularity of considered operator. Like [3-4] we use unitary equivalence of
the operator L to the operator of Friedrichs’ model.

2. PRELIMINARY

Here we give some notations and results from [4].
Let H be Hilbert space of the functions on two variables ¢(s, ), (s, ) € D with norm

1
1
el = / / (o) Pl
R —1

and let G = L?*(R). We denote by (-,-), (-,-)g scalar product in the spaces G and H
respectively. We denote by S : H — H the operator of multiplication by independent
variable (Sp)(r, ) = To(1, 1), 7 € R with maximal domain of definition. Using Fourier
transformation it was proved in [4] that the operator L : L?*(D) — L?(D) is unitary
equivalent to the operator T = S + A*B : H — H (Friedrich’s model) with bounded
operators A* : G — H, B : H — G under the form

A*c(s,p) = % /al(y)c(y)e_iyﬁdy, (4)

and
1

Bo(w) = ax@) [ e | [b)otu i | dr )
R -1
We use the traditional form of perturbation A*B, that’s why we don’t need the oper-
ator A : H — G itself. The representations (4)-(5) contain the factors a; o(z) of arbitrary
factorization such that

a(z) = ay(2)ax(x), |ai(z)| = laz(2)].

The relation between the resolvents T, = (T'—¢)~" and S; = (S —()~" of the operators T
and S is the following T, = S; — ScA*K (¢)™'BS;, where K(¢) =1+ BS;A*.

3. ESTIMATE OF THE OPERATOR K((),( — 0

It is shown in [3| that

(K(Q) = D0@) = [ Ko ety where bz, = 5w ~1.0) ©)

R
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and

b(p')

T —=¢

1

I(u,() = /Z(T, C)e™Tdr, u=x —y, where [(1,() :/ dy', Tm(¢) #0. (7)
R 1

Let 6 be arbitrary value such that 0<d<e (see (3)) and

Q1(0) ={C:[¢] <9, £Im ¢ > 0}. By In¢ we denote the branch of logarithmic function

which is continuous in the domain ¢ ¢ [0, 00) and such that In(—1) = 3.

If b(11) = 1 then we denote by Iy(u, () the expression I(u, () (see[3])

I()(’LL, C) = V(C) + Ro(u, C)v C S Qﬂ:((s)? (8)
where
v(¢) = —mi sign v - In¢, v =Im( 9)
and the term Ry(u, () admits the estimate
1
|Ro(u, ()] < M | —¢ +Jul|, p>1, ¢ € Q4+(0), M = const, (10)
/Ll/ €

which is independent of . Underline that v(¢) — 00, — 0 and the decomposition like (8)
is not unique. Let us introduce the following notation

|z|<14e |2|<1+e ¢eNL(9)

, Foa o\
Bl = swp b+ s W] and Ny = sw | [ )

Lemma 1. The function I(u,(), defined in the relations (6)-(7), can be represented in
the form

I(u,¢) = b(0)7(C) + R(u,C), (12)
where
R(u,C)| < Ny (6) |1é Flull, p>1, ¢ e, (13)

where N1 (0) = CNy(0) ||bl|or and C denote some constant, which is independent of 6, ¢
and also of the function b(u).

Proof. Let us denote b;(2) = b(z) — b(0). We substitute in (7) the decomposi-
tion b(z) = by(z) + b(0), separating Iy(u,() (what correspond to with b(z) = 1) in the
right part of (7) and taking into account the decomposition Ip(u, () itself (8), we obtain
for ¢ € Qi((S)

1 1

10,0 = [ e Fan it = [ o fun(tlul)dt 5070 + WO Rafu, ), (14

raor= [ ) e ()]s

T

where

«TaBpiNCbKMI BICHUK iHCpOpMATUKK Ta maTtemaTtukun, Ne2’2010



74 Cheremnikh E. V., Ivasyk G. V.

Integrating by parts, we get the estimate

2|bllor, T € (0,1)
[fewa(T)] < { 4||b||gl /T, T € (1,00).

It follows from here that the interval of integrations (0,00) in (14) can be changed by
the interval (0,¢) (the value of € see in (3)) and the difference between the integrals will
have the estimate like (13). In the integral (15) we put 7 = ¢ |u| and make the change of
variable ﬁ = 0, then in view that u = sign u - |u| = w |u| we have:

Foonlt]ul) = 7% {bl (%) e 4y (-%) e_wg} do. (17)

According to (14) we need the value ¢t < e. It’s easy to verify that in (17) the interval of
integrating (¢, 00) can be changed by (¢,¢) and therefore we can consider the integrals

g+ (t,u) :/%-b1 (i%) e* 0 qg. (18)
0

In the right part of (14) it remains to consider the sum I (u,¢) + I_(u, (), where

Lu(u, 0) :/gi(t’“)dt—/wdt. (19)

t—( t+¢
0

(16)

Theorem 1. Let § < e, then

K(©) = 1= 20O e a0 +QUO). €€ 2.0, (20

where the elements ay, as are defined by the factorization a(x) = ai(z)as(z),
lay(z)| = |az(z)| and the operator Q(¢) : L?*(R) — L*(R) is compact with the norm
bounded uniformly with respect to ¢, namely

1QION < M lall;, ||a||§5/|a($)|262“'d% ¢ € 2+(9). (21)
R

Proof. According to (6) and (12), we have

k(r.5.0) = A2 (Qaala)an(y) + 5ol W) R(r — 0. C).

what proves the decomposmon

0).
1Q(0) / [ 0@ o) 1B~ 5, ) dody

Further
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Due to the relations |as(z)|* = |a(z)|, |a1(y)|> = |a(y)|, we obtain

1
Q) / (e au)| e [e 509 Rz =, Q)] dody <
R

e

2

Ia ) la(y)” e Wdady | =

2\ 2
/ o) s | | = 24 . 22
R

where due to the estimate (13) under the condition p > 2 the value

1

2
= ([ [0 g iy
R R

is finite. Theorem is proved. 0]

We substitute (18) in (19), change the order of integrating and we make the change
of variable £ = 7, then in the case of sign ,+*

1 €
iuf
I+(u,C):/b1(T) /gf_cde dr.
0 —€

By integrating by parts, we have the decomposition

y iuf 1 ) ) y )

/ 976 — Cdﬁ == e In(er — () — e "In(—er — () — iu / en(or — )db|, (22)
which leads us to the estimate |1 (u, ()| < C||b]|c [Jul +1], ¢ € Q4(5), C = const.
The value I (u,() has analogic estimate. Really (let us consider bi(7) =1),

1

the value /111(87' — ()dt is bounded for ¢ € Q. () if the integral

0

1 1
) = / [In(er — ) — lnet|dr = /ln(l - i)dT
0

ET
0

is bounded too. If 7 = || s, then

/< Sas)
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and using the inequality ‘ln ((1—L l))‘ < M s > 1, M = const, we obtain

eld] s = s

IG(()| < C |C|ln|—é| or |G(C)] < C, ¢ € Q4(d). Lemma is proved.

Now we consider ¢ = 0 as the point of the spectrum of the operator L (or the opera-
tor T).

Statement 1. The value ( = 0 is not eigen-value of the operator L.

Proof. 1f (see(2))

i e, + a) / b4 ) f (e, )i = 0, f € L2(D).

then integrating from 0 to x gives

—iﬂ(f(xaﬂ)) - f(l/a M)) = B(x)a

where the function

B(z) = - / a(t) / (') f (1 )yt | d

has not limit value lim B(x) = By. Then ipuf(0, ) = By and

r—r+00
—ipuf(x, 1) + Bo = B(x). But f(x,p) = (B(2) — Bx)/(~in) ¢ L*(D),
what proves Statement. 0

Statement 2. The value ¢ = 0 is point of branchment of linear form of the resol-
vent (Tep, 1), where ¢, are smooth elements.

Proof. We consider the functions ¢(7), ¥ (7), which admit analytic prolongation in the
band |Im(| < €. According to (20)

[y (7)| = c[n|r|[+O(1), 7 = 0.

So, the function K, ({) is not bounded if ¢ — 0. By the same way ¢ = 0 is not pole of
the function K, (¢) what proves the statement. O

CONCLUSION

As a result in this work it was obtained: the point ¢ = 0 in difference of other points
of continious spectrum is point of branchement of logarithmic type of the resolvent of
transport operator. The operators which are more general than (1) are interesting in
different applications so the same problem will be actual for such operators.
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